EP0628819A2 - Coated carrier, method for manufacturing it and its use in immobilising biomolecules on the surfaces of solids - Google Patents
Coated carrier, method for manufacturing it and its use in immobilising biomolecules on the surfaces of solids Download PDFInfo
- Publication number
- EP0628819A2 EP0628819A2 EP94108127A EP94108127A EP0628819A2 EP 0628819 A2 EP0628819 A2 EP 0628819A2 EP 94108127 A EP94108127 A EP 94108127A EP 94108127 A EP94108127 A EP 94108127A EP 0628819 A2 EP0628819 A2 EP 0628819A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- polymer
- mol
- technique
- hydrophilic spacer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- RWHPIGPWQYUYKS-UHFFFAOYSA-N C=CC(Nc(cc1)cc2c1nc(C(C(Oc1c3)=O)=Cc1ccc3NS(c1ccccc1)(=O)=O)[s]2)=O Chemical compound C=CC(Nc(cc1)cc2c1nc(C(C(Oc1c3)=O)=Cc1ccc3NS(c1ccccc1)(=O)=O)[s]2)=O RWHPIGPWQYUYKS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/089—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C12N11/096—Polyesters; Polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells immobilised on or in an inorganic carrier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
- G01N33/525—Multi-layer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/544—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
- G01N33/545—Synthetic resin
Definitions
- the present invention describes coated supports and a process for their preparation which are suitable for immobilizing proteins and other biomolecules, in particular receptor proteins. This enables improved production of biosensors and bioassays.
- the adsorptive processes have the disadvantage of the lack of stability of the protein immobilization
- the covalent attachment with coupling or activation reagents often requires a relatively high number of process steps, the use of highly pure and unstable reagents or the use of reaction conditions that are not compatible with all proteins.
- the efficiency of protein immobilization is also often inadequate, either due to protein denaturation or due to insufficient coverage of the surface with proteins.
- some activation reagents are capable of cross-linking, resulting in poorly defined surfaces. The reproducibility of the immobilization is also very bad.
- the invention further relates to a method for producing coated carriers, characterized in that an inert carrier according to the Langmuir-Blodgett (LB) - or according to the self-assembly (SA -) - technique with a monomolecular layer made of a polymer suitable for these techniques is coated, this containing 0.8-20 mol%, based on the number of moles of all comonomers, of a comonomer which has an active group which is suitable for binding molecules of biological origin and is located at the end of a hydrophilic spacer group, and between the inert carrier and the monomolecular layer 0-200 monomolecular layers of a polymer suitable for the LB or SA technology without the comonomers containing active groups.
- LB Langmuir-Blodgett
- SA - self-assembly
- the invention relates to the use of the coated carrier for the attachment (immobilization) of molecules of biological origin.
- the inert solid body can also be primed with one or more layers of film-forming substances in order to ensure better adhesion of the top, protein-binding layer.
- the solid should have a planar structure and a surface polarity that is as uniform as possible.
- SA technology There are superficially loaded materials, which can also be introduced later, such as with surface-oxidized plastics.
- Biosensors can be constructed using numerous methods. Depending on the detection method (electrochemical, optical or other), metal electrodes, semiconductor surfaces, membrane-coated electrodes, light-conducting or translucent materials (glasses, plastics), quartz crystals or surface resonators are to be modified as surfaces to be used according to the invention.
- Known groups from the classic protein immobilization are possible as reactive groups, for example N-hydroxysuccinimide groups, isocyanate, isothiocyanate or nitrophenyl ester for NH2 immobilization, iodoacetamide or maleimide groups for SH immobilization or hydrazide groups for binding glycoproteins cleaved by periodate treatment.
- Preferred hydrophilic spacer groups are oligoethylene oxide groups or oligopropylene oxide groups with 5-9 units.
- the inert solid and the monomolecular layer made of the polymer (II) can be incorporated, the polymer of which is of the formula (II) by omitting the proportion of monomer can be derived with the index s.
- Polymers that carry more than one electrical charge, which accordingly represent polyions, are suitable for carrying out the SA technology.
- suitable polycations are compounds with amino functions and sulfonium groups, such as polylysine, polyallylamine, polyethyleneimine, polyvinylpyridine, (meth) acrylates modified with amino functions (for example poly-N, N-dimethylaminoethyl methacrylate) and dextrans (for example DEAE-dextran) and Chitosan.
- the amino compounds can be converted into the ionized state either by simple protonation or by quaternization
- polyanions examples include polycarboxylic acids, polyphosphonic acids and polysulfonic acids.
- suitable polyanions include polyglutamate, poly (meth) acrylic acid, polystyrene sulfonic acid or dextran sulfate.
- 0-200 layers of the above polyions suitable for the SA technique can be applied to an inert support.
- the polymers to be attached are alternately charged in opposite directions; the carrier to be coated is generally pretreated so that it also carries opposite charges to the first polymer layer to be applied.
- a polyionic polymer which contains 0.8-20 mol%, preferably 2.5-10 mol%, based on the total number of all comonomers, of monomer units which are used for the final layer is then also applied when using the SA technique
- Binding of molecules of biological origin contains suitable active groups of the type described above located at the end of a hydrophilic spacer group (formula (I)).
- the cationic groups are hydrazine groups (-NH-NH2 or -NH-NH2 ⁇ HCl)
- these hydrazine groups can both effect the ionic bond to the underlying polyanionic layer and also with their over this binding amount bind the molecules of biological origin.
- the active group can account for up to 100 mol% in addition to the proportion according to the invention of 0.8-20 mol%.
- Counterions are the polyanions H+, (earth) alkali metal cations, NH4 ⁇ or fully or partially substituted by C1-C8 alkyl, phenyl or benzyl ammonium.
- Counterions are OH ⁇ , halide, sulfate, C1-C8 alkyl sulfonate or phenyl sulfonate in the polycations.
- Cations can also be caused by exposure to water or Acids only arise when used in SA technology, for example from - NH2 and water -NH3 ⁇ OH ⁇ .
- polyanions are vinyl polymerizable acids, such as poly (meth) acrylic acid or polystyrene sulfonic acid.
- the reactive groups are incorporated, as in the case of the polymers for LB technology, using reactive monomers.
- the same reactive monomers (formula I) are preferably used to build up polymers suitable for SA technology.
- Preferred polycations are those with the pyridinium, ammonium or -CO-Q-alkylene-ammonium cations mentioned as R9 in the context of the formula (III).
- the molar proportion of the reactive groups is between 20 and 0.8%, preferably between 10 and 2.5%.
- the index s in (III) has the value zero for the 0 to 200 layers below the top layer; in the lower layers, the polyanion or polycation therefore has no active group.
- the exceptional position of the hydrazine group has already been described above.
- solvents which dissolve the polymers but are not miscible with a medium on the surface of which the polymers are spread are suitable in a known manner.
- the medium is water
- solvents are e.g. Methylene chloride and other halogenated aliphatic hydrocarbons; Aromatic series hydrocarbons; water-immiscible esters and other known to those skilled in the art.
- water-miscible solvents e.g. water-soluble alcohols and ethers, dimethyl sulfoxide, peralkyl acid amides and others known to the person skilled in the art.
- Molecules of biological origin are, for example, proteins, steroids, metabolic products, vitamins, nucleic acids, preferably biological receptor molecules, such as immunoglobulins, lectins or enzymes, for example glucose oxidase, urease, antibodies.
- biological receptor molecules such as immunoglobulins, lectins or enzymes, for example glucose oxidase, urease, antibodies.
- the protein to be immobilized can be used either without pretreatment, in the case of immunoglobulins after cleavage to form Fab fragments or after periodic cleavage of glycoside residues, and via auxiliary proteins, as in the case of immunoglobulins with protein A or protein G.
- auxiliary proteins as in the case of immunoglobulins with protein A or protein G.
- the 1 H-NMR showed the broad resonances typical of polymers, which due to the content of m-TMI are also in the aromatic range between 7 and 7.5 ppm, and also the protons adjacent to the ester function between 3.5 and 4.5 ppm and for the alkyl part the absorptions between 0.7 and 2.2 ppm.
- the 1 H-NMR showed the broad resonances typical of polymers in the alkyl range between 0.7 and 2.2 ppm as well as the protons adjacent to the ester function between 3.5 and 4.5 ppm.
- the 32S elemental analysis showed 0.45% S, corresponding to 4.1 mol% reactive group.
- the crude solution was added dropwise to 500 ml of methanol, the precipitate formed was filtered off, washed with water and dried.
- the 1 H-NMR showed the broad resonances typical for polymers in the aromatic range between 7 and 7.5 ppm and also the protons adjacent to the ester function between 3.5 and 4.5 ppm and the absorptions between 0.7 and 2 for the alkyl part, 2 ppm.
- Example 3a The experiment from Example 3a) was repeated, using dimethyl sulfoxide as the solvent instead of dioxane.
- the 14N elemental analysis showed 0.4% N for polymer 5, or 0.7% N for polymer 6, corresponding to 2.8 mol%, or 5 mol% of the NHS-activated reactive group from Example 3a).
- the 1 H-NMR showed the broad resonances typical for polymers in the aromatic range between 7 and 7.5 ppm and also the protons adjacent to the ester function between 3.5 and 4.5 ppm and the absorptions between 0.7 and 2 for the alkyl part, 2 ppm.
- the 14N elemental analysis showed 0.9% N, corresponding to 6 mol% of reactive group 3 from Example 3.
- the crude solution was added dropwise to 400 ml of methanol, the precipitate formed was filtered off, washed with water and dried.
- the 1 H-NMR showed the broad resonances typical of polymers in the aromatic range between 6.5 and 8.3 ppm as well as the protons adjacent to the ester groups between 3.5 and 4.5 ppm and the absorptions between 0.7 and for the alkyl part 2.2 ppm.
- the absorbance values at 480 nm standardized to the pure dye gave 15% by weight of dye in the polymer.
- the 14N elemental analysis showed 1.5% N, corresponding to 4 mol% of the NHS-activated reactive group 3 from Example 3.
- a glass or plastic carrier was coated with an LB (method according to DE-OS 39 38 598) or SA layer (method according to DE-OS 42 08 645) and covered with a second carrier of the same type, the edges of which were covered with a 0.1 mm thick layer Teflon tape was coated so that there was a 0.1 mm gap between the two supports.
- This space was filled with 1 ml of a solution of ⁇ -galactosidase (1 mg / ml, 10 mmol carbonate buffer pH 8) and then incubated for 1 h at room temperature.
- EPPS buffer 0.1 mol / l N- [2-hydroxyethyl] piperazine-N '- [3-propanesulfonic acid] (EPPS), 1 mmol / l MgCl2, 0.05% NaN3, 0.1 g / l bovine serum albumin, pH 8) washed.
- the plate was incubated with 2 ml of a 0.5 mmol / l solution of dimethylacridinone galactoside (DMAG) in EPPS buffer for 1 h at 37 ° C. The solution was then transferred to a cuvette and added to Measure 634 nm in the photometer against untreated DMAG solution.
- DMAG dimethylacridinone galactoside
- 0.25 ml of a solution of protein A (0.1 mg / ml in 0.01 mol / l carbonate buffer pH 8.0) was passed through and then incubated overnight at room temperature. The cover slip was then removed and the film was rinsed in citrate buffer (25 mmol / l citrate, 15 mmol / l potassium phosphate, 0.5 mol / l KCl, 1 mmol / l MgCl2).
- the linkage of the digitoxigenin derivative to immobilized immunoglobulin and its washing stability compared to citrate buffer pH 6.4 could be detected via the ratio of the fluorescence 577 to 515 nm (Förster energy transfer, as described in DE-OS 39 38 598) (see table).
- This space was mixed with 1 ml of a solution of anti-digoxin IgG, which had previously been subjected to periodate oxidation (4 mg IgG in 0.5 ml 0.01 M NaIO4, 0.1 M acetate buffer pH 5.5, incubated for 45 min at room temperature, then desalted using Biogel P6G ).
- the piece of film was rinsed with citrate buffer pH 6.4 (see Example 10), left to dry and cut into smaller pieces.
- the fluorescence was measured at 495 and 577 nm on these sample foils before and after immersion in a solution containing TRITC-labeled digitoxigenin (1 ⁇ g / ml in citrate buffer pH 6.4 with the addition of 0.001% by volume Tween 20) (suggestion: 405 nm).
- the binding of the digitoxigenin derivative to immobilized immunoglobulin and its washing stability compared to citrate buffer pH 6.4 / Tween 20 could be detected via the ratio of the fluorescence 577 to 495 nm (see table).
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials For Medical Uses (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
Die vorliegende Erfindung beschreibt beschichtete Träger und ein Verfahren zu ihrer Herstellung, die zur Immobilisierung von Proteinen und anderen Biomolekülen, insbesondere von Rezeptorproteinen geeignet sind. Dies ermöglicht eine verbesserte Herstellung von Biosensoren und Biotests.The present invention describes coated supports and a process for their preparation which are suitable for immobilizing proteins and other biomolecules, in particular receptor proteins. This enables improved production of biosensors and bioassays.
Die Immobilisierung von Proteinen und anderen Biomolekülen ist für viele analytische und biotechnologische Verfahren von Wichtigkeit. Als analytische Verfahren seien hier insbesondere Festphasen-Immunoassays sowie Bio- und Immunosensoren genannt, bei denen sich durch die Immobilisierung eine Verbesserung der Handhabbarkeit von Immunglobulinen (Antikörpern) ergibt. Nach dem derzeitigen Stand der Technik werden Proteine meist adsorptiv über ionische oder hydrophobe Wechselwirkungen an Oberflächen gebunden oder sie werden über kovalente Bindungen über die Verwendung von Hilfsreagenzien angekoppelt. Als ein mittlerweile klassisch zu nennendes Beispiel für letztere Vorgehensweise sei die Aktivierung von Glas durch APTS (3-Aminopropyl-triethoxysilan) und Glutardialdehyd mit anschließender Bindung von Protein und einer ggf. daran anschließenden Reduktion der entstehenden Schiff-Base durch Natriumborhydrid zu nennen. Einen Überblick über bei Immunoassays benutzte Verfahren findet man beispielsweise in P. Tijssen, "Practice and Theory of Enzyme Immunoassays", S. 297-328 (Elsevier, Amsterdam 1987). Für biotechnologische Verfahren sind daneben Einkapselungsverfahren für Enzyme in permeablen Polymeren oder Membranen gebräuchlich.The immobilization of proteins and other biomolecules is important for many analytical and biotechnological processes. Solid-phase immunoassays and bio- and immunosensors, in which immobilization improves the handling of immunoglobulins (antibodies), may be mentioned here in particular as analytical methods. According to the current state of the art, proteins are mostly bound to surfaces by adsorption through ionic or hydrophobic interactions, or they are coupled via covalent bonds through the use of auxiliary reagents. Activation of glass by APTS (3-aminopropyl-triethoxysilane) and glutardialdehyde with subsequent binding of protein and a subsequent subsequent reduction of the resulting Schiff base by sodium borohydride should be mentioned as a classic example of the latter procedure. An overview of methods used in immunoassays can be found, for example, in P. Tijssen, "Practice and Theory of Enzyme Immunoassays", pp. 297-328 (Elsevier, Amsterdam 1987). Encapsulation processes for enzymes in permeable polymers or membranes are also common for biotechnological processes.
Während die adsorptiv arbeitenden Verfahren den Nachteil der mangelnden Stabilität der Proteinimmobilisierung besitzen, erfordert die kovalente Anbindung mit Kupplungs- oder Aktivierungsreagenzien oft eine relativ hohe Anzahl von Prozeßschritten, die Verwendung von hochreinen und instabilen Reagenzien oder die Anwendung von nicht mit allen Proteinen kompatiblen Umsetzungsbedingungen. Auch ist der Wirkungsgrad der Proteinimmobilisierung oft mangelhaft, entweder durch Proteindenaturierung oder durch eine zu geringe Belegung der Oberfläche mit Proteinen. Weiterhin sind einige Aktivierungsreagenzien zur Quervernetzung fähig, wobei sich schlecht definierte Oberflächen ergeben. Die Reproduzierbarkeit der Immobilisierung wird damit ebenfalls sehr schlecht.While the adsorptive processes have the disadvantage of the lack of stability of the protein immobilization, the covalent attachment with coupling or activation reagents often requires a relatively high number of process steps, the use of highly pure and unstable reagents or the use of reaction conditions that are not compatible with all proteins. The efficiency of protein immobilization is also often inadequate, either due to protein denaturation or due to insufficient coverage of the surface with proteins. Furthermore, some activation reagents are capable of cross-linking, resulting in poorly defined surfaces. The reproducibility of the immobilization is also very bad.
In der vorliegenden Erfindung werden diese Probleme dadurch gelöst, daß neue beschichtete Träger, die mit einem dünnen, filmbildenden Polymer überzogen sind, bereitgestellt werden, bei denen das Polymer
- a) auf der Oberfläche eines inerten Festkörpers fest anhaftet und
- b) Reaktivgruppen zur kovalenten Bindung des zu immobilisierenden Proteins besitzt.
- a) adheres firmly to the surface of an inert solid and
- b) has reactive groups for covalently binding the protein to be immobilized.
Der Vorteil besteht in einer Reduzierung des Immobilisierungsaufwandes auf im wesentlichen zwei Schritte:
- a) Beschichtung des Festkörpers
- b) kovalente Anbindung des Proteins an den beschichteten Festkörper
- a) coating the solid
- b) covalent attachment of the protein to the coated solid
Die Erfindung betrifft somit beschichtete Träger, bestehend aus
- a) einem inerten Festkörper und
- b) einer monomolekularen Schicht eines für die Langmuir-Blodgett-(LB-) oder für die Self-Assembly-(SA-) Technik geeigneten Polymers, wobei
- c) das Polymer 0,8-20 Mol-%, bevorzugt 2,5-10 Mol-%,bezogen auf die Molzahl aller Comonomere, an einem Comonomer enthält, das eine zur Bindung von Molekülen biologischen Ursprungs geeignete, am Ende einer hydrophilen Spacergruppe sitzende Aktivgruppe besitzt und wobei
- d) zwischen dem inerten Träger a) und der monomolekularen Schicht b) 0-200 monomolekulare Schichten eines für die LB- oder SA-Technik geeigneten Polymers ohne Aktivgruppen gemäß c) angeordnet sind.
- a) an inert solid and
- b) a monomolecular layer of a polymer suitable for the Langmuir-Blodgett (LB) or for the self-assembly (SA) technique, where
- c) the polymer contains 0.8-20 mol%, preferably 2.5-10 mol%, based on the number of moles of all comonomers, of a comonomer which is suitable for binding molecules of biological origin at the end of a hydrophilic spacer group has a sedentary active group and where
- d) 0-200 monomolecular layers of a polymer suitable for the LB or SA technology without active groups according to c) are arranged between the inert carrier a) and the monomolecular layer b).
Die Erfindung betrifft weiter ein Verfahren zur Herstellung beschichteter Träger, dadurch gekennzeichnet, daß ein inerter Träger nach der Langmuir-Blodgett (LB)- oder nach der Self-Assembly (SA-)-Technik mit einer monomolekularen Schicht aus einem für diese Techniken geeigneten Polymer beschichtet wird, wobei dieses 0,8-20 Mol-%, bezogen auf die Molzahl aller Comonomere, an einem Comonomer enthält, das eine zur Bindung von Molekülen biologischen Ursprungs geeignete, am Ende einer hydrophilen Spacergruppe sitzende Aktivgruppe besitzt und wobei zwischen dem inerten Träger und der monomolekularen Schicht 0-200 monomolekulare Schichten eines für die LB- oder SA-Technik geeigneten Polymers ohne die Aktivgruppen enthaltenden Comonomeren angeordnet werden.The invention further relates to a method for producing coated carriers, characterized in that an inert carrier according to the Langmuir-Blodgett (LB) - or according to the self-assembly (SA -) - technique with a monomolecular layer made of a polymer suitable for these techniques is coated, this containing 0.8-20 mol%, based on the number of moles of all comonomers, of a comonomer which has an active group which is suitable for binding molecules of biological origin and is located at the end of a hydrophilic spacer group, and between the inert carrier and the monomolecular layer 0-200 monomolecular layers of a polymer suitable for the LB or SA technology without the comonomers containing active groups.
Die Erfindung betrifft schließlich die Verwendung des beschichteten Trägers zur Anbindung (Immobilisierung) von Molekülen biologischen Ursprungs.Finally, the invention relates to the use of the coated carrier for the attachment (immobilization) of molecules of biological origin.
Der inerte Festkörper kann dabei auch zunächst mit einer oder mehreren Lagen von filmbildenden Substanzen grundiert sein, um eine bessere Anhaftung der obersten, proteinbindenden Schicht zu gewährleisten. Bei Verwendung der LB-Technik sollte der Festkörper eine planare Struktur und eine möglichst einheitliche Oberflächenpolarität besitzen. Für die Beschichtung mit Polyionen nach der SA-Technik bieten sich oberflächlich geladene Materialien an, was sich auch nachträglich einführen läßt, wie z.B. bei oberflächenoxidierten Kunststoffen.The inert solid body can also be primed with one or more layers of film-forming substances in order to ensure better adhesion of the top, protein-binding layer. When using the LB technique, the solid should have a planar structure and a surface polarity that is as uniform as possible. For coating with polyions using SA technology There are superficially loaded materials, which can also be introduced later, such as with surface-oxidized plastics.
Besonders interessant als inerte Festkörper sind alle Materialien, auf denen Biotests ausgeführt werden oder aus denen die Oberflächen von Biosensoren hergestellt werden. Biotests finden beispielsweise auf Tüpfelplatten, Teststreifen oder in Durchflußsystemen statt; typische Materialien sind Kunststoffe, modifizierte Biopolymere und Gläser. Biosensoren lassen sich nach zahlreichen Verfahren aufbauen. Je nach Nachweismethode (elektrochemisch, optisch oder andere) sind Metallelektroden, Halbleiteroberflächen, membranüberzogene Elektroden, lichtleitende oder lichtdurchlässige Materialien (Gläser, Kunststoffe), Schwingquarze oder Oberflächenresonatoren als erfindungsgemäß einzusetzende Oberflächen zu modifizieren.Of particular interest as inert solids are all materials on which bioassays are carried out or from which the surfaces of biosensors are made. Biotests take place, for example, on spotted plates, test strips or in flow systems; typical materials are plastics, modified biopolymers and glasses. Biosensors can be constructed using numerous methods. Depending on the detection method (electrochemical, optical or other), metal electrodes, semiconductor surfaces, membrane-coated electrodes, light-conducting or translucent materials (glasses, plastics), quartz crystals or surface resonators are to be modified as surfaces to be used according to the invention.
Als Reaktivgruppen kommen aus der klassischen Proteinimmobilisierung bekannte Gruppen in Frage, beispielsweise N-Hydroxysuccinimidgruppen, Isocyanat, Isothiocyanat oder Nitrophenylester zur NH₂-Immobilisierung, Iodacetamid- oder Maleimidgruppen zur SH-Immobilisierung oder Hydrazidgruppen zur Bindung von durch Periodatbehandlung gespaltenen Glykoproteinen.Known groups from the classic protein immobilization are possible as reactive groups, for example N-hydroxysuccinimide groups, isocyanate, isothiocyanate or nitrophenyl ester for NH₂ immobilization, iodoacetamide or maleimide groups for SH immobilization or hydrazide groups for binding glycoproteins cleaved by periodate treatment.
Eine direkte Ankopplung ans Polymerrückgrat, beispielsweise der Einbau von N-Hydroxysuccinimidyl-methacrylat, führte jedoch zu keiner zufriedenstellenden Proteinimmobilisierung. Es wurde gefunden, daß es vorteilhaft ist, diese Gruppen über eine hydrophile Spacergruppe ausreichender Länge an das Polymerrückgrat anzubinden, wodurch sich offenbar eine bessere Annäherung der Reaktivgruppe an das zu bindende Protein in wäßrigem Medium ergibt. Bei den Spacergruppen haben sich heteroatomhaltige Kohlenwasserstoffketten von mehr als 4 Atomen, vorzugsweise von 5-30, besonders bevorzugt 7-30, ganz besonders bevorzugt von 13 bis 30 Atomen Länge bewährt, insbesondere Oligoethylenoxidketten. Beispiele für derartige Gruppen sind die folgenden Monomere (I):
CH₂=C(R¹)―R² (I),
in denen
- R¹
- für H oder CH₃ steht und
- R²
- die Gruppe
- R³
- für -(CH₂-)m-SO₂-(CH₂-)n-N=C=X mit X=S oder O oder für -C(CH₃)₂-NH-CO-Y steht,
- R⁴
- für -(CH₂-)m-NH-CO-Y, -[CH(R¹)-CH₂-O-)o-SO₂-R⁵ oder -[CH(R¹)-CH₂-O-]o-CO-R⁶ steht,
- Y
- für
- R⁵
- CH₃, CpF2p+1, Phenyl oder Tolyl bedeutet,
- R⁶
- -(CH₂-)m-CO-Y oder Y bedeutet,
- m und n
- unabhängig voneinander ganze Zahlen von 1 bis 4 sind und
- o und p
- unabhängig voneinander ganze Zahlen von 1 bis 9 sind.
CH₂ = C (R¹) ―R² (I),
in which
- R¹
- represents H or CH₃ and
- R²
- the group
- R³
- stands for - (CH₂-) m -SO₂- (CH₂-) n -N = C = X with X = S or O or for -C (CH₃) ₂-NH-CO-Y,
- R⁴
- represents - (CH₂-) m -NH-CO-Y, - [CH (R¹) -CH₂-O-) o -SO₂-R⁵ or - [CH (R¹) -CH₂-O-] o -CO-R⁶ ,
- Y
- For
- R⁵
- Represents CH₃, C p F 2p + 1 , phenyl or tolyl,
- R⁶
- - (CH₂-) m -CO-Y or Y means
- m and n
- are independently integers from 1 to 4 and
- o and p
- are independently integers from 1 to 9.
Bevorzugt als hydrophile Spacergruppen sind Oligoethylenoxidgruppen oder Oligopropylenoxidgruppen mit 5-9 Einheiten.Preferred hydrophilic spacer groups are oligoethylene oxide groups or oligopropylene oxide groups with 5-9 units.
Diese lassen sich in folgende, beispielhaft genannte, für die LB-Technik geeignete Polymere (II) einbauen:
in der
- R¹ und R²
- die oben genannte Bedeutung haben,
- R⁷ und R⁸
- unabhängig voneinander H oder CH₃ bedeuten,
- q
- eine ganze Zahl von 12-22, bevorzugt 16-18 darstellt,
- r
- einen Wert von 0,6-1,25, bevorzugt 0,8-1,1, besonders bevorzugt 0,9-1,05 bedeutet und
- s
- einen Wert von 0,02-0,4, bevorzugt 0,05-0,2 bedeutet.
in the
- R1 and R2
- have the meaning given above,
- R⁷ and R⁸
- independently of one another denote H or CH₃,
- q
- represents an integer from 12-22, preferably 16-18,
- r
- is a value of 0.6-1.25, preferably 0.8-1.1, particularly preferably 0.9-1.05 and
- s
- means a value of 0.02-0.4, preferably 0.05-0.2.
Zwischen dem inerten Festkörper und der monomolekularen Schicht aus dem Polymer (II) können 0-200, bevorzugt 0-50, besonders bevorzugt 0-20, hochgeordnete Polymerschichten eingelagert werden, deren Polymer aus dem der Formel (II) durch Fortlassen des Anteils an Monomer mit dem Index s ableitbar ist.Between the inert solid and the monomolecular layer made of the polymer (II), 0-200, preferably 0-50, particularly preferably 0-20, highly ordered polymer layers can be incorporated, the polymer of which is of the formula (II) by omitting the proportion of monomer can be derived with the index s.
Für die Durchführung der SA-Technik kommen Polymere in Frage, die mehr als eine elektrische Ladung tragen, die demnach Polyionen darstellen.Polymers that carry more than one electrical charge, which accordingly represent polyions, are suitable for carrying out the SA technology.
Als Polykationen kommen beispielsweise Verbindungen mit Aminofunktionen und Sulfoniumgruppen in Betracht, wie Polylysin, Polyallylamin, Polyethylenimin, Polyvinylpyridin, mit Aminofunktionen modifizierte (Meth-)Acrylate (z.B. Poly-N,N-dimethylaminoethyl-methacrylat) und Dextrane (z.B. DEAE-Dextran) sowie Chitosan. Die Aminoverbindungen können entweder durch einfache Protonierung oder durch Quaternisierung in den ionisierten Zustand übergeführt werdenExamples of suitable polycations are compounds with amino functions and sulfonium groups, such as polylysine, polyallylamine, polyethyleneimine, polyvinylpyridine, (meth) acrylates modified with amino functions (for example poly-N, N-dimethylaminoethyl methacrylate) and dextrans (for example DEAE-dextran) and Chitosan. The amino compounds can be converted into the ionized state either by simple protonation or by quaternization
Als Polyanionen kommen beispielsweise Polycarbonsäuren, Polyphosphonsäuren und Polysulfonsäuren in Betracht. Beispiele hierfür sind Polyglutamat, Poly-(meth-)acrylsäure, Polystyrolsulfonsäure oder Dextransulfat.Examples of suitable polyanions are polycarboxylic acids, polyphosphonic acids and polysulfonic acids. Examples include polyglutamate, poly (meth) acrylic acid, polystyrene sulfonic acid or dextran sulfate.
In einer ähnlichen Weise, wie sie oben für die LB-Technik beschrieben wurde, können auf einem inerten Träger 0-200 Schichten der zur SA-Technik geeigneten obigen Polyionen angebracht werden. In bekannter Weise sind die anzubringenden Polymere jeweils alternativ gegensinnig geladen; der zu beschichtende Träger ist im allgemeinen vorbehandelt, so daß er zur ersten anzubringenden Polymerschicht ebenfalls gegensinnige Ladungen trägt.In a similar manner as described above for the LB technique, 0-200 layers of the above polyions suitable for the SA technique can be applied to an inert support. In a known manner, the polymers to be attached are alternately charged in opposite directions; the carrier to be coated is generally pretreated so that it also carries opposite charges to the first polymer layer to be applied.
Als abschließende Schicht wird sodann auch bei Anwendung der SA-Technik ein polyionisches Polymer angebracht, das 0,8-20 Mol-%, bevorzugt 2,5-10 Mol-%, bezogen auf die Gesamtzähl aller Comonomere, an Monomereinheiten enthält, die zur Bindung von Molekülen biologischen Ursprungs geeignete, am Ende einer hydrophilen Spacergruppe sitzende Aktivgruppen der oben beschriebenen Art enthält (Formel (I)).A polyionic polymer which contains 0.8-20 mol%, preferably 2.5-10 mol%, based on the total number of all comonomers, of monomer units which are used for the final layer is then also applied when using the SA technique Binding of molecules of biological origin contains suitable active groups of the type described above located at the end of a hydrophilic spacer group (formula (I)).
Für den Fall, daß als abschließende Schicht ein Polykation angebracht wird und die kationischen Gruppen Hydrazingruppen sind (-NH-NH₂ oder -NH-NH₂·HCl), können diese Hydrazingruppen sowohl die ionische Bindung zur darunter liegenden polyanionischen Schicht bewirken als auch mit ihrer über diese Bindung hinausgehende Menge die Moleküle biologischen Ursprungs binden. In einem solchen Fall kann also die Aktivgruppe über den erfindungsgemäßen Anteil von 0,8-20 Mol-% hinaus bis zu 100 Mol-% ausmachen.In the event that a polycation is applied as the final layer and the cationic groups are hydrazine groups (-NH-NH₂ or -NH-NH₂ · HCl), these hydrazine groups can both effect the ionic bond to the underlying polyanionic layer and also with their over this binding amount bind the molecules of biological origin. In such a case, the active group can account for up to 100 mol% in addition to the proportion according to the invention of 0.8-20 mol%.
Somit ergeben sich in Analogie zur obigen Formel (II) für die SA-Technik einsetzbare Polymere für die oberste Schicht der Formel
in der R¹, R², R⁷ und s die obige Bedeutung haben,
- t
- einen Wert von 1,6 bis 2,25, bevorzugt 1,8 bis 2,1, besonders bevorzugt 1,9 bis 2,05, annimmt und
- R⁹
- ein Anion aus der Gruppe von -SO₃⊖, -C₆H₄-SO₃⊖, -COO⊖ und -O-PO₃⊖⊖ oder
ein Kation aus der Gruppe von
worin R¹⁰, R¹¹ und R¹² unabhängig voneinander Wasserstoff, C₁-C₂₂-Alkyl, Phenyl oder Benzyl bedeuten und
Q für O oder NH steht und die Indices o und m unabhängig voneinander ganze Zahlen von 1 bis 9 darstellen.
in which R¹, R², R⁷ and s have the above meaning,
- t
- assumes a value of 1.6 to 2.25, preferably 1.8 to 2.1, particularly preferably 1.9 to 2.05 and
- R⁹
- an anion from the group of -SO₃ ⊖ , -C₆H₄-SO₃ ⊖ , -COO ⊖ and -O-PO₃ ⊖⊖ or
a cation from the group of
wherein R¹⁰, R¹¹ and R¹² independently represent hydrogen, C₁-C₂₂-alkyl, phenyl or benzyl and
Q stands for O or NH and the indices o and m independently represent integers from 1 to 9.
Gegenionen sind bei den Polyanionen H⁺, (Erd)Alkalimetallkationen, NH₄⊕ oder ganz oder teilweise durch C₁-C₈-Alkyl, Phenyl oder Benzyl substituiertes Ammonium.Counterions are the polyanions H⁺, (earth) alkali metal cations, NH₄ ⊕ or fully or partially substituted by C₁-C₈ alkyl, phenyl or benzyl ammonium.
Gegenionen sind bei den Polykationen OH⊖, Halogenid, Sulfat, C₁-C₈-Alkylsulfonat oder Phenylsulfonat. Kationen können auch durch Einwirkung von Wasser oder Säuren erst bei der Anwendung in der SA-Technik entstehen, so beispielsweise aus - NH₂ und Wasser -NH₃⊕OH⊖.Counterions are OH ⊖ , halide, sulfate, C₁-C₈ alkyl sulfonate or phenyl sulfonate in the polycations. Cations can also be caused by exposure to water or Acids only arise when used in SA technology, for example from - NH₂ and water -NH₃ ⊕ OH ⊖ .
Bevorzugt bei den Polyanionen sind vinylpolymerisierbare Säuren, wie Poly-(meth)acrylsäure oder Polystyrolsulfonsäure. Bei diesen erfolgt der Einbau der Reaktivgruppen ebenso wie bei den Polymeren für die LB-Technik über Reaktivmonomere. Es werden bevorzugt die gleichen Reaktivmonomere (Formel I) zum Aufbau von für die SA-Technik geeigneten Polymeren verwendet.Preferred for the polyanions are vinyl polymerizable acids, such as poly (meth) acrylic acid or polystyrene sulfonic acid. In these, the reactive groups are incorporated, as in the case of the polymers for LB technology, using reactive monomers. The same reactive monomers (formula I) are preferably used to build up polymers suitable for SA technology.
Bevorzugt bei den Polykationen sind solche mit den im Rahmen der Formel (III) als R⁹ genannten Pyridinium-, Ammonium- oder -CO-Q-Alkylen-ammonium-Kationen.Preferred polycations are those with the pyridinium, ammonium or -CO-Q-alkylene-ammonium cations mentioned as R⁹ in the context of the formula (III).
Der molare Anteil der Reaktivgruppen beträgt zwischen 20 und 0,8 %, bevorzugt zwischen 10 und 2,5 %.The molar proportion of the reactive groups is between 20 and 0.8%, preferably between 10 and 2.5%.
In Analogie zur oben beschriebenen LB-Technik hat bei den 0 bis 200 Schichten unter der obersten Schicht der Index s in (III) den Wert Null; bei den unteren Schichten trägt das Polyanion bzw. Polykation also keine Aktivgruppe. Die Ausnahmestellung der Hydrazingruppe wurde oben bereits beschrieben.In analogy to the LB technique described above, the index s in (III) has the value zero for the 0 to 200 layers below the top layer; in the lower layers, the polyanion or polycation therefore has no active group. The exceptional position of the hydrazine group has already been described above.
Für die LB-Technik kommen in bekannter Weise Lösungsmittel in Frage, die die Polymeren lösen, aber nicht mischbar sind mit einem Medium, auf dessen Oberfläche die Polymere gespreitet werden. Im wichtigen Fall, bei dem das Medium Wasser ist, sind solche Lösungsmittel z.B. Methylenchlorid und andere halogenierte aliphatische Kohlenwasserstoffe; (Halogen)Kohlenwasserstoffe der aromatischen Reihe; mit Wasser nicht mischbare Ester und andere, dem Fachmann bekannte.For LB technology, solvents which dissolve the polymers but are not miscible with a medium on the surface of which the polymers are spread are suitable in a known manner. In the important case where the medium is water, such solvents are e.g. Methylene chloride and other halogenated aliphatic hydrocarbons; Aromatic series hydrocarbons; water-immiscible esters and other known to those skilled in the art.
Für die SA-Technik kommen für den Fall von Wasser als Medium hochpolare, gegebenenfalls mit Wasser mischbare Lösungsmittel in Frage, z.B. wasserlösliche Alkohole und Ether, Dimethylsulfoxid, Peralkyl-säureamide und andere, dem Fachmann bekannte.For the SA technology, in the case of water as a medium, highly polar, optionally water-miscible solvents are suitable, e.g. water-soluble alcohols and ethers, dimethyl sulfoxide, peralkyl acid amides and others known to the person skilled in the art.
Moleküle biologischen Ursprungs sind beispielsweise Proteine, Steroide, Stoffwechselprodukte, Vitamine, Nukleinsäuren, bevorzugt biologische Rezeptormoleküle, wie Immunoglobuline, Lectine oder Enzyme, beispielsweise Glukoseoxidase, Urease, Antikörper.Molecules of biological origin are, for example, proteins, steroids, metabolic products, vitamins, nucleic acids, preferably biological receptor molecules, such as immunoglobulins, lectins or enzymes, for example glucose oxidase, urease, antibodies.
Das zu immobilisierende Protein kann entweder ohne Vorbehandlung, im Falle von Immunglobulinen nach Spaltung zu Fab-Fragmenten oder nach Periodatspaltung von Glykosidresten, sowie über Hilfsproteine, wie im Falle von Immunglobulinen mit Protein A oder Protein G, eingesetzt werden. Mit den so immobilisierten Proteinen können in gleicher Art, wie in EP 429 907-A für Concanavalin A und Mannose beschrieben, Bindungen von Antigen über einen Förster-Energietransfer nachgewiesen werden.The protein to be immobilized can be used either without pretreatment, in the case of immunoglobulins after cleavage to form Fab fragments or after periodic cleavage of glycoside residues, and via auxiliary proteins, as in the case of immunoglobulins with protein A or protein G. With the proteins immobilized in this way, in the same way as described in EP 429 907-A for concanavalin A and mannose, binding of antigen can be detected via a Förster energy transfer.
In 55 ml Dioxan wurden 4 g Stearylmethacrylat, 2,36 g 4-Methacryloyl-2,2-dimethyl-dioxolan, 0,24 g m-Isopropenyl-α-α-dimethyl-benzyl-isocyanat (m-TMI®, Fa. American Cyanamid Co.) und 10 mg Azobisisobutyronitril eingetragen. Die Apparatur wurde evakuiert, mit Reinststickstoff beschickt, dieser Zyklus zweimal wiederholt und 6 h bei 70oC gerührt. Zu der Rohlösung wurden 0,2 g p-Nitrophenol und 10 mg Diazabicyclo[2,2,2]octan gegeben. Danach wurde die Lösung 16 h bei 55oC gerührt. Nach Erkalten wurde die Rohlösung in 200 ml Methanol eingetropft, wobei ein weißer Niederschlag ausfiel, der abgesaugt wurde.4 g of stearyl methacrylate, 2.36 g of 4-methacryloyl-2,2-dimethyl-dioxolane, 0.24 g of m-isopropenyl-α-α-dimethyl-benzyl-isocyanate (m-TMI®, Fa. American Cyanamid Co.) and 10 mg azobisisobutyronitrile. The apparatus was evacuated, charged with ultrapure nitrogen, this cycle was repeated twice and the mixture was stirred at 70 ° C. for 6 h. 0.2 g of p-nitrophenol and 10 mg of diazabicyclo [2.2.2] octane were added to the crude solution. The solution was then stirred at 55 ° C. for 16 h. After cooling, the crude solution was added dropwise to 200 ml of methanol, a white precipitate precipitating out, which was filtered off with suction.
Ausbeute 5,2 g, entsprechend 76,5 % der theoretischen Ausbeute.Yield 5.2 g, corresponding to 76.5% of the theoretical yield.
Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen, die aufgrund des Gehaltes an m-TMI auch im aromatischen Bereich zwischen 7 und 7,5 ppm liegen, sowie auch die der Esterfunktion benachbarten Protonen zwischen 3,5 und 4,5 ppm und für den Alkylteil die Absorptionen zwischen 0,7 und 2,2 ppm.The 1 H-NMR showed the broad resonances typical of polymers, which due to the content of m-TMI are also in the aromatic range between 7 and 7.5 ppm, and also the protons adjacent to the ester function between 3.5 and 4.5 ppm and for the alkyl part the absorptions between 0.7 and 2.2 ppm.
Die ¹⁴N - Elementaranalyse ergab 0,4 % N, entsprechend 4 mol-% Reaktivgruppe.The ¹⁴N - elemental analysis showed 0.4% N, corresponding to 4 mol% reactive group.
Unter Stickstoff wurden 5 g 6-Aminohexanol in 95 ml Methylenchlorid gelöst und 6,6 g Isocyanatoethylmethacrylat, in 15 ml Methylenchlorid gelöst, bei Raumtemperatur langsam zugetropft und 2 h nachgerührt. Das Methylenchlorid wurde im Vakuum abgezogen und der Rückstand in Diethylether kristallisiert. Ausbeute 9,8 g, entsprechend 84,5 % der theoretischen Ausbeute.5 g of 6-aminohexanol were dissolved in 95 ml of methylene chloride under nitrogen and 6.6 g of isocyanatoethyl methacrylate, dissolved in 15 ml of methylene chloride, were slowly added dropwise at room temperature and the mixture was subsequently stirred for 2 hours. The methylene chloride was removed in vacuo and the residue was crystallized in diethyl ether. Yield 9.8 g, corresponding to 84.5% of the theoretical yield.
Das ¹H-NMR zeigte die Harnstoffprotonen bei 5,45 und 5,55 ppm, die vinylischen Protonen bei 5,6 und 6,1 ppm sowie die Alkylresonanzen zwischen 1,2 und 1,7 ppm.1 H-NMR showed the urea protons at 5.45 and 5.55 ppm, the vinyl protons at 5.6 and 6.1 ppm and the alkyl resonances between 1.2 and 1.7 ppm.
In 55 ml Dioxan wurden 4 g Stearylmethacrylat, 2,36 g Methacryloyldimethyldioxolan, 0,32 g Substanz aus Beispiel 2a) und 10 mg Azobisisobutyronitril eingetragen. Die Apparatur wurde evakuiert, mit Reinststickstoff beschickt, dieser Zyklus zweimal wiederholt und 6 h bei 70 oC gerührt. Die abgekühlte Lösung wurde mit 0,15 g Methylsulfonsäurechlorid und 0,15 g Pyridin versetzt und 2 h bei 40 oC gerührt. Nach Erkalten wurde die Rohlösung in 200 ml Methanol eingetropft, wobei ein weißer Niederschlag ausfiel, der mit Wasser gewaschen und dann abgesaugt wurde. Ausbeute 5,2 g, entsprechend 76 % der theoretischen Ausbeute.4 g of stearyl methacrylate, 2.36 g of methacryloyldimethyldioxolane, 0.32 g of substance from Example 2a) and 10 mg of azobisisobutyronitrile were introduced into 55 ml of dioxane. The apparatus was evacuated, charged with ultrapure nitrogen, this cycle was repeated twice and the mixture was stirred at 70 ° C. for 6 h. The cooled solution was mixed with 0.15 g of methylsulfonyl chloride and 0.15 g of pyridine and stirred at 40 ° C. for 2 hours. After cooling, the crude solution was dropped into 200 ml of methanol, a white precipitate precipitating out, which was washed with water and then suction filtered. Yield 5.2 g, corresponding to 76% of the theoretical yield.
Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen im Alkyl-Bereich zwischen 0,7 und 2,2 ppm sowie auch die der Esterfunktion benachbarten Protonen zwischen 3,5 und 4,5 ppm.The 1 H-NMR showed the broad resonances typical of polymers in the alkyl range between 0.7 and 2.2 ppm as well as the protons adjacent to the ester function between 3.5 and 4.5 ppm.
Die ³²S Elementaranalyse ergab 0,45 % S, entsprechend 4,1 mol-% Reaktivgruppe.The ³²S elemental analysis showed 0.45% S, corresponding to 4.1 mol% reactive group.
In 15 ml Dioxan wurden je 2,45 g Stearylmethacrylat und Methacryloyldimethyldioxolan sowie 150 mg Azobisisobutyronitril gelöst. Dazu wurden 0,25 g (für Polymer 3) bzw. 0,5 g (für Polymer 4) an Reaktivgruppe 3 (siehe unten; Herstellung beschrieben in Beispiel 1 in DE-OS 42 02 050) zugegeben und 18 h bei 70oC gerührt. Nach dem Erkalten wurden 0,5 g (für Polymer 3), bzw. 1g (für Polymer 4) N,N'-Disuccinimidylcarbonat zugegeben und 5 h bei 50oC gerührt. Die Rohlösung wurde in 500 ml Methanol eingetropft, der entstandene Niederschlag abfiltriert, mit Wasser gewaschen und getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen im aromatischen Bereich zwischen 7 und 7,5 ppm sowie auch die der Esterfunktion benachbarten Protonen zwischen 3,5 und 4,5 ppm und für den Alkylteil die Absorptionen zwischen 0,7 und 2,2 ppm. Die ¹⁴N - Elementaranalyse ergab 0,3 % N für Polymer 3, bzw. 0,5 % N für Polymer 4, entsprechend 2,1 mol-%, bzw. 3,6 mol-% N-Hydroxysuccinimid (=NHS)-aktivierten Reäktivgruppe.
Der Versuch aus Beispiel 3a) wurde wiederholt, wobei statt Dioxan Dimethylsulfoxid als Lösungsmittel verwendet wurde. Die ¹⁴N-Elementaranalyse ergab 0,4 % N für Polymer 5, bzw. 0,7 % N für Polymer 6, entsprechend 2,8 mol-%, bzw. 5 mol-% der NHS-aktivierten Reaktivgruppe aus Beispiel 3a).The experiment from Example 3a) was repeated, using dimethyl sulfoxide as the solvent instead of dioxane. The ¹⁴N elemental analysis showed 0.4% N for polymer 5, or 0.7% N for polymer 6, corresponding to 2.8 mol%, or 5 mol% of the NHS-activated reactive group from Example 3a).
In 25 ml Dioxan wurden 3,38 g Stearylmethacrylat und 2 g Methacryloyldimethyldioxolan sowie 100 mg Azobisisobutyronitril gelöst. Dazu wurden 0,54 g Reaktivgruppe 3 aus Beispiel 3 gegeben und 20 h bei 70oC gerührt. Nach dem Erkalten wurden 0,2 g NHS und 0,4 g Dicyclohexylcarbodiimid zugegeben und 16 h bei Raumtemperatur gerührt. Die Rohlösung wurde in 400 ml Methanol eingetropft, der entstandene Niederschlag abfiltriert, mit Wasser gewaschen und getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen im aromatischen Bereich zwischen 7 und 7,5 ppm sowie auch die der Esterfunktion benachbarten Protonen zwischen 3,5 und 4,5 ppm und für den Alkylteil die Absorptionen zwischen 0,7 und 2,2 ppm. Die ¹⁴N-Elementaranalyse ergab 0,9 % N, entsprechend 6 mol-% der Reaktivgruppe 3 aus Beispiel 3.3.38 g of stearyl methacrylate and 2 g of methacryloyldimethyldioxolane and 100 mg of azobisisobutyronitrile were dissolved in 25 ml of dioxane. 0.54 g of reactive group 3 from Example 3 were added and the mixture was stirred at 70 ° C. for 20 h. After cooling, 0.2 g of NHS and 0.4 g of dicyclohexylcarbodiimide were added and the mixture was stirred at room temperature for 16 h. The crude solution was added dropwise to 400 ml of methanol, the precipitate formed was filtered off, washed with water and dried. The 1 H-NMR showed the broad resonances typical for polymers in the aromatic range between 7 and 7.5 ppm and also the protons adjacent to the ester function between 3.5 and 4.5 ppm and the absorptions between 0.7 and 2 for the alkyl part, 2 ppm. The ¹⁴N elemental analysis showed 0.9% N, corresponding to 6 mol% of reactive group 3 from Example 3.
In 40 ml Dioxan wurden 5 g Ethylenoxid-Oligomer-methacrylat mit einem mittleren Mol.-Gew. von 350 (Blemmer PE-350®, Firma Nippon Oil & Fats), 1,13 g Succinanhydrid sowie 10 mg 2,5-Bis-tert.-butylphenol gelöst, 5 Tropfen konzentrierte Schwefelsäure zugegeben und 12 h unter Rückfluß gekocht. Die Schwefelsäure wurde mit Natriummethanolat neutralisiert und die Lösung eingeengt. Der Rückstand wurde mit Methylenchlorid aufgenommen und die Lösung filtriert. Das Filtrat wurde im Hochvakuum eingeengt und der Rückstand getrocknet. Das ¹H-NMR zeigte die vinylischen Protonen bei 5,55 und 6,1 ppm, die Ethylenoxid-Einheiten bei 3,65 ppm, die der Esterfunktion benachbarten Protonen bei 4,25 ppm und die α-Carbonylprotonen bei 2,65 ppm.5 g of ethylene oxide oligomer methacrylate with an average mol. of 350 (Blemmer PE-350®, Nippon Oil & Fats), 1.13 g of succinic anhydride and 10 mg of 2,5-bis-tert-butylphenol dissolved, 5 drops of concentrated sulfuric acid added and the mixture refluxed for 12 hours. The sulfuric acid was neutralized with sodium methoxide and the solution was concentrated. The residue was taken up in methylene chloride and the solution was filtered. The filtrate was concentrated in a high vacuum and the residue was dried. 1 H-NMR showed the vinyl protons at 5.55 and 6.1 ppm, the ethylene oxide units at 3.65 ppm, the protons adjacent to the ester function at 4.25 ppm and the α-carbonyl protons at 2.65 ppm.
In 10 ml Dimethylsulfoxid wurden 1,3 g Natrium-p-styrylsulfonat, 0,2 g Reaktivgruppe 4 aus Beispiel 5a) sowie 0,5 g Cumarinfarbstoff 1 (Formel siehe unten; siehe auch Beispiel 2 in DE 4114482 A1) gelöst und nach Zugabe von 20 mg Azobisisobutyronitril 15 h bei 65 oC gerührt. Die viskose Rohlösung wurde in 100 ml Ethanol eingetropft und der entstandene Niederschlag abgesaugt und in 12 ml Dimethylsulfoxid wieder gelöst. Der Lösung wurden 0,1 g NHS und 0,2 g Dicyclohexylcarbodiimid zugesetzt und 16 h bei Raumtemperatur gerührt. Die Lösung wurde in 100 ml Ethanol eingetropft, der Niederschlag abgesaugt und im Hochvakuum getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Banden mit Ethylenoxid-Einheiten bei 3,65 ppm, aromatischen Absorptionen zwischen 6,5 und 8,5 ppm sowie die aliphatischen Protonen zwischen 0,7 und 2 ppm. Die auf den reinen Farbstoff normierten Extinktionswerte bei 385 nm ergaben 20 Gew.-% Farbstoffanteil im Polymer.1.3 g of sodium p-styryl sulfonate, 0.2 g of reactive group 4 from example 5a) and 0.5 g of coumarin dye 1 (formula see below; see also example 2 in DE 4114482 A1) were dissolved in 10 ml of dimethyl sulfoxide and after addition stirred by 20 mg of azobisisobutyronitrile at 65 o C for 15 h. The viscous crude solution was added dropwise to 100 ml of ethanol and the precipitate formed was suction filtered and redissolved in 12 ml of dimethyl sulfoxide. 0.1 g of NHS and 0.2 g of dicyclohexylcarbodiimide were added to the solution and the mixture was stirred at room temperature for 16 h. The solution was added dropwise in 100 ml of ethanol, the precipitate was filtered off with suction and dried in a high vacuum. The 1 H-NMR showed the broad bands typical for polymers with ethylene oxide units at 3.65 ppm, aromatic absorptions between 6.5 and 8.5 ppm and the aliphatic protons between 0.7 and 2 ppm. The absorbance values at 385 nm normalized to the pure dye gave 20% by weight of dye in the polymer.
Die ¹⁴N-Elementaranalyse ergab 1,45 % N, entsprechend 4 mol-% NHS-aktivierte Reaktivgruppe 4 aus Beispiel 5a).
In 10 ml Dimethylacetamid wurden 2,14 g Stearylmethacrylat, 1,06g Methacryloyldimethyldioxolan, 0,75 g Cumarinfarbstoff 2 (Formel siehe unten; siehe auch Beispiel 3 in DE-OS 42 13 323) sowie 41 mg Azobisisobutyronitril gelöst. Dazu wurden 0,142 g Reaktivgruppe 3 aus Beispiel 3a) gegeben und 20 h bei 70 oC gerührt. Nach dem Erkalten wurden 49 mg NHS und 88 mg Dicyclohexylcarbodiimid zugegeben und 16 h bei Raumtemperatur gerührt. Die Rohlösung wurde in 400 ml Methanol eingetropft, der entstandene Niederschlag abfiltriert, mit Wasser gewaschen und getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen im aromatischen Bereich zwischen 6,5 und 8,3 ppm sowie auch die den Estergruppen benachbarten Protonen zwischen 3,5 und 4,5 ppm und für den Alkylteil die Absorptionen zwischen 0,7 und 2,2 ppm. Die auf den reinen Farbstoff normierten Extinktionswerte bei 480 nm ergaben 15 Gew.-% Farbstoffanteil im Polymer. Die ¹⁴N-Elementaranalyse ergab 1,5 % N, entsprechend 4 mol-% der NHS-aktivierten Reaktivgruppe 3 aus Beispiel 3.
In 5 ml Acetonitril wurden bei 0 oC 1 g Natriumcarbonat und 2 g Reaktivgruppe 4 aus Beispiel 5a) vorgelegt und 0,51 g Isobutylchloroformat in 5 ml Acetonitril zugetropft. Es wurde 1 h bei dieser Temperatur gerührt, weitere 10 ml Acetonitril zugesetzt und die Mischung unter Stickstoffatmosphäre filtriert. Das Filtrat wurde bei 0 oC einer Lösung aus 0,18 g Hydrazinhydrat in 5 ml Acetonitril zugetropft und 2 h bei dieser Temperatur gerührt. Die Lösung wurde filtriert, mit 1 n Salzsäure auf pH 4 gestellt und im Hochvakuum eingeengt, wobei ein gelbes, viskoses Öl zurückblieb.1 g of sodium carbonate and 2 g of reactive group 4 from example 5a) were initially introduced into 5 ml of acetonitrile at 0 ° C., and 0.51 g of isobutyl chloroformate in 5 ml of acetonitrile were added dropwise. The mixture was stirred at this temperature for 1 h, a further 10 ml of acetonitrile was added and the mixture was filtered under a nitrogen atmosphere. The filtrate was added dropwise at 0 ° C. to a solution of 0.18 g of hydrazine hydrate in 5 ml of acetonitrile and the mixture was stirred at this temperature for 2 h. The solution was filtered, adjusted to pH 4 with 1N hydrochloric acid and concentrated in a high vacuum, leaving a yellow, viscous oil.
Das ¹H-NMR zeigte die vinylischen Protonen bei 5,55 und 6,1 ppm, die Ethylenoxid-Einheiten bei 3,65 ppm, die der Esterfunktion benachbarten Protonen bei 4,3 ppm und die α-Carbonylprotonen bei 2,65 ppm. Die ¹⁴N-Elementaranalyse ergab 4,8 Gew.-%, entsprechend 4,88 Mol-% an Reaktivgruppe.1 H-NMR showed the vinyl protons at 5.55 and 6.1 ppm, the ethylene oxide units at 3.65 ppm, the protons adjacent to the ester function at 4.3 ppm and the α-carbonyl protons at 2.65 ppm. The ¹⁴N elemental analysis showed 4.8 wt .-%, corresponding to 4.88 mol% of reactive group.
In 4 ml Dimethylsulfoxid wurden 0,65 g Natrium-p-styrylsulfonat, 0,1 g Reaktivgruppe 5 aus Beispiel 7a) sowie 0,25 g Cumarinfarbstoff 1 aus Beispiel 5b) gelöst und nach Zugabe von 10 mg Azobisisobutyronitril 15 h bei 65 oC gerührt. Die viskose Rohlösung wurde in 60 ml Ethanol eingetropft und der entstandene Niederschlag abgesaugt und im Hochvakuum getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Banden mit Ethylenoxid-Einheiten bei 3,65 ppm, aromatischen Absorptionen zwischen 6,5 und 8,5 ppm sowie die aliphatischen Protonen zwischen 0,7 und 2 ppm. Die auf den reinen Farbstoff normierten Extinktionswerte bei 385 nm ergaben 20 Gew.-% Farbstoffanteil im Polymer.0.65 g of sodium p-styryl sulfonate, 0.1 g of reactive group 5 from Example 7a) and 0.25 g of coumarin dye 1 from Example 5b) were dissolved in 4 ml of dimethyl sulfoxide and, after addition of 10 mg of azobisisobutyronitrile, at 65 ° C. for 15 hours touched. The viscous crude solution was dripped into 60 ml of ethanol and the precipitate formed was suction filtered and dried under high vacuum. 1 H-NMR showed the broad bands typical of polymers with ethylene oxide units at 3.65 ppm, aromatic Absorbances between 6.5 and 8.5 ppm and the aliphatic protons between 0.7 and 2 ppm. The absorbance values at 385 nm normalized to the pure dye gave 20% by weight of dye in the polymer.
Die ¹⁴N-Elementaranalyse ergab 1,64 % N, entsprechend 4 mol-% Reaktivgruppe 5 aus Beispiel 7a).The ¹⁴N elemental analysis showed 1.64% N, corresponding to 4 mol% of reactive group 5 from Example 7a).
In 20 ml Dioxan wurden 3,38 g Stearylmethacrylat sowie 2 g Methacryloyldimethyldioxolan mit 100 mg Azobisisobutyronitril gelöst und 20 h bei 70 oC gerührt. Nach dem Erkalten wurde die Rohlösung in 200 ml Methanol eingetropft, der entstandene Niederschlag abfiltriert, mit Methanol gewaschen und getrocknet. Das ¹H-NMR zeigte die für Polymere typischen breiten Resonanzen der der Esterfunktion benachbarten Protonen zwischen 3,5 und 4,5 ppm und für den Alkylteil die Absorptionen zwischen 0,7 und 2,2 ppm.3.38 g of stearyl methacrylate and 2 g of methacryloyldimethyldioxolane were dissolved in 100 ml of azobisisobutyronitrile in 20 ml of dioxane and the mixture was stirred at 70 ° C. for 20 hours. After cooling, the crude solution was dripped into 200 ml of methanol, the precipitate formed was filtered off, washed with methanol and dried. The 1 H-NMR showed the broad resonances typical of polymers of the protons adjacent to the ester function between 3.5 and 4.5 ppm and the absorptions between 0.7 and 2.2 ppm for the alkyl part.
Ein Glas- oder Kunststoffträger wurde mit einer LB- (Verfahren nach DE-OS 39 38 598) oder SA-Schicht (Verfahren nach DE-OS 42 08 645) überzogen und mit einem zweiten gleichartigen Träger abgedeckt, dessen Ränder mit einem 0.1 mm starken Teflonband überzogen waren, so daß sich zwischen beiden Trägern 0.1 mm Abstand ergab. Dieser Zwischenraum wurde mit 1 ml einer Lösung von β-Galactosidase (1 mg/ml, 10 mmol Carbonatpuffer pH 8) gefüllt und anschließend 1 h bei Raumtemperatur inkubiert. Die Abdeckung wurde anschließend vom Probenträger entfernt und der Träger dreimal mit EPPS-Puffer (0.1 mol/l N-[2-Hydroxyethyl]-piperazin-N'-[3-propansulfonsäure] (EPPS), 1 mmol/l MgCl₂, 0.05 % NaN₃, 0.1 g/l Rinderserumalbumin, pH 8) gewaschen. Das Plättchen wurde mit 2 ml einer 0.5 mmol/l Lösung von Dimethylacridinon-galactosid (DMAG) in EPPS-Puffer 1 h bei 37°C inkubiert. Anschließend wurde die Lösung in eine Küvette umgefüllt und bei 634 nm im Photometer gegen unbehandelte DMAG-Lösung vermessen. Die Resultate sind in folgender Tabelle dargestellt:
Man erkennt gegenüber einer Probe ohne Reaktivgruppen (adsorptive Bindung) und gegenüber einer auf konventionelle Weise mit Aminopropylsilan und Glutardialdehyd (APTS/GA) behandelten Probe eine angehobene Enzymaktivität.An increased enzyme activity can be seen compared to a sample without reactive groups (adsorptive binding) and compared to a sample treated in a conventional manner with aminopropylsilane and glutardialdehyde (APTS / GA).
Eine mit einer LB-Schicht (Substanz: Reaktivpolymer 9) überzogener Streifen aus Polycarbonat-Folie ("Macrofol") wurde mit einem Deckglas abgedeckt, dessen Ränder mit einem 0.1 mm starken Teflonband überzogen warem, so daß sich zwischen beiden Trägern 0.1 mm Abstand ergab. Dazwischen wurden 0.25 ml einer Lösung von Protein A (0.1 mg/ml in 0.01 mol/l Carbonatpuffer pH 8.0) hindurchgegeben und anschließend über Nacht bei Raumtemperatur inkubiert. Anschließend wurde das Deckglas entfernt und die Folie in Citratpuffer (25 mmol/l Citrat, 15 mmol/l Kaliumphosphat, 0.5 mol/l KCl, 1 mmol/l MgCl₂) gespült. Danach wurde mit 0.5 ml einer Lösung von Anti-Digoxin-IgG (0.2 mg/ml in Citratpuffer pH 6.4) benetzt und erneut abgedeckt. Nach 1 h bei Raumtemperatur wurde das Deckglas wiederum entfernt und erneut mit 2ml Citratpuffer pH 6.4 gewaschen, die Folie trocknen gelassen und in kleinere Probenstücke zerschnitten. Diese Proben wurden in eine Lösung von Tetramethylrhodamin-markiertem Digitoxigenin (1 µg/ml in Citratpuffer pH 6.4) eingetaucht und bei 515 und 577 nm die Fluoreszenz gemessen (Anregung: 405 nm). Über das Verhältnis der Fluoreszenzen 577 zu 515 nm (Förster-Energietransfer, wie in DE-OS 39 38 598 beschrieben) ließ sich die Anbindung des Digitoxigeninderivates an immobilisiertes Immunglobulin und dessen Waschstabilität gegenüber Citratpuffer pH 6.4 detektieren (s. Tabelle).
Ein mit einer SA-Schicht (Reaktivpolymer 10, auf Polylysin-Grundierung) überzogener Streifen aus oberflächenaktivierter PET-Folie (AGFA "gold", 175 µm) wurde mit einem Deckglas abgedeckt, dessen Ränder mit einem 0.1 mm starken Teflonband überzogen waren, so daß sich zwischen beiden Trägern 0.1 mm Abstand ergab. Dieser Zwischenraum wurde mit 1 ml einer Lösung von Anti-Digoxin-IgG versetzt, der zuvor einer Periodatoxidation unterzogen wurde (4 mg IgG in 0.5 ml 0.01 M NaIO₄, 0.1 M Acetatpuffer pH 5.5, 45 min bei Raumtemperatur inkubiert, anschließend über Biogel P6G entsalzt). Nach Inkubieren über Nacht bei 8°C wurde das Folienstück mit Citratpuffer pH 6.4 (siehe Beispiel 10) gespült, trocknen gelassen und in kleinere Stücke zerschnitten. An diesen Probenfolien wurde vor und nach Eintauchen in eine Lösung, die TRITC-markiertes Digitoxigenin (1 µg/ml in Citratpuffer pH 6.4, mit Zusatz von 0.001 Vol-% Tween 20) enthielt, bei 495 und 577 nm die Fluoreszenz gemessen (Anregung: 405 nm). Über das Verhältnis der Fluoreszenzen 577 zu 495 nm ließ sich die Anbindung des Digitoxigeninderivates an immobilisiertes Immunglobulin und dessen Waschstabilität gegenüber Citratpuffer pH 6.4 / Tween 20 detektieren (s. Tabelle).
Claims (10)
CH₂=C(R¹)―R²
ist, in der
CH₂ = C (R¹) ―R²
is in the
ein Kation aus der Gruppe von
worin R¹⁰, R¹¹und R¹² unabhängig voneinander Wasserstoff, C₁-C₂₂-Alkyl, Phenyl oder Benzyl bedeuten und
Q für O oder NH steht und die Indices o und m unabhängig voneinander ganze Zahlen von 1 bis 9 darstellen.Carrier according to Claim 1, in which the polymer for the monomolecular layer according to b) in the case of using the SA technique is one with randomly repeating units of the formula
a cation from the group of
wherein R¹⁰, R¹¹ and R¹² independently represent hydrogen, C₁-C₂₂-alkyl, phenyl or benzyl and
Q stands for O or NH and the indices o and m independently represent integers from 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4319037 | 1993-06-08 | ||
DE4319037A DE4319037A1 (en) | 1993-06-08 | 1993-06-08 | Coated carriers, processes for their preparation and their use for the immobilization of biomolecules on surfaces of solids |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0628819A2 true EP0628819A2 (en) | 1994-12-14 |
EP0628819A3 EP0628819A3 (en) | 1995-09-27 |
Family
ID=6489917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94108127A Withdrawn EP0628819A3 (en) | 1993-06-08 | 1994-05-26 | Coated carrier, method for manufacturing it and its use in immobilising biomolecules on the surfaces of solids. |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0628819A3 (en) |
JP (1) | JPH0727767A (en) |
DE (1) | DE4319037A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998000714A1 (en) * | 1996-06-28 | 1998-01-08 | Valtion Teknillinen Tutkimuskeskus | Fluorescent energy transfer ligand interaction assay on a lipid film |
EP1553412A1 (en) * | 2002-07-30 | 2005-07-13 | Reverse Proteomics Research Institute Co., Ltd | Method of inhibiting nonspecific interaction between molecules on solid phase support |
US7166475B2 (en) * | 1999-02-26 | 2007-01-23 | Cyclacel Ltd. | Compositions and methods for monitoring the modification state of a pair of polypeptides |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19853640C2 (en) * | 1998-11-20 | 2002-01-31 | Molecular Machines & Ind Gmbh | Multi-vessel arrangement with improved sensitivity for optical analysis, processes for its production and its use in optical analysis processes |
US20080248972A1 (en) * | 2004-05-14 | 2008-10-09 | Matsuhiko Nishizawa | Method of Immobilizing Protein, Protein Chip, Method of Immobilizing Cell and Cell Chip |
JP5615306B2 (en) * | 2012-02-03 | 2014-10-29 | シャープ株式会社 | Target recognition molecule and method for immobilizing the target recognition molecule |
JP2020174673A (en) * | 2020-06-30 | 2020-10-29 | 住友ベークライト株式会社 | Solid phase in which sugar chain is immobilized and classification method of virus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539061A (en) * | 1983-09-07 | 1985-09-03 | Yeda Research And Development Co., Ltd. | Process for the production of built-up films by the stepwise adsorption of individual monolayers |
JPS63221184A (en) * | 1987-03-11 | 1988-09-14 | Oki Electric Ind Co Ltd | Cumurative film and cumurative polymerized film and manufacture thereof |
EP0350407A1 (en) * | 1988-07-08 | 1990-01-10 | BIO MERIEUX Société anonyme dite: | Solid-phase reagent for the covalent fixation of an aminated biological ligand, its preparation and use |
US4950405A (en) * | 1986-12-29 | 1990-08-21 | Fuji Photo Film Co., Ltd. | Functional thin organic membrane |
US5102798A (en) * | 1988-09-08 | 1992-04-07 | Allage Associates | Surface functionalized Langmuir-Blodgett films for immobilization of active moieties |
EP0520262A1 (en) * | 1991-06-28 | 1992-12-30 | BASF Aktiengesellschaft | Chemical sensor |
EP0429907B1 (en) * | 1989-11-21 | 1994-06-01 | Bayer Ag | Optical biosensor |
-
1993
- 1993-06-08 DE DE4319037A patent/DE4319037A1/en not_active Withdrawn
-
1994
- 1994-05-26 EP EP94108127A patent/EP0628819A3/en not_active Withdrawn
- 1994-06-03 JP JP6144095A patent/JPH0727767A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539061A (en) * | 1983-09-07 | 1985-09-03 | Yeda Research And Development Co., Ltd. | Process for the production of built-up films by the stepwise adsorption of individual monolayers |
US4950405A (en) * | 1986-12-29 | 1990-08-21 | Fuji Photo Film Co., Ltd. | Functional thin organic membrane |
JPS63221184A (en) * | 1987-03-11 | 1988-09-14 | Oki Electric Ind Co Ltd | Cumurative film and cumurative polymerized film and manufacture thereof |
EP0350407A1 (en) * | 1988-07-08 | 1990-01-10 | BIO MERIEUX Société anonyme dite: | Solid-phase reagent for the covalent fixation of an aminated biological ligand, its preparation and use |
US5102798A (en) * | 1988-09-08 | 1992-04-07 | Allage Associates | Surface functionalized Langmuir-Blodgett films for immobilization of active moieties |
EP0429907B1 (en) * | 1989-11-21 | 1994-06-01 | Bayer Ag | Optical biosensor |
EP0520262A1 (en) * | 1991-06-28 | 1992-12-30 | BASF Aktiengesellschaft | Chemical sensor |
Non-Patent Citations (2)
Title |
---|
METHODS IN ENZYMOLOGY, Bd. 135, part B, 1987 NEW YORK US, Seiten 30-65, W.H. SCOUTEN 'A survey of enzyme coupling techniques.' * |
PATENT ABSTRACTS OF JAPAN vol. 013 no. 015 (C-559) ,13.Januar 1989 & JP-A-63 221184 (OKI ELECTRIC IND CO LTD;OTHERS: 01) 14.September 1988, * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998000714A1 (en) * | 1996-06-28 | 1998-01-08 | Valtion Teknillinen Tutkimuskeskus | Fluorescent energy transfer ligand interaction assay on a lipid film |
US6235535B1 (en) | 1996-06-28 | 2001-05-22 | Valtion Teknillinen Tutkimuskeskus | Fluorescent energy transfer ligand interaction assay on a lipid film |
US7166475B2 (en) * | 1999-02-26 | 2007-01-23 | Cyclacel Ltd. | Compositions and methods for monitoring the modification state of a pair of polypeptides |
EP1553412A1 (en) * | 2002-07-30 | 2005-07-13 | Reverse Proteomics Research Institute Co., Ltd | Method of inhibiting nonspecific interaction between molecules on solid phase support |
EP1553412A4 (en) * | 2002-07-30 | 2008-05-14 | Reverse Proteomics Res Inst Co | Method of inhibiting nonspecific interaction between molecules on solid phase support |
EP2157429A2 (en) * | 2002-07-30 | 2010-02-24 | Reverse Proteomics Research Institute Co., Ltd | Method of inhibiting nonspecific interaction between molecules on solid phase support |
US7919653B2 (en) | 2002-07-30 | 2011-04-05 | Reverse Proteomics Research Institute Co., Ltd. | Method of inhibiting nonspecific interaction between molecules on solid phase support |
EP2157429A3 (en) * | 2002-07-30 | 2011-12-28 | Reverse Proteomics Research Institute Co., Ltd | Method of inhibiting nonspecific interaction between molecules on solid phase support |
Also Published As
Publication number | Publication date |
---|---|
JPH0727767A (en) | 1995-01-31 |
EP0628819A3 (en) | 1995-09-27 |
DE4319037A1 (en) | 1994-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3885908T2 (en) | METHOD FOR CHANGING THE SURFACE OF A POLYMER. | |
DE69429345T2 (en) | COATING FOR HYDROPHOBIC SURFACES TO MAKE THIS PROTEIN-RESISTANT, ALLOWING THE COVALENT BINDING OF SPECIFIC LIGANDS | |
DE69104727T2 (en) | BIOLOGICALLY ACTIVE MATERIAL IMMOBILIZED ON COVALENT ON AZLACTONE-FUNCTIONALIZED POLYMERS, AND METHOD FOR THE PRODUCTION THEREOF. | |
DE602004010525T2 (en) | PROCESS FOR PRODUCING COATED MAGNETIC PARTICLES | |
EP0429907B1 (en) | Optical biosensor | |
DE69620898T2 (en) | INTERACTIVE MOLECULAR CONJUGATES | |
DE60035603T2 (en) | NEW MOLECULAR EMBOSSED POLYMERS PUT ON A SOLID CARRIER | |
EP0269092B1 (en) | Method for the determination of a specific binding substance | |
EP0561239A1 (en) | Optical solid-phase biosensor, with fluorescence labeled polyionic layers | |
WO2000012575A1 (en) | Method for producing polymeric solid phase supporting materials | |
DE69737298T2 (en) | CONJUGATES OF POLYSACCHARIDES AND BIOMOLECULES | |
EP0227054B1 (en) | Dispersion polymers, process for their preparation and their use | |
EP0408078B1 (en) | Method for the preparation of a solid phase coated with an immunologically active substance | |
DE3486275T2 (en) | Polymerizable compounds containing integral antibodies and their applications in immunoassays with separation induced by polymerization. | |
DE69026024T2 (en) | Artificial carrier for immobilizing biological proteins and process for its production | |
DE69920972T2 (en) | SELECTION OF WHOLE CELLS USING AZLACTON-FUNCTIONALIZED CARRIERS | |
EP0664452B1 (en) | Biotin-silane compounds and binding matrix containing these compounds | |
EP0628819A2 (en) | Coated carrier, method for manufacturing it and its use in immobilising biomolecules on the surfaces of solids | |
DE69106805T2 (en) | Copolymers containing polyoxyalkylene side chains. | |
EP1366088A1 (en) | Polymers containing phosphor for optical signal transducers | |
DE68909335T2 (en) | A solid phase reagent for the covalent fixation of an aminated biological ligand, its production and use. | |
EP0344578B1 (en) | Method to determine an immunologically detectable substance, and suitable reaction vial for this | |
EP0331127B1 (en) | Method for the production of a solid phase matrix | |
DE60033665T2 (en) | Patterned polymer surfaces suitable for bioconjugations and methods for their preparation | |
DE2910414A1 (en) | METHOD FOR MANUFACTURING POLYGLUTARALDEHYDE AND ITS USE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19960306 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19970403 |