EP0623969A2 - Phased array antenna with optical beamforming device - Google Patents

Phased array antenna with optical beamforming device Download PDF

Info

Publication number
EP0623969A2
EP0623969A2 EP94106631A EP94106631A EP0623969A2 EP 0623969 A2 EP0623969 A2 EP 0623969A2 EP 94106631 A EP94106631 A EP 94106631A EP 94106631 A EP94106631 A EP 94106631A EP 0623969 A2 EP0623969 A2 EP 0623969A2
Authority
EP
European Patent Office
Prior art keywords
optical
signal
module
present
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94106631A
Other languages
German (de)
French (fr)
Other versions
EP0623969B1 (en
EP0623969A3 (en
Inventor
Heinz-Peter Dr. Dipl.-Ing. Feldle
Sandip Dipl.-Ing. Banerjee
Michael Dipl.-Ing. Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Daimler Benz Aerospace AG filed Critical Deutsche Aerospace AG
Publication of EP0623969A2 publication Critical patent/EP0623969A2/en
Publication of EP0623969A3 publication Critical patent/EP0623969A3/en
Application granted granted Critical
Publication of EP0623969B1 publication Critical patent/EP0623969B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array

Definitions

  • the invention relates to a group antenna according to the preamble of patent claim 1.
  • the invention is particularly applicable to an antenna system for satellite communication and radar applications, in the micro and millimeter wave frequency range, which are increasingly being realized as a (1xN) or two-dimensional (MxN) active antenna groups.
  • phase-controlled antennas for ground and on-board radar antennas the aperture of which is directly connected by several hundred to several thousand transmit / receive modules (T / R modules) assigned radiator elements.
  • the required high transmission power is generated centrally (e.g. using traveling wave tubes) and transmitted to the antenna via appropriate distributions (including any necessary slip rings).
  • the received signal from the antenna is transmitted to the receiver via the same distribution network, which is usually designed as a waveguide structure or as a triplate structure, or a special reception distribution.
  • Active antenna groups offer significant improvements over these conventional radar systems with regard to their decentralized power generation in so-called T / R modules. This results in low signal losses and a so-called soft failure characteristic (failsoft characteristic). In addition, low-noise amplification of the received signals takes place directly behind the radiator elements.
  • the necessary settings of the RF signals for shaping and swiveling the antenna pattern, types of polarization and calibration for the transmit and receive operations are carried out by means of phase and amplitude controls in the respective T / R modules.
  • a “phased array” radar system is known from US Pat. No. 4,258,363, which consists of a multiplicity of transmit / receive radiator elements (S / E radiators). Each S / E radiator is connected to an associated transmit / receive module (T / R module). Each T / R module has an optical input, to which an optical signal is fed via an optical waveguide, which contains the transmission signal, at a frequency of 725 MHz, and the oscillator signal, at a frequency of 750 MHz, as time-division multiplexed signals.
  • each T / R module the transmit and oscillator signals are converted into an electrical multiplex signal by a common photodiode and an electrical amplifier connected to it, which are then split into separate transmit and oscillator signals by an electrical diplexer. These are each fed to a quadruple frequency multiplier with a subsequent phase adjuster. Transmit and oscillator signals with a frequency of 2.9 GHz are generated, which are transmitted (transmit signal) or fed to a mixer (oscillator signal) for demodulating the received signal.
  • the received electrical signal demodulated in the mixer is electrically amplified and fed to an electro-optical modulator. This modulates the light emitted by a laser diode into an optical received signal.
  • This and the optical transmit / oscillator signal are preferably routed to a central evaluation unit via two separate optical distribution networks.
  • a radar system with a group antenna is known from US Pat. No. 4,814,773, in which a transmitter / receiver module (T / R module) is assigned to each radiator element.
  • T / R module transmitter / receiver module
  • the transmission of the transmit and / or receive signals between A central unit and the T / R modules are made using optical fibers, optical multiplexers and an optical wavelength division multiplexing process.
  • Each T / R module is directly connected to the central unit with an associated optical fiber.
  • the invention has for its object to provide a generic group antenna that is reliable and inexpensive to manufacture, that allows fast and highly accurate changes in the phase and / or amplitude assignments and that is particularly suitable for an on-board radar application.
  • Such an optical waveguide structure can be produced inexpensively.
  • a second advantage is that in the optical waveguide structure, all signals are transmitted bidirectionally using time-division multiplexing.
  • a third advantage is that in each T / R module there is a digitally controllable T / R module control with which the phase and / or amplitude assignment of the entire antenna can be set with high precision and speed.
  • a fourth advantage is that all signals, in particular the transmission signal, the LO signal and the IF signal in the original frequency range are transmitted via the optical waveguide structure. This avoids the otherwise necessary electrical and / or optical mixers.
  • a fifth advantage is that in each T / R module there are electro-optical as well as optoelectric components, which can be produced inexpensively as integrated III-V semiconductor components.
  • FIG. 1 to FIG. 6 show schematically illustrated block diagrams for explaining the invention.
  • signals in the x-band are transmitted from a frequency center via a distribution network to the individual T / R modules or from these to signal processing transmitted with a central receiver or antenna sub-group assigned receivers.
  • the conventional distribution structure (s) for the x-band signals are advantageously replaced by optical fibers and their combination to form an optical beamforming network.
  • Monomode fiber optic cables or distribution networks are mainly used because of their low attenuation and dispersion values at wavelengths from 0.8 ⁇ m to 1.55 ⁇ m.
  • the radar-typical transmit signal and LO signal (in time-division multiplex for transmit and receive cases) is directly modulated onto an optical carrier signal using an electro-optical converter, which is advantageously designed as a so-called DFB laser.
  • an optoelectric converter which is advantageously designed as a photodiode, is then used to convert the transmit or LO signal into the microwave range and prepare it for radiation by the assigned radiator element. With these signal conversions, the amplitude and phase information is retained.
  • various types of transmission for example analog, digital or optical, or unidirectional and bidirectional beamforming networks can be used.
  • the invention advantageously combines the favorable properties of optoelectric and electro-optical converters for converting microwave signals, e.g. up to a frequency of 12 GHz, as well as optical signal distribution and routing, which enables a low-interference signal flow with low electrical losses and high mechanical flexibility.
  • FIG. 1 An arrangement of an active antenna group is shown in FIG. 1 shown.
  • the radar-typical transmission signal for the transmission case and the LO (local oscillator) signal for the reception case, both in the microwave range, for example at a frequency of 9 GHz, are fed from the frequency center of the radar system to a transmission / reception switch depending on the operating mode (transmission or reception).
  • the applied, high-frequency analog signal arrives at a matching circuit for an electro-optical converter, advantageously a laser diode, which is designed, for example, as a so-called DFB laser diode.
  • the adapter circuit is designed for minimal electrical losses and low noise as well as the required signal bandwidth, for example of 7.5 GHz.
  • the adapter circuit for the RF signal (transmit or receive signal) and / or the network for the power supply is advantageously implemented in microstrip line or coplanar technology.
  • the optical superposition signal generated by the laser diode for example at a wavelength of 1550 nm, is coupled into a central optical waveguide (LWL) of a beam shaping (beamforming) network.
  • LWL central optical waveguide
  • beam shaping beamforming
  • the subsequent optical amplifier for example designed as a fiber-optical amplifier or an optical semiconductor amplifier, increases the level of the optical signal, which is then distributed and switched on in a line (one-dimensional array) or in a line and column (two-dimensional array) in an optical beamforming network (optical divider) the respective T / R modules are routed via corresponding optical fibers.
  • optical beamforming network is based on optical 1: 4 dividers, which are connected in a star or tree structure via optical fibers.
  • the 1: 4 signal division is adapted to so-called macromodules, in which 4 T / R modules are combined in a common mechanical housing.
  • Optical 1: 5 dividers have proven to be advantageous for generating BITE ( b uild i n te st) signals, the fifth output being used for monitoring the signal transmission.
  • the optical signals are routed via optical fibers to the respective optoelectronic converter, for example a photodiode, of a T / R module.
  • the optical signals are then demodulated at the photodiodes of these converters.
  • the photodiodes are DC-biased and adapted to optimize the transmission properties (eg noise, insertion loss) using high-frequency technology.
  • the electrical transmission or LO signals resulting from the demodulation are fed to a monolithic, low-noise amplifier (LNA) via the output-side RF line of the matching network, for example with a 50 ⁇ characteristic impedance and implemented in microstrip technology.
  • LNA monolithic, low-noise amplifier
  • the operating frequency range of this LNA includes, for example, 7.5 GHz to 11.5 GHz, corresponding to the transmission frequency range from 9.5 GHz to 10.5 GHz and the LO frequency range from 7.5 GHz to 8.5 GHz.
  • the bandwidth of the LNA which is limited to 7.5 GHz to 11.5 GHz, has an advantageous effect on the noise characteristics of the respective T / R module.
  • the amplified microwave signal reaches a diplexer, which consists of a combination of two bandpass filters (BPF).
  • One of the BPF is optimized for the transmission signal, e.g. 9.5 GHz to 10.5 GHz, the other for the LO signal, e.g. 7.5 GHz to 8.5 GHz.
  • This passive diplexer structure thus enables simple, reliable signal separation with very low insertion loss, for example less than 1 dB, and requires little space.
  • this signal separation can alternatively be carried out with a changeover switch (SPDT switch), for example in monolithic form because of the mechanical T / R module width specified by the highest operating frequency of 10.5 GHz.
  • SPDT switch changeover switch
  • the transmission signal then arrives at a control path that is the same for transmission and reception, consisting of two changeover switches (SPDT switches), an amplitude adjuster (designed, for example, as an adjustable amplifier VGA) and a 6-bit phase adjuster.
  • the RF signal is weighted in terms of amplitude and phase in accordance with the requirements of the antenna, for example, the shape of the beam, the pivoting of the beam, etc.
  • the transmission signal is fed to the respective radiating element of the antenna group via a transmission / reception switch, for example a circulator, and a low-pass filter (TPF).
  • the TPF and the high-pass characteristic of the radiator element for example implemented in waveguide technology, implement a band-pass characteristic, which is optimized for the operating frequency range 9.5 GHz to 10.5 GHz.
  • the incident electromagnetic radar signal arrives at the arrangement of the radiator elements of the array.
  • the respective RF signal in the x-band of a radiating element reaches a non-reflecting limiter via the TPF and the transmitting / receiving switch.
  • the received signal is amplified in the frequency range 9.5 GHz to 10.5 GHz by means of the LNA, and reaches a bandpass filter BPF (9.5 GHz-10.5 GHz) via the described control path (phase and amplitude weighting).
  • This band-limited signal and the LO signal feed a monolithic mixer.
  • the resulting IF signal e.g. with a center frequency of 2 GHz, is then available after a low-pass filter (TPF) and an IF amplifier at the output of the respective T / R module.
  • TPF low-pass filter
  • T / R module control on each T / R module.
  • This generates control signals St, which actuate the SPDT switches (transmit / receive changeover switches) and also set the phase adjuster and the amplitude adjuster according to the desired (antenna) diagram.
  • the T / R module control can be controlled electrically, for example, using an electrical control line network (not shown).
  • the T / R module controller receives a control input signal from the output of the low-noise amplifier LNA. This time-division multiplexing method is described below with reference to FIG. 6 explained in more detail.
  • T / R module fine power supply on each T / R module, with which e.g. the electrical voltages for the components described are generated and stabilized.
  • the T / R module according to FIG. 3 differs from that of FIG. 2 only in that an analog / digital converter for the IF range is inserted after the IF amplifier.
  • the received signals (IF range) are available in digital form for further transmission and processing in the receiver (conventional radar) or several receivers (adaptive array).
  • the signal transmission in the case of reception in accordance with FIG. 2 takes place via coaxial cables and / or distributions in the form of strip conductors or according to FIG. 3 via a data bus structure.
  • optical signal transmission is also possible.
  • the analog or digital receive signals are used within the T / R modules for direct modulation of a laser diode (with a low laser threshold) and the resulting optical signal is coupled to special optical fibers of an optical receive distribution.
  • the required demodulation takes place by means of optoelectric converters on the corresponding evaluation unit (s).
  • FIG. FIG. 4 shows an exemplary embodiment in which the configuration based on FIG. 1 described optical beam forming (beamforming) network is advantageously used by a bidirectional use. This minimizes the effort with regard to the optical beamforming network or the optical reception distribution, in particular for an active antenna group.
  • the time-sequential radar operation are transmitted within a Radarzycesses first the initialization data from an existing in the radar beam forming unit ( "B eam st eering U nit") (BSU) to the individual T / R modules of the one or two dimensional antenna array.
  • BSU radar beam forming unit
  • the setting values of the phase and amplitude adjusters are transmitted and buffered in accordance with the antenna requirements for the transmission and reception case, for example in a digital memory which is present in the T / R modules. Subsequently, the transmission signal is transmitted, followed by the LO signal in the microwave range for converting the reception signal into the IF range. After the A / D conversion and a corresponding intermediate storage, the digital data can be called up in the fourth part of the radar cycle. Deviating from that in FIG. 1 architecture described here, the optoelectric conversion of the control signals for the T / R modules takes place via an additional second laser diode (laser diode 2), with a corresponding matching circuit and bias network. The resulting optical signals are coupled into the optical beamforming network (FIG. 4) via an optical directional coupler and transmitted to the T / R modules.
  • laser diode 2 additional second laser diode
  • the laser diode 2 it is possible to omit the laser diode 2 and instead to modulate the (main) laser diode (for transmitting the transmit and / or LO signal) electrically with a signal corresponding to the control signals (initialization signals), so that a time-division multiplexing method is used emitted corresponding optical signal.
  • T / R module it is advantageous to use a T / R module according to FIG. 3 downstream of the analog / digital converter ADC shown there, a digital buffer. This means that the received signals in digital form in the IF area can be temporarily stored in each T / R module.
  • each module which is denoted by optoelectric converter in FIGS. 2 and 3, by means of an electro-optical transmission / reception arrangement according to FIG. 5 to replace.
  • the arrangement contains a first electrical branch, consisting of the optoelectric converter (photodiode) already described with reference to FIGS. 2, 3, an associated electrical matching network and the downstream low-noise amplifier LNA, at the output of which the transmit or LO signal is produced.
  • the described analog IF signal (receive signal) (FIG. 2) or the corresponding digital IF signal (FIG. 3), which has advantageously been buffered, are applied to the electrical input of the second branch.
  • the optical signal routings belonging to the converters are coupled to the optical fiber leading to each module with the aid of an optical directional coupler.
  • Such an arrangement according to FIG. 5 is advantageously completely as an opto-electrical component in an integrated form as a semiconductor component, preferably in so-called III-V technology, e.g. GaAs technology, producible.
  • the optical signal guides shown and the optical directional coupler can be produced by known diffusion and doping processes. It is advantageous that the electro-optical converter has a laser threshold that is as low as possible, so that direct modulation is possible.
  • the resulting optical signal is then fed into the optical beamforming network via the optical directional coupler, demodulated in the central processing unit (BSU) and evaluated there in a known manner.
  • BSU central processing unit
  • the time-division multiplex signal contains a transmission signal which is, for example, 1.0 ⁇ s long and which, for example, contains a transmission frequency from a frequency range from 9.5 GHz to 10.5 GHz.
  • an initialization telegram required for the subsequent radar cycle n + 1 is sent, for example, in a period of 0.5 ⁇ s. That from the Beam shaping unit (BSU) sent initialization telegram contains in digital form at least data for setting the SPDT switch and the phase and amplitude adjuster (FIG.
  • BSU Beam shaping unit
  • the T / R module transmits a received signal originating from the radar cycle n-1, for example during a time of approximately 0.5 ⁇ s.
  • the received signal preferably contains IF received data in digital form which relate to the initialization telegram for the radar cycle n contained in the radar cycle n-1.
  • the LO signal is transmitted to the T / R module in a time period of approximately 5 ⁇ s, which is required to convert the reception signal and which, for example, has a frequency from a frequency range of 7.5 GHz to 8.5 GHz contains. This is followed by the transmission of the time-division multiplex signal for the radar cycle n + 1, which begins with the transmission of the associated transmission signal n + 1.
  • FIG. 6b an alternative time-division multiplex signal for a single T / R module is shown as an alternative.
  • the time-division multiplex signal contains a so-called initialization telegram, which is, for example, a total of approximately 0.5 ⁇ s long.
  • the initialization telegram sent by the beam shaping unit (BSU) contains in digital form at least data for setting the SPDT switch and the phase and amplitude adjuster (FIG. 2, 3) as well as an identifier for identifying the associated T / R module.
  • a Such an initialization telegram is evaluated by the T / R module controller (FIG. 2, 3) and the corresponding control signals are then generated.
  • the transmission signal is sent, which is, for example, 1.0 ⁇ s long and which, for example, contains a transmission frequency from a frequency range from 9.5 GHz to 10.5 GHz.
  • the LO signal required to convert the reception signal which contains a frequency from a frequency range of 7.5 GHz to 8.5 GHz, for example, is transmitted to the T / R module in a time period of 5 ⁇ s. This is followed by a transmission of the IF reception data in digital form from the T / R module addressed by the initialization telegram in a period of approximately 0.5 microseconds.
  • optical beamforming network transmitted to the central processing unit (BSU) and coupled there in front of the optical isolator via an optical directional coupler to a central photodiode (with the appropriate matching circuit and bias network).
  • BSU central processing unit
  • the optical signal is detected (demodulated) and fed to a receiver as a conventional data telegram and evaluated there in a known manner.
  • an antenna arrangement which can contain a plurality, for example 1000, transmit / receive radiator elements and associated T / R modules, all T / R modules via the on the basis of FIG. 1 and / or FIG. 4 described to couple optical fiber network and then only a single optical fiber for connection to the associated central processing unit (BSU) use.
  • RF transmission lines that are otherwise required, for example coaxial cables and / or waveguides, are advantageously not required.
  • the laser diode in the central processing unit enables several radar sensors, e.g. So-called multi-surface arrangements and / or so-called back / forward radar sensors (forward / backward sensors) and / or so-called look up / look down radar sensors (upward / downward directional sensors), advantageously, inexpensively and reliably coupled.
  • radar sensors e.g. So-called multi-surface arrangements and / or so-called back / forward radar sensors (forward / backward sensors) and / or so-called look up / look down radar sensors (upward / downward directional sensors), advantageously, inexpensively and reliably coupled.
  • the invention is not limited to the exemplary embodiments described, but can be applied analogously to others, e.g. to a group antenna for a much lower frequency range.

Abstract

A two-dimensional active antenna array, in particular, is proposed having an optical beam-forming network for on-board radar and Synthetic Aperture Radar (SAR) using x-band. Special shapes of the antenna aperture, use and frequency band are possible. A transmitted signal or local oscillator signal in the microwave frequency band and an alternatively additional digital signal modulate a central electrooptic transducer, using the time-division multiplex method. The optical heterodyne signal of this electrooptical transducer is injected into an optical beam-forming network, is amplified via at least one optical amplifier and is transferred to the individual T/R modules in a corresponding manner via optical dividers. After conversion of the optical signals by means of an optoelectrical transducer, and after phase-weighting and amplitude-weighting of the microwave signals, amplification is carried out followed by emission of the electromagnetic signal by means of aerial elements. Based on this arrangement, a further active antenna array is described which uses the beam-forming network bidirectionally. <IMAGE>

Description

Die Erfindung betrifft eine Gruppenantenne nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a group antenna according to the preamble of patent claim 1.

Die Erfindung ist insbesondere anwendbar auf ein Antennensystem für Satellitenkommunikation und Radar-Anwendungen, im Mikro- und Millimeterwellen-Frequenzbereich, die zunehmend als ein (1xN)- oder zweidimensionale (MxN), aktive Antennengruppen realisiert werden.The invention is particularly applicable to an antenna system for satellite communication and radar applications, in the micro and millimeter wave frequency range, which are increasingly being realized as a (1xN) or two-dimensional (MxN) active antenna groups.

Eine Anwendung derartiger Gruppenantennen sind phasengesteuerte Antennen für boden- und bordgestützte Radarantennen, deren Apertur durch einige hundert bis mehrere tausend Sende-/Empfangs-Module (T/R-Module) mit direkt zugeordneten Strahlerelementen ausgebildet ist.An application of such group antennas are phase-controlled antennas for ground and on-board radar antennas, the aperture of which is directly connected by several hundred to several thousand transmit / receive modules (T / R modules) assigned radiator elements.

Bei konventionellen Radarsystemen wird die erforderliche, hohe Sendeleistung zentral erzeugt (z.B. mittels Wanderfeldröhren) und über entsprechende Verteilungen (einschließlich eventuell erforderlicher Schleifringe) an die Antenne übertragen. Das empfangene Signal der Antenne wird über das gleiche Verteilnetzwerk, das meist als Hohlleiterstruktur oder als Triplate-Struktur ausgebildet ist, oder eine spezielle Empfangsverteilung zum Empfänger übertragen.In conventional radar systems, the required high transmission power is generated centrally (e.g. using traveling wave tubes) and transmitted to the antenna via appropriate distributions (including any necessary slip rings). The received signal from the antenna is transmitted to the receiver via the same distribution network, which is usually designed as a waveguide structure or as a triplate structure, or a special reception distribution.

Wesentliche Verbesserungen gegenüber diesen konventionellen Radarsystemen bieten aktiven Antennengruppen ("aktive phased arrays") bezüglich ihrer dezentralen Leistungserzeugung in sogenannten T/R-Modulen. Dadurch entstehen geringe Signalverluste und eine sogenannte sanfte Ausfall-Charakteristik (failsoft-Charakteristik). Zusätzlich erfolgt unmittelbar hinter den Strahlerelementen eine rauscharme Verstärkung der Empfangssignale.Active antenna groups ("active phased arrays") offer significant improvements over these conventional radar systems with regard to their decentralized power generation in so-called T / R modules. This results in low signal losses and a so-called soft failure characteristic (failsoft characteristic). In addition, low-noise amplification of the received signals takes place directly behind the radiator elements.

Die erforderlichen Einstellungen der HF-Signale zur Formung und Schwenkung des Antennendiagramms, Polarisationsarten und Kalibration für den Sende- und Empfangsbetrieb erfolgt mittels Phasen- und Amplitudenstellern in den jeweiligen T/R-Modulen.The necessary settings of the RF signals for shaping and swiveling the antenna pattern, types of polarization and calibration for the transmit and receive operations are carried out by means of phase and amplitude controls in the respective T / R modules.

Aus der US 4 258 363 ist ein "phased array"-Radarsystem bekannt, das aus einer Vielzahl von Sende-/Empfangs-Strahlerelementen (S/E-Strahler) besteht. Jeder S/E-Strahler ist an einen zugehörigen Sende-/Empfangsmodul (T/R-Modul) angeschlossen. Jeder T/R-Modul hat einen optischen Eingang, dem über einen Lichtwellenleiter ein optisches Signal zugeführt wird, welches das Sendesignal, bei einer Frequenz von 725 MHz, und das Oszillatorsignal, bei einer Frequenz von 750 MHz als Zeitmultiplexsignale enthalten. In jedem T/R-Modul werden Sende- und Oszillatorsignal durch eine gemeinsame Photodiode und einen daran angeschlossenen elektrischen Verstärker in ein elektrisches Multiplexsignal umgewandelt, das anschließend durch einen elektrischen Diplexer in getrennte Sende- und Oszillatorsignal aufgespalten werden. Diese werden jeweils einem Vierfach-Frequenzmultiplizierer mit nachgeschalteten Phaseneinsteller zugeführt. Es entstehen Sende- und Oszillatorsignale mit einer Frequenz von 2,9 GHz, die ausgesandt (Sendesignal) werden bzw. einem Mischer (Oszillatorsignal) zur Demodulation des Empfangssignales zugeführt werden. Das in dem Mischer demodulierte elektrische Empfangssignal wird elektrisch verstärkt und einem elektrooptischen Modulator zugeführt. Dieser moduliert das von einer Laserdiode ausgesandte Licht zu einem optischen Empfangssignal. Dieses sowie das optische Sende-/Oszillatorsignal werden bevorzugt über zwei getrennte optische Verteilernetze zu einer zentralen Auswerteeinheit geleitet.A “phased array” radar system is known from US Pat. No. 4,258,363, which consists of a multiplicity of transmit / receive radiator elements (S / E radiators). Each S / E radiator is connected to an associated transmit / receive module (T / R module). Each T / R module has an optical input, to which an optical signal is fed via an optical waveguide, which contains the transmission signal, at a frequency of 725 MHz, and the oscillator signal, at a frequency of 750 MHz, as time-division multiplexed signals. In each T / R module, the transmit and oscillator signals are converted into an electrical multiplex signal by a common photodiode and an electrical amplifier connected to it, which are then split into separate transmit and oscillator signals by an electrical diplexer. These are each fed to a quadruple frequency multiplier with a subsequent phase adjuster. Transmit and oscillator signals with a frequency of 2.9 GHz are generated, which are transmitted (transmit signal) or fed to a mixer (oscillator signal) for demodulating the received signal. The received electrical signal demodulated in the mixer is electrically amplified and fed to an electro-optical modulator. This modulates the light emitted by a laser diode into an optical received signal. This and the optical transmit / oscillator signal are preferably routed to a central evaluation unit via two separate optical distribution networks.

Eine solche Anordnung erzeugt in nachteiliger Weise unkontrollierbare Fehler, z.B. Phasenfehler durch die Frequenzmultiplizierer, und ermöglicht keine Veränderung der Amplitudeneinstellung (Amplitudenbelegung).Such an arrangement disadvantageously produces uncontrollable errors, e.g. Phase error by the frequency multiplier, and does not allow changing the amplitude setting (amplitude assignment).

Aus der US-4 814 773 ist eine Radaranlage mit einer Gruppenantenne bekannt, bei der jedem Strahlerelement ein Sende-/Empfangs-Modul (T/R-Modul) zugeordnet ist. Die Übertragung der Sende- und/oder Empfangssignale zwischen einer Zentraleinheit und den T/R-Modulen erfolgt mit Hilfe von Lichtwellenleiter, optischen Multiplexern und einem optischen Wellenlängenmultiplexverfahren.A radar system with a group antenna is known from US Pat. No. 4,814,773, in which a transmitter / receiver module (T / R module) is assigned to each radiator element. The transmission of the transmit and / or receive signals between A central unit and the T / R modules are made using optical fibers, optical multiplexers and an optical wavelength division multiplexing process.

Dabei ist jeder T/R-Modul mit einem zugehörigem Lichtwellenleiter unmittelbar mit der Zentraleinheit verbunden.Each T / R module is directly connected to the central unit with an associated optical fiber.

Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Gruppenantenne anzugeben, die zuverlässig und kostengünstig herstellbar ist, die schnelle und hochgenaue Änderungen der Phasen- und/oder Amplitudenbelegungen ermöglicht und die insbesondere für eine Bordradaranwendung geeignet ist.The invention has for its object to provide a generic group antenna that is reliable and inexpensive to manufacture, that allows fast and highly accurate changes in the phase and / or amplitude assignments and that is particularly suitable for an on-board radar application.

Diese Aufgabe wird gelöst durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Vorteilhafte Ausgestaltungen und/oder Weiterbildungen sind den Unteransprüche entnehmbar.This object is achieved by the features specified in the characterizing part of patent claim 1. Advantageous refinements and / or further developments can be found in the subclaims.

Ein erster Vorteil der Erfindung besteht darin, daß zwischen der zentralen Steuereinheit (BSU = "beam steering unit") und der Gruppenantenne eine baum- und/oder sternförmige Lichtwellenleiter-Struktur vorhanden ist, die seitens der Steuereinheit mit einem einzigen Halbleiterlaser betreibbar ist. Eine derartige Lichtwellenleiter-Struktur ist kostengünstig herstellbar.A first advantage of the invention is that between the central control unit (BSU = "b eam s teering u nit") and the group antenna is a tree and / or star-shaped light waveguide structure is present, the part is operable to the control unit with a single semiconductor laser is. Such an optical waveguide structure can be produced inexpensively.

Ein zweiter Vorteil besteht darin, daß in der Lichtwellenleiter-Struktur eine bidirektionale Datenübertragung aller Signale im Zeitmultiplexverfahren erfolgt.A second advantage is that in the optical waveguide structure, all signals are transmitted bidirectionally using time-division multiplexing.

Ein dritter Vorteil besteht darin, daß in jedem T/R-Modul eine digital ansteuerbare T/R-Modul-Steuerung vorhanden ist, mit der hochgenau und schnell die Phasen- und/oder Amplitudenbelegung der gesamten Antenne einstellbar ist.A third advantage is that in each T / R module there is a digitally controllable T / R module control with which the phase and / or amplitude assignment of the entire antenna can be set with high precision and speed.

Ein vierter Vorteil besteht darin, daß alle Signale, insbesondere das Sendesignal, das LO-Signal sowie das ZF-Signal im Originalfrequenzbereich über die Lichtwellenleiter-Struktur übertragen werden. Dadurch werden ansonsten nötige elektrische und/oder optische Mischer vermieden.A fourth advantage is that all signals, in particular the transmission signal, the LO signal and the IF signal in the original frequency range are transmitted via the optical waveguide structure. This avoids the otherwise necessary electrical and / or optical mixers.

Ein fünfter Vorteil besteht darin, daß in jedem T/R-Modul elektrooptische sowie optoelektrische Bauelemente, die kostengünstig als integrierte III-V-Halbleiterbauelemente herstellbar sind, vorhanden sind.A fifth advantage is that in each T / R module there are electro-optical as well as optoelectric components, which can be produced inexpensively as integrated III-V semiconductor components.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung.Further advantages result from the description below.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf schematisch dargestellte Zeichnungen näher erläutert. Die FIG. 1 bis FIG. 6 zeigen schematisch dargestellte Blockbilder zur Erläuterung der Erfindung.The invention is explained in more detail below on the basis of exemplary embodiments with reference to schematically illustrated drawings. The FIG. 1 to FIG. 6 show schematically illustrated block diagrams for explaining the invention.

Bei einem beispielhaft gewähltem Bordradarsystem für ein Flugzeug werden Signale im x-Band, z.B. im Frequenzbereich von 9,5 GHz bis 10,5 GHz, von einer Frequenzzentrale über ein Verteilnetzwerk zu den einzelnen T/R-Modulen bzw. von diesen zu einer Signalverarbeitung mit einem zentralen Empfänger oder Antennenuntergruppen zugeordneten Empfängern übertragen. Die konventionelle Verteilungsstruktur(en) für die x-Band-Signale werden vorteilhaft durch Lichtwellenleiter und deren Kombination zu einem optischen Beamforming-Netzwerk ersetzt. Dabei werden vor allem monomodige Lichtwellenleiter bzw. Verteilnetzwerke wegen ihrer geringen Dämpfungs- und Dispersionswerte bei Wellenlängen von 0,8 µm bis 1,55 µm verwendet. Zur optischen Verteilung an die T/R-Module wird das radartypische Sendesignal und LO-Signal (im Zeitmultiplex für Sende- und Empfangsfall) mittels eines elektrooptischen Wandlers, der vorteilhaft als sogenannter DFB-Laser ausgebildet ist, einem optischen Trägersignal direkt aufmoduliert. In jedem der T/R-Module erfolgt dann mittels eines optoelektrischen Wandlers, der vorteilhaft als Fotodiode ausgeführt ist, die Umsetzung des Sende- bzw. LO-Signals in den Mikrowellenbereich sowie dessen Aufbereitung zur Abstrahlung durch das zugeordnete Strahlerelement. Bei diesen Signalumsetzungen bleiben die Amplituden- und Phaseninformationen erhalten. Im Empfangsfall sind verschiedene Übertragungsarten, z.B. analog, digital oder optisch, bzw. uni- sowie bidirektionale Beamforming-Netzwerke anwendbar.In an exemplary on-board radar system for an aircraft, signals in the x-band, for example in the frequency range from 9.5 GHz to 10.5 GHz, are transmitted from a frequency center via a distribution network to the individual T / R modules or from these to signal processing transmitted with a central receiver or antenna sub-group assigned receivers. The conventional distribution structure (s) for the x-band signals are advantageously replaced by optical fibers and their combination to form an optical beamforming network. Monomode fiber optic cables or distribution networks are mainly used because of their low attenuation and dispersion values at wavelengths from 0.8 µm to 1.55 µm. For optical distribution to the T / R modules, the radar-typical transmit signal and LO signal (in time-division multiplex for transmit and receive cases) is directly modulated onto an optical carrier signal using an electro-optical converter, which is advantageously designed as a so-called DFB laser. In each of the T / R modules, an optoelectric converter, which is advantageously designed as a photodiode, is then used to convert the transmit or LO signal into the microwave range and prepare it for radiation by the assigned radiator element. With these signal conversions, the amplitude and phase information is retained. In the case of reception, various types of transmission, for example analog, digital or optical, or unidirectional and bidirectional beamforming networks can be used.

Die Erfindung vereinigt vorteilhaft die günstigen Eigenschaften von optoelektrischen und elektrooptischen Wandlern zur Umsetzung von Mikrowellensignalen, z.B. bis zu einer Frequenz von 12 GHz, sowie der optischen Signalverteilung und -führung, wodurch ein störungsarmer Signalfluß bei geringen elektrischen Verlusten und hoher mechanischer Flexibilität möglich wird.The invention advantageously combines the favorable properties of optoelectric and electro-optical converters for converting microwave signals, e.g. up to a frequency of 12 GHz, as well as optical signal distribution and routing, which enables a low-interference signal flow with low electrical losses and high mechanical flexibility.

Eine Anordnung einer aktiven Antennengruppe ist in FIG. 1 dargestellt. Das radartypische Sendesignal für den Sendefall und das LO(local oscillator)-Signal für den Empfangsfall, beide im Mikrowellenbereich, z.B. bei einer Frequenz von 9 GHz, werden je nach Betriebsmode (Senden oder Empfang) von der Frequenzzentrale des Radarsystems an einen Sende-/Empfangs-Umschalter zugeführt. Das anliegende, hochfrequente Analogsignal gelangt zu einer Anpaßschaltung für einen elektrooptischen Wandler, vorteilhafterweise eine Laserdiode, die z.B. als sogenannte DFB-Laserdiode ausgebildet ist. Die Anpaßschaltung wird für minimale elektrische Verluste und geringes Rauschen sowie auf die erforderliche Signalbandbreite, z.B. von 7,5 GHz. bis 10,5 GHz, optimiert, wobei über ein zusätzliches Netzwerk die Stromversorgung des elektrooptischen Wandlers erreicht wird. Die Anpaßschaltung für das HF-Signal (Sende- oder Empfangssignal) und/oder das Netzwerk für die Stromversorgung wird vorteilhafterweise in Mikrostreifenleitungs- oder Koplanartechnik ausgeführt. Das von der Laserdiode erzeugte optische Überlagerungssignal, z.B. bei einer Wellenlänge von 1550 nm, wird in einen zentralen Lichtwellenleiter (LWL) eines Strahlformungs-(Beamforming)-Netzwerks eingekoppelt. Ein eingespleister optischer Isolator verhindert Rückwirkungen von störenden reflektierten optischen Signalen auf die Laserdiode. Der nachfolgende optische Verstärker, z.B. ausgeführt als faseroptischer Verstärker oder optischer Halbleiterverstärker, erhöht den Pegel des optischen Signals, das anschließend in einem optischen Beamforming-Netzwerk (optische Teiler) zeilenförmig (eindimensionale Array) oder zeilen- und spaltenförmig (zweidimensionales Array) verteilt und an die jeweiligen T/R-Module über entsprechende Lichtwellenleiter geführt wird. Je nach Anzahl der T/R-Module in der Antennenapertur sind möglicherweise auch mehrere dieser optischen Verstärker an den Eingängen der Zeilen- bzw. Spaltenverteilungen erforderlich. Das optische Beamforming-Netzwerk basiert dabei auf optischen 1:4-Teilern, die in einer Stern- oder Baumstruktur über Lichtwellenleiter verbunden sind. Die 1:4-Signalaufteilung ist sogenannten Makromodulen angepaßt, bei denen jeweils 4 T/R-Module in einem gemeinsamen mechanischen Gehäuse zusammengefaßt sind. Zur Erzeugung von BITE (build in test)-Signalen erweisen sich optische 1:5-Teiler von Vorteil, wobei der fünfte Ausgang zur Überwachung (Monitoring) der Signalübertragung genutzt werden kann.An arrangement of an active antenna group is shown in FIG. 1 shown. The radar-typical transmission signal for the transmission case and the LO (local oscillator) signal for the reception case, both in the microwave range, for example at a frequency of 9 GHz, are fed from the frequency center of the radar system to a transmission / reception switch depending on the operating mode (transmission or reception). The applied, high-frequency analog signal arrives at a matching circuit for an electro-optical converter, advantageously a laser diode, which is designed, for example, as a so-called DFB laser diode. The adapter circuit is designed for minimal electrical losses and low noise as well as the required signal bandwidth, for example of 7.5 GHz. up to 10.5 GHz, optimized, whereby the power supply of the electro-optical converter is achieved via an additional network. The adapter circuit for the RF signal (transmit or receive signal) and / or the network for the power supply is advantageously implemented in microstrip line or coplanar technology. The optical superposition signal generated by the laser diode, for example at a wavelength of 1550 nm, is coupled into a central optical waveguide (LWL) of a beam shaping (beamforming) network. A spliced optical isolator prevents interference from disturbing reflected optical signals on the laser diode. The subsequent optical amplifier, for example designed as a fiber-optical amplifier or an optical semiconductor amplifier, increases the level of the optical signal, which is then distributed and switched on in a line (one-dimensional array) or in a line and column (two-dimensional array) in an optical beamforming network (optical divider) the respective T / R modules are routed via corresponding optical fibers. Depending on the number of T / R modules in the antenna aperture, there may also be several of these optical amplifiers at the inputs of the row or column distributions required. The optical beamforming network is based on optical 1: 4 dividers, which are connected in a star or tree structure via optical fibers. The 1: 4 signal division is adapted to so-called macromodules, in which 4 T / R modules are combined in a common mechanical housing. Optical 1: 5 dividers have proven to be advantageous for generating BITE ( b uild i n te st) signals, the fifth output being used for monitoring the signal transmission.

Jeweils ein Ausgang eines optischen Teilers (1:4 oder 1:5) ist über einen Lichtwellenleiter mit einem zugehörigem T/R-Modul gekoppelt, was anhand FIG. 2 näher erläutert wird.In each case one output of an optical divider (1: 4 or 1: 5) is coupled to an associated T / R module via an optical waveguide, which is shown in FIG. 2 is explained in more detail.

Gemäß FIG. 2 werden die optischen Signale über Lichtwellenleiter an den jeweiligen optoelektronischen Wandler, z.B. eine Photodiode, eines T/R-Modules geleitet. An den Fotodioden dieser Wandler werden dann die optischen Signale demoduliert. Die Fotodioden werden gleichspannungsmäßig vorgespannt und zur Optimierung der Übertragungseigenschaften (z.B. Rauschen, Einfügungsdämpfung) hochfrequenztechnisch angepaßt. Über die ausgangsseitige HF-Leitung des Anpaßnetzwerks, z.B. mit 50Ω Wellenwiderstand und ausgeführt in Mikrostreifentechnik, werden die aus der Demodulation resultierenden elektrischen Sende- bzw. LO-Signale einem monolithischen, rauscharmen Verstärker (LNA) zugeführt. Der Betriebsfrequenzbereich dieses LNAs umfaßt dabei z.B. 7,5 GHz bis 11,5 GHz, entsprechend dem Sendefrequenzbereich von 9,5 GHz bis 10,5 GHz und dem LO-Frequenzbereich von 7,5 GHz bis 8,5 GHz. Dabei wirkt sich die auf 7,5 GHz bis 11,5 GHz eingeschränkte Bandbreite des LNAs vorteilhaft auf die Rauscheigenschaften des jeweiligen T/R-Moduls aus. Das verstärkte Mikrowellensignal gelangt auf einen Diplexer, der aus der Kombination zweier Bandpaßfilter (BPF) besteht. Eines der BPF ist auf das Sendesignal, z.B. 9,5 GHz bis 10,5 GHz, optimiert, das andere auf das LO-Signal, z.B. 7,5 GHz bis 8,5 GHz. Diese passive Diplexerstruktur ermöglicht somit eine einfache, zuverlässige Signalauftrennung mit sehr geringer Einfügungs-dämpfung, z.B. kleiner 1 dB, und geringem Platzbedarf. Diese Signalauftrennung ist entsprechend dem jeweiligen Betriebsmode des Radarsystems (Senden oder Empfang) alternativ mit einem Umschalter (SPDT-Schalter), z.B. in monolithischer Form wegen der durch die höchste Betriebsfrequenz von 10,5 GHz vorgegebenen mechanischen T/R-Modulbreite, ausführbar. Das Sendesignal gelangt anschließend zu einem für Sende- und Empfangsfall gleichen Kontrollpfad, bestehend aus zwei Umschaltern (SPDT-Schalter), einem Amplitudensteller (ausgeführt z.B. als einstellbarer Verstärker VGA) und einem 6-Bit Phasensteller. Das HF-Signal wird dabei entsprechend den antennentechnischen Anforderungen, z.B. Keulenform, Keulenschwenkung usw., in Amplitude und Phase gewichtet. Nach der erforderlichen Leistungsverstärkung mittels Treiberverstärker und Leistungsverstärker, vorzugsweise ausgeführt in einer balanced amplifier-Konfiguration, wird das Sendesignal über eine Sende-/Empfangsweiche, z.B. einem Zirkulator, sowie einem Tiefpaßfilter (TPF) dem jeweiligen Strahlerelement der Antennengruppe zugeführt. Das TPF und die Hochpaßcharakteristik des Strahlerelements, z.B. ausgeführt in Hohlleitertechnik, realisieren eine Band-paßcharakteristik, die auf den Betriebsfrequenzbereich 9,5 GHz bis 10,5 GHz optimiert ist.According to FIG. 2, the optical signals are routed via optical fibers to the respective optoelectronic converter, for example a photodiode, of a T / R module. The optical signals are then demodulated at the photodiodes of these converters. The photodiodes are DC-biased and adapted to optimize the transmission properties (eg noise, insertion loss) using high-frequency technology. The electrical transmission or LO signals resulting from the demodulation are fed to a monolithic, low-noise amplifier (LNA) via the output-side RF line of the matching network, for example with a 50Ω characteristic impedance and implemented in microstrip technology. The operating frequency range of this LNA includes, for example, 7.5 GHz to 11.5 GHz, corresponding to the transmission frequency range from 9.5 GHz to 10.5 GHz and the LO frequency range from 7.5 GHz to 8.5 GHz. The bandwidth of the LNA, which is limited to 7.5 GHz to 11.5 GHz, has an advantageous effect on the noise characteristics of the respective T / R module. The amplified microwave signal reaches a diplexer, which consists of a combination of two bandpass filters (BPF). One of the BPF is optimized for the transmission signal, e.g. 9.5 GHz to 10.5 GHz, the other for the LO signal, e.g. 7.5 GHz to 8.5 GHz. This passive diplexer structure thus enables simple, reliable signal separation with very low insertion loss, for example less than 1 dB, and requires little space. Depending on the operating mode of the radar system (transmission or reception), this signal separation can alternatively be carried out with a changeover switch (SPDT switch), for example in monolithic form because of the mechanical T / R module width specified by the highest operating frequency of 10.5 GHz. The transmission signal then arrives at a control path that is the same for transmission and reception, consisting of two changeover switches (SPDT switches), an amplitude adjuster (designed, for example, as an adjustable amplifier VGA) and a 6-bit phase adjuster. The RF signal is weighted in terms of amplitude and phase in accordance with the requirements of the antenna, for example, the shape of the beam, the pivoting of the beam, etc. After the required power amplification by means of driver amplifiers and power amplifiers, preferably carried out in a balanced amplifier configuration, the transmission signal is fed to the respective radiating element of the antenna group via a transmission / reception switch, for example a circulator, and a low-pass filter (TPF). The TPF and the high-pass characteristic of the radiator element, for example implemented in waveguide technology, implement a band-pass characteristic, which is optimized for the operating frequency range 9.5 GHz to 10.5 GHz.

Im Empfangsfall gelangt das einfallende elektromagnetische Radar-Signal auf die Anordnung der Strahlerelemente des Arrays. Das jeweilige HF-Signal im x-Band eines Strahlerelements gelangt über das TPF und die Sende-/Empfangs-weiche an einen nicht reflektierenden Begrenzer. Dieser schützt den nachfolgenden rauscharmen Verstärker (LNA) gegen einen zu hohen, störenden Empfangspegel und durch seinen nichtreflektiven Aufbau auch den Ausgang des Leistungsverstärkers. Mittels des LNAs wird das Empfangssignal im Frequenzbereich 9,5 GHz bis 10,5 GHz verstärkt, gelangt über den beschriebenen Kontrollpfad (Phasen- und Amplitudenwichtung) auf ein Bandpaßfilter BPF (9,5 GHz-10,5 GHz). Dieses bandbegrenzte Signal sowie das LO-Signal (Diplexer und LO-Treiberverstärker) speisen einen monolithischen Mischer. Das resultierende ZF-Signal, z.B. mit einer Mittenfrequenz von 2 GHz, steht dann nach einem Tiefpaßfilter (TPF) und einem ZF-Verstärker am Ausgang des jeweiligen T/R-Moduls zur Verfügung.When received, the incident electromagnetic radar signal arrives at the arrangement of the radiator elements of the array. The respective RF signal in the x-band of a radiating element reaches a non-reflecting limiter via the TPF and the transmitting / receiving switch. This protects the downstream low-noise amplifier (LNA) against a too high, disturbing reception level and, due to its non-reflective structure, also the output of the power amplifier. The received signal is amplified in the frequency range 9.5 GHz to 10.5 GHz by means of the LNA, and reaches a bandpass filter BPF (9.5 GHz-10.5 GHz) via the described control path (phase and amplitude weighting). This band-limited signal and the LO signal (diplexer and LO driver amplifier) feed a monolithic mixer. The resulting IF signal, e.g. with a center frequency of 2 GHz, is then available after a low-pass filter (TPF) and an IF amplifier at the output of the respective T / R module.

Auf jedem T/R-Modul ist außerdem eine T/R-Modul-Steuerung vorhanden. Diese erzeugt Steuersignale St, welche die SPDT-Schalter (Sende-Empfangs-Umschalter) betätigen und außerdem den Phasensteller und den Amplitudensteller entsprechend des gewünschten (Antennen-)Diagramms einstellen. Die Ansteuerung der T/R-Modul-Steuerung kann z.B. elektrisch erfolgen mit Hilfe eines nicht dargestellten elektrischen Steuerleitungsnetzwerkes. Besonders vorteilhaft ist jedoch, die Steuersignale in kodierter digitaler Form im Zeitmultiplexverfahren über den Lichtwellenleiter zu übertragen. Die T/R-Modul-Steuerung erhält in diesem Fall ein Steuer-Eingangs-Signal von dem Ausgang des rauscharmen Verstärkers LNA. Dieses Zeitmultiplexverfahren wird nachfolgend anhand der FIG. 6 noch näher erläutert.There is also a T / R module control on each T / R module. This generates control signals St, which actuate the SPDT switches (transmit / receive changeover switches) and also set the phase adjuster and the amplitude adjuster according to the desired (antenna) diagram. The T / R module control can be controlled electrically, for example, using an electrical control line network (not shown). However, it is particularly advantageous to send the control signals in coded digital form in time-division multiplexing via the optical waveguide transfer. In this case, the T / R module controller receives a control input signal from the output of the low-noise amplifier LNA. This time-division multiplexing method is described below with reference to FIG. 6 explained in more detail.

Auf jedem T/R-Modul ist außerdem eine T/R-Modul-(Fein)Stromversorgung vorhanden, mit welcher z.B. die elektrischen Spannungen für die beschriebenen Bauelemente erzeugt und stabilisiert werden.There is also a T / R module (fine) power supply on each T / R module, with which e.g. the electrical voltages for the components described are generated and stabilized.

Das T/R-Modul entsprechend FIG. 3 unterscheidet sich von demjenigen der FIG. 2 lediglich dadurch, daß nach dem ZF-Verstärker ein Analog/Digital-Wandler für den ZF-Bereich eingefügt ist. Dadurch sind die Empfangssignale (ZF-Bereich) in digitaler Form zur weiteren Übertragung und Bearbeitung in dem Empfänger (konventionelles Radar) oder mehreren Empfängern (Adaptives Array) verfügbar.The T / R module according to FIG. 3 differs from that of FIG. 2 only in that an analog / digital converter for the IF range is inserted after the IF amplifier. As a result, the received signals (IF range) are available in digital form for further transmission and processing in the receiver (conventional radar) or several receivers (adaptive array).

Die Signalübertragung im Empfangsfall entsprechend FIG. 2 erfolgt über Koaxialkabel und/oder Verteilungen in Streifenleiterform bzw. entsprechend FIG. 3 über eine Datenbusstruktur. Neben diesen konventionellen und an sich bekannten elektrischen Übertragungsarten ist ebenfalls eine optische Signalübertragung möglich. Dazu werden innerhalb der T/R-Module die analogen bzw. digitalen Empfangssignale (ZF-Bereich) zur direkten Modulation einer Laserdiode (mit geringer Laserschwelle) benutzt und das entstandene jeweilige optische Signal auf spezielle LWL einer optischen Empfangsverteilung eingekoppelt. Die erforderliche Demodulation erfolgt mittels optoelektrischer Wandler an der/den entsprechenden Auswerteeinheiten (Empfängern).The signal transmission in the case of reception in accordance with FIG. 2 takes place via coaxial cables and / or distributions in the form of strip conductors or according to FIG. 3 via a data bus structure. In addition to these conventional and known types of electrical transmission, optical signal transmission is also possible. For this purpose, the analog or digital receive signals (IF range) are used within the T / R modules for direct modulation of a laser diode (with a low laser threshold) and the resulting optical signal is coupled to special optical fibers of an optical receive distribution. The required demodulation takes place by means of optoelectric converters on the corresponding evaluation unit (s).

FIG. 4 zeigt ein Ausführungsbeispiel, bei welchem das anhand der FIG. 1 beschriebene optische Strahlformungs-(Beamforming)-Netzwerk durch eine bidirektionale Nutzung vorteilhaft ausgenutzt wird. Dadurch wird der Aufwand bezüglich des optischen Beamforming-Netzwerks bzw. der optischen Empfangsverteilung minimiert, insbesondere für eine aktive Antennengruppe. Entsprechend dem zeitsequentiellen Radarbetrieb werden innerhalb eines Radarzyklusses zunächst die Initialisierungsdaten von einer in der Radaranlage vorhandenen Strahlformungseinheit ("Beamsteering Unit") (BSU) an die individuellen T/R-Module des ein- oder zweidimensionalen Antennen-Arrays übertragen. Dabei werden die Einstellwerte der Phasen- und Amplitudensteller entsprechend der antennentechnischen Erfordernisse für den Sende- und Empfangsfall übertragen und zwischengespeichert, z.B. in einem digitalem Speicher, der in den T/R-Modulen vorhanden ist. Zeitlich anschließend erfolgt die Übertragung des Sendesignals, gefolgt von dem LO-Signal im Mikrowellenbereich zur Umsetzung des Empfangssignals in den ZF-Bereich. Nach der A/D-Wandlung und einer entsprechenden Zwischenspeicherung können im vierten Teil des Radarzyklusses die digitalen Daten abgerufen werden. Abweichend von der in FIG. 1 beschriebenen Architektur erfolgt hier die optoelektrische Wandlung der Steuersignale für die T/R-Module über eine zusätzliche zweite Laserdiode (Laserdiode 2), mit entsprechender Anpaßschaltung und Bias-Netzwerk. Die resultierenden optischen Signale werden über einen optischen Richtkoppler in das optische Beamforming-Netzwerk (FIG. 4) eingekoppelt und an die T/R-Module übertragen.FIG. FIG. 4 shows an exemplary embodiment in which the configuration based on FIG. 1 described optical beam forming (beamforming) network is advantageously used by a bidirectional use. This minimizes the effort with regard to the optical beamforming network or the optical reception distribution, in particular for an active antenna group. According to the time-sequential radar operation are transmitted within a Radarzyklusses first the initialization data from an existing in the radar beam forming unit ( "B eam st eering U nit") (BSU) to the individual T / R modules of the one or two dimensional antenna array. The setting values of the phase and amplitude adjusters are transmitted and buffered in accordance with the antenna requirements for the transmission and reception case, for example in a digital memory which is present in the T / R modules. Subsequently, the transmission signal is transmitted, followed by the LO signal in the microwave range for converting the reception signal into the IF range. After the A / D conversion and a corresponding intermediate storage, the digital data can be called up in the fourth part of the radar cycle. Deviating from that in FIG. 1 architecture described here, the optoelectric conversion of the control signals for the T / R modules takes place via an additional second laser diode (laser diode 2), with a corresponding matching circuit and bias network. The resulting optical signals are coupled into the optical beamforming network (FIG. 4) via an optical directional coupler and transmitted to the T / R modules.

Alternativ dazu ist es möglich, die Laserdiode 2 wegzulassen und statt dessen die (Haupt-)Laserdiode (Zur Übertragung des Sende- und/oder LO-Signales) elektrisch mit einem Signal entsprechend den Steuersignalen (Initialisierungssignalen) zu modulieren, so daß ein im Zeitmultiplexverfahren ausgesandtes entsprechendes optisches Signal entsteht.Alternatively, it is possible to omit the laser diode 2 and instead to modulate the (main) laser diode (for transmitting the transmit and / or LO signal) electrically with a signal corresponding to the control signals (initialization signals), so that a time-division multiplexing method is used emitted corresponding optical signal.

Es ist vorteilhaft, bei einem T/R-Modul entsprechend FIG. 3 dem dort dargestellten Analog/Digital-Wandler ADC einen digitalen Zwischenspeicher nachzuschalten. Damit können in jedem T/R-Modul die im ZF-Bereich in digitaler Form vorliegenden Empfangssignale zwischengespeichert werden.It is advantageous to use a T / R module according to FIG. 3 downstream of the analog / digital converter ADC shown there, a digital buffer. This means that the received signals in digital form in the IF area can be temporarily stored in each T / R module.

Es ist vorteilhaft, die in den Figuren 2 und 3 mit optoelektrischen Wandler bezeichnende Anordnung in jedem Modul durch eine elektro-optische Sende-/Empfangs-Anordnung gemäß FIG. 5 zu ersetzen. Die Anordnung enthält einen ersten elektrischen Zweig, bestehend aus dem bereits anhand der Fig. 2, 3 beschriebenen optoelektrischen Wandler (Photodiode), einem zugehörigem elektrischem Anpaßnetzwerk und dem nachgeschaltetem rauscharmen Verstärker LNA, an dessen Ausgang das Sende- oder LO-Signal entsteht.It is advantageous to design the arrangement in each module, which is denoted by optoelectric converter in FIGS. 2 and 3, by means of an electro-optical transmission / reception arrangement according to FIG. 5 to replace. The arrangement contains a first electrical branch, consisting of the optoelectric converter (photodiode) already described with reference to FIGS. 2, 3, an associated electrical matching network and the downstream low-noise amplifier LNA, at the output of which the transmit or LO signal is produced.

Das beschriebene analoge ZF-Signal (Empfangssignal) (FIG. 2) oder das entsprechende digitale ZF-Signal (FIG. 3), das vorteilhafterweise zwischengespeichert wurde, werden an den elektrischen Eingang des zweiten Zweiges gelegt. Dieser enthält ein elektrisches Anpaßnetzwerk und einen nachgeschalteten elektro-optischen Wandler, z.B. eine Laserdiode. Die zu den Wandlern gehörenden optischen Signalführungen werden mit Hilfe eiens optischen Richtkopplers an den zu jedem Modul führenden Lichtwellenleiter gekoppelt.The described analog IF signal (receive signal) (FIG. 2) or the corresponding digital IF signal (FIG. 3), which has advantageously been buffered, are applied to the electrical input of the second branch. This contains an electrical adapter network and a downstream electro-optical converter, for example a laser diode. The optical signal routings belonging to the converters are coupled to the optical fiber leading to each module with the aid of an optical directional coupler.

Eine solche Anordnung gemäß FIG. 5 ist vorteilhafterweise vollständig als opto-elektrisches Bauteil in integrierter Form als Halbleiterbauelement, vorzugsweise in sogenannter III-V-Technologie, z.B. GaAs-Technologie, herstellbar. Dabei sind die dargestellten optischen Signalführungen sowie der optische Richtkoppler durch an sich bekannte Diffusions- und Dotierungsvorgänge herstellbar. Es ist vorteilhaft, daß der elektrooptische Wandler eine möglichst geringe sogenannte Laserschwelle besitzt, so daß eine direkte Modulation möglich ist. Das entstehende optische Signal wird dann über den optischen Richtkoppler in das optische Beamforming Netzwerk eingespeist, in der Zentraleinheit (BSU) demoduliert und dort in bekannter Weise ausgewertet.Such an arrangement according to FIG. 5 is advantageously completely as an opto-electrical component in an integrated form as a semiconductor component, preferably in so-called III-V technology, e.g. GaAs technology, producible. The optical signal guides shown and the optical directional coupler can be produced by known diffusion and doping processes. It is advantageous that the electro-optical converter has a laser threshold that is as low as possible, so that direct modulation is possible. The resulting optical signal is then fed into the optical beamforming network via the optical directional coupler, demodulated in the central processing unit (BSU) and evaluated there in a known manner.

In den Lichtwellenleitern des Strahlformungs-(Beamforming-)Netzwerkes entsprechend FIG. 4 ist dann eine bidirektionale optische Datenübertragung in dem bereits erwähnten Zeitmultiplex-Betrieb möglich.In the optical fibers of the beam forming (beam forming) network according to FIG. 4, bidirectional optical data transmission is then possible in the time-division multiplex operation already mentioned.

FIG. 6a zeigt ein schematisch dargestelltes optisches Zeitmultiplexsignal für einen Radarzyklus n (n = ganze Zahl) für einen einzigen T/R-Modul. Das Zeitmultiplexsignal enthält ein Sendesignal, das z.B. 1,0 µs lang ist und das z.B. eine Sendefrequenz aus einem Frequenzbereich von 9,5 GHz bis 10,5 GHz enthält. An das Sendesignal anschließend wird z.B. in einem Zeitabschnitt von 0,5 µs ein für den nachfolgenden Radarzyklus n+1 benötigtes Initialisierungstelegramm ausgesandt. Das von der Strahlformungseinheit (BSU) ausgesandte Initialisierungstelegramm enthält in digitaler Form zumindest Daten zur Einstellung der SPDT-Schalter sowie der Phasen- und Amplitudensteller (FIG. 2, 3) sowie eine Kennung zur Identifikation des zugehörigen T/R-Moduls. Ein solches Initialisierungstelegramm wird von der T/R-Modul-Steuerung (FIG. 2, 3) ausgewertet und danach die entsprechenden Steuersignale erzeugt. Anschließend an das Initialisierungstelegramm wird von dem T/R-Modul ein von dem Radarzyklus n-1 herrührendes Empfangssignal, z.B. während einer Zeit von ungefähr 0,5 µs übertragen. Das Empfangssignal enthält vorzugsweise in digitaler Form vorliegende Zf-Empfangsdaten, die sich auf das in dem Radarzyklus n-1 enthaltene Initialisierungstelegramm für den Radarzyklus n beziehen. Anschließend an die Übertragung der digitalen Zf-Empfangsdaten erfolgt in einem Zeitabschnitt von ungefähr 5 µs die Übertragung des LO-Signals an den T/R-Modul, das zur Umsetzung des Empfangssignals benötigt wird und das z.B. eine Frequenz aus einem Frequenzbereich von 7,5 GHz bis 8,5 GHz enthält. Es folgt nun die Übertragung des Zeitmultiplexsignals für den Radarzyklus n+1, welcher mit der Übertragung des zugehörigen Sendesignals n+1 beginnt.FIG. 6a shows a schematically illustrated optical time-division multiplex signal for a radar cycle n (n = integer) for a single T / R module. The time-division multiplex signal contains a transmission signal which is, for example, 1.0 µs long and which, for example, contains a transmission frequency from a frequency range from 9.5 GHz to 10.5 GHz. Following the transmission signal, an initialization telegram required for the subsequent radar cycle n + 1 is sent, for example, in a period of 0.5 µs. That from the Beam shaping unit (BSU) sent initialization telegram contains in digital form at least data for setting the SPDT switch and the phase and amplitude adjuster (FIG. 2, 3) as well as an identifier for identification of the associated T / R module. Such an initialization telegram is evaluated by the T / R module controller (FIG. 2, 3) and the corresponding control signals are then generated. Following the initialization telegram, the T / R module transmits a received signal originating from the radar cycle n-1, for example during a time of approximately 0.5 μs. The received signal preferably contains IF received data in digital form which relate to the initialization telegram for the radar cycle n contained in the radar cycle n-1. Subsequent to the transmission of the digital IF reception data, the LO signal is transmitted to the T / R module in a time period of approximately 5 μs, which is required to convert the reception signal and which, for example, has a frequency from a frequency range of 7.5 GHz to 8.5 GHz contains. This is followed by the transmission of the time-division multiplex signal for the radar cycle n + 1, which begins with the transmission of the associated transmission signal n + 1.

In FIG. 6b ist alternativ dazu ein weiteres Zeitmultiplexsignal für einen einzigen T/R-Modul dargestellt. Das Zeitmultiplexsignal enthält ein sogenanntes Initialisierungstelegramm, das z.B. insgesamt ungefähr 0,5 µs lang ist. Das von der Strahlformungseinheit (BSU) ausgesandte Initialisierungstelegramm enthält in digitaler Form zumindest Daten zur Einstellung der SPDT-Schalter sowie der Phasen- und Amplitudensteller (FIG. 2, 3) sowie eine Kennung zur Identifikation des zugehörigen T/R-Moduls. Ein solches Initialisierungstelegramm wird von der T/R-Modul-Steuerung (FIG. 2, 3) ausgewertet und danach die entsprechenden Steuersignale erzeugt. Anschließend an das Initialisierungstelegramm wird das Sendesignal ausgesandt, das z.B. 1,0 µs lang ist und das z.B. eine Sendefrequenz aus einem Frequenzbereich von 9,5 GHz bis 10,5 GHz enthält. An das Sendesignal anschließend wird z.B. in einem Zeitabschnitt von 5 µs das zur Umsetzung des Empfangssignals benötigte LO-Signal, das z.B. eine Frequenz aus einem Frequenzbereich von 7,5 GHz bis 8,5 GHz enthält, an den T/R-Modul übertragen. Daran anschließend erfolgt in einem Zeitraum von ungefähr 0,5 µs von dem durch das Initialisierungstelegramm angesprochenen T/R-Modul eine Übertragung der digitaler Form vorliegenden ZF-Empfangsdaten.In FIG. 6b, an alternative time-division multiplex signal for a single T / R module is shown as an alternative. The time-division multiplex signal contains a so-called initialization telegram, which is, for example, a total of approximately 0.5 µs long. The initialization telegram sent by the beam shaping unit (BSU) contains in digital form at least data for setting the SPDT switch and the phase and amplitude adjuster (FIG. 2, 3) as well as an identifier for identifying the associated T / R module. A Such an initialization telegram is evaluated by the T / R module controller (FIG. 2, 3) and the corresponding control signals are then generated. Subsequent to the initialization telegram, the transmission signal is sent, which is, for example, 1.0 µs long and which, for example, contains a transmission frequency from a frequency range from 9.5 GHz to 10.5 GHz. Subsequent to the transmission signal, the LO signal required to convert the reception signal, which contains a frequency from a frequency range of 7.5 GHz to 8.5 GHz, for example, is transmitted to the T / R module in a time period of 5 μs. This is followed by a transmission of the IF reception data in digital form from the T / R module addressed by the initialization telegram in a period of approximately 0.5 microseconds.

Diese werden im optischen Beamforming Netzwerk zusammengefaßt, zu der Zentraleinheit (BSU) übertragen und dort vor dem optischen Isolator über einen optischen Richtkoppler auf eine zentrale Photodiode (mit entsprechender Anpaßschaltung und Bias-Netzwerk) gekoppelt. Das optische Signal wird detektiert (demoduliert) und als konventionelles Datentelegramm einem Empfänger zugeführt und dort in bekannter Weise ausgewertet.These are combined in the optical beamforming network, transmitted to the central processing unit (BSU) and coupled there in front of the optical isolator via an optical directional coupler to a central photodiode (with the appropriate matching circuit and bias network). The optical signal is detected (demodulated) and fed to a receiver as a conventional data telegram and evaluated there in a known manner.

Mit der beschriebenen Anordnung ist es möglich, innerhalb einer Antennenanordnung, die eine Vielzahl, z.B. 1000, Sende-/Empfangsstrahlerelemente und zugehörige T/R-Module enthalten kann, alle T/R-Module über das anhand der FIG. 1 und/oder FIG. 4 beschriebene Lichtwellenleiter-Netzwerk zu koppeln und dann lediglich einen einzigen Lichtwellenleiter zum Anschluß an die zugehörige Zentraleinheit (BSU) zu verwenden. Ansonsten nötige HF-Übertragungsleitungen, z.B. Koaxialkabel und/oder Hohlleiter, werden in vorteilhafter Weise nicht benötigt.With the arrangement described, it is possible within an antenna arrangement, which can contain a plurality, for example 1000, transmit / receive radiator elements and associated T / R modules, all T / R modules via the on the basis of FIG. 1 and / or FIG. 4 described to couple optical fiber network and then only a single optical fiber for connection to the associated central processing unit (BSU) use. RF transmission lines that are otherwise required, for example coaxial cables and / or waveguides, are advantageously not required.

Die in der Zentraleinheit (BSU) vorhandene Laserdiode ermöglicht, über Lichtwellenleiter mehrere voneinander räumlich entfernte Radarsensoren, z.B. sogenannte Mehrflächen-Anordnungen und/oder sogenannte back/forward-Radarsensoren (Vor-/Rückwärts-Sensoren) und/oder sogenannte look up/look down-Radarsensoren (Auf-/Abwärts gerichtete Sensoren), in vorteilhafter Weise kostengünstig und zuverlässig zu koppeln.The laser diode in the central processing unit (BSU) enables several radar sensors, e.g. So-called multi-surface arrangements and / or so-called back / forward radar sensors (forward / backward sensors) and / or so-called look up / look down radar sensors (upward / downward directional sensors), advantageously, inexpensively and reliably coupled.

Es ist auch möglich, das von der in der Zentraleinheit vorhandenen Photodiode (FIG. 4) erzeugte elektrische Empfangssignal mehreren (Empfangs-)Auswerteeinheiten zuzuführen, wodurch eine sehr vielseitige und schnelle Auswertung (parallele Datenverarbeitung) ermöglicht wird.It is also possible to supply the received electrical signal generated by the photodiode (FIG. 4) in the central unit to a plurality of (receiving) evaluation units, which enables a very versatile and fast evaluation (parallel data processing).

Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern sinngemäß auf weitere anwendbar, z.B. auf eine Gruppenantenne für einen wesentlich niedrigeren Frequenzbereich.The invention is not limited to the exemplary embodiments described, but can be applied analogously to others, e.g. to a group antenna for a much lower frequency range.

Claims (11)

Gruppenantenne mit optischem Strahlformungs-Netzwerk, zumindest bestehend aus - mehreren zeilen- und/oder matrixförmig angeordneten Strahlerelementen zum Senden und/oder Empfangen elektromagnetischer Strahlung, - mehreren Sende-/Empfangs-Modulen, wobei jedes Strahlerelement an ein zugehöriges Modul angekoppelt ist, - einer zentralen Steuer- und Auswerteeinheit, in der zumindest Sendesignale sowie ein Oszillatorsignal für einen in jedem Modul vorhandenen Mischer erzeugt werden und in welcher die von den Strahlerelementen empfangenen Empfangssignale ausgewertet werden, und - einem optischen Strahlformungs-Netzwerk, das mit Hilfe eines Lichtwellenleiters die zentrale Steuer- und Auswerteeinheit mit einem Sende/Empfangs-Modul verbindet und über das zumindest die Sendesignale und das Oszillatorsignal zu dem Modul übertragen werden, dadurch gekennzeichnet, - daß in jedem Modul ein einstellbarer Phasensteller zum Ändern der Phasenlage des Sende- oder Empfangssignals vorhanden ist, - daß in jedem Modul ein einstellbarer Ampltudensteller zum Ändern der Amplitude des Sende- oder Empfangssignals vorhanden ist, - daß in jedem Modul mindestens ein Sende-/Empfangs-Umschalter vorhanden ist, - daß in jedem Modul eine Modul-Steuerung, mit welcher der Phasensteller, der Amplitudensteller sowie der Sende-/Empfangs-Umschalter steuerbar sind, vorhanden ist, - daß in der zentralen Steuer- und Auswerteeinheit eine zentrale Laseranordnung, die optisch an das Strahlformungs-Netzwerk gekoppelt ist, vorhanden ist, und - daß an die Laseranordnung ein Modulator angeschlossen ist, so daß das von der Laseranordnung ausgesandte Laserlicht im Zeitmultiplexverfahren zumindest mit einem Initialisierungssignal zur Einstellung mindestens eines Sende-/Empfangs-Modules, dem Sendesignal sowie dem Oszillatorsignal modulierbar ist. Group antenna with optical beam forming network, at least consisting of a plurality of radiator elements arranged in rows and / or in matrix form for transmitting and / or receiving electromagnetic radiation, several transmit / receive modules, each radiator element being coupled to an associated module, - A central control and evaluation unit, in which at least transmission signals and an oscillator signal for a mixer present in each module are generated and in which those of the Receiving signals received radiator elements are evaluated, and an optical beam shaping network which connects the central control and evaluation unit to a transmit / receive module with the aid of an optical waveguide and via which at least the transmit signals and the oscillator signal are transmitted to the module, characterized in that that an adjustable phase adjuster for changing the phase position of the transmitted or received signal is present in each module, that an adjustable amplitude adjuster for changing the amplitude of the transmit or receive signal is present in each module, that at least one send / receive switch is present in each module, a module controller with which the phase adjuster, the amplitude adjuster and the transmission / reception switch can be controlled is present in each module, - That a central laser arrangement, which is optically coupled to the beam shaping network, is present in the central control and evaluation unit, and - That a modulator is connected to the laser arrangement, so that the laser light emitted by the laser arrangement can be modulated in time-division multiplexing at least with an initialization signal for setting at least one transmit / receive module, the transmit signal and the oscillator signal. Gruppenantenne nach Anspruch 1, dadurch gekennzeichnet, daß die Laseranordnung einen Halbleiterlaser enthält und daß in dem Strahlformungs-Netzwerk mindestens ein optischer Verstärker vorhanden ist.Group antenna according to Claim 1, characterized in that the laser arrangement contains a semiconductor laser and that at least one optical amplifier is present in the beam shaping network. Gruppenantenne nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, - daß in mindestens einem Modul ein elektro-optischer Wandler vorhanden ist, - daß der elektro-optische Wandler optisch an das bidirektional im Zeitmultiplexverfahren betreibbare Strahlformungs-Netzwerk angekoppelt ist und - daß der elektro-optische Wandler elektrisch an den Ausgang eines elektrischen Mischers, der aus dem Oszillatorsignal und dem Empfangssignal ein entsprechendes Zwischenfrequenzsignal erzeugt, angeschlossen ist. Group antenna according to Claim 1 or Claim 2, characterized in that that an electro-optical converter is present in at least one module, - That the electro-optical converter is optically coupled to the bidirectionally operable in time division multiplexing beam shaping network and - That the electro-optical converter is electrically connected to the output of an electrical mixer, which generates a corresponding intermediate frequency signal from the oscillator signal and the received signal. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen den Mischer und den elektro-optischen Wandler ein Analog-Digital-Wandler zwischengeschaltet ist und daß das Zwischenfrequenzsignal in digitaler Form optisch über das Strahlformungs-Netzwerk zu der zentralen Steuer- und Auswerteeinheit übertragbar ist.Group antenna according to one of the preceding claims, characterized in that an analog-digital converter between the mixer and the electro-optical converter is interposed and that the intermediate frequency signal in digital form can be optically transmitted via the beam shaping network to the central control and evaluation unit. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in mindestens einem Modul ein integriertes optoelektrisches Halbleiterbauelement vorhanden ist, zumindest bestehend aus einem Halbleitersubstrat, vorzugsweise einem III-V-Halbleitersubstrat, mit - einer integrierten zentralen optischen Signalführung zur Ankopplung an ein Lichtwellenleiter des Strahlformungs-Netzwerkes, - einen an die zentrale optische Signalführung angekoppelten optischen Richtkoppler, - einem ersten Zweig, zumindest bestehend aus einem optoelektrischem Wandler, einem nachgeschaltetem elektrischen Anpaßnetzwerk sowie einem diesem nachgeschalteten rauscharmen Verstärker (LNA) und - einem zweiten Zweig, zumindest bestehend aus einem elektrooptischen Wandler sowie einem diesem nachgeschaltem elektrischem Anpaßnetzwerk. Group antenna according to one of the preceding claims, characterized in that an integrated optoelectric semiconductor component is present in at least one module, at least consisting of a semiconductor substrate, preferably a III-V semiconductor substrate, with an integrated central optical signal guide for coupling to an optical fiber of the beam shaping network, an optical directional coupler coupled to the central optical signal guide, - A first branch, at least consisting of an opto-electric converter, a downstream electrical matching network and a low-noise amplifier (LNA) and downstream - A second branch, at least consisting of an electro-optical converter and an electrical matching network downstream of this. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeweils mehrere Module, vorzugsweise vier, zu einer Modulgruppe zusammengefaßt sind und daß in dem Strahlformungs-Netzwerk ein an die Anzahl der Module der Modulgruppe angepaßter optischer Teiler vorhanden ist.Group antenna according to one of the preceding claims, characterized in that in each case a plurality of modules, preferably four, are combined to form a module group and in that in the beam shaping network one in number the modules of the module group adapted optical dividers are present. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei mindestens einem optischen Teiler die Anzahl der optischen Abzweigungen größer ist als die Anzahl der an diesen Teiler angekoppelten Module und daß eine dieser zusätzlichen Abzweigungen für elektrooptische und/oder optoelektrische Testvorgänge vorgesehen ist.Group antenna according to one of the preceding claims, characterized in that in the case of at least one optical divider the number of optical branches is greater than the number of modules coupled to this divider and in that one of these additional branches is provided for electro-optical and / or optoelectric test processes. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in mindestens einem Modul ein aus passiven elektrischen Bauelementen aufgebauter elektrischer Diplexer vorhanden ist, in welchem die im Zeitmultiplex anliegenden Sende- und LO-Oszillatorsignale in getrennte elektrische Zweige aufspaltbar sind.Group antenna according to one of the preceding claims, characterized in that an electrical diplexer made up of passive electrical components is present in at least one module, in which the transmit and LO oscillator signals present in time-division multiplexing can be split into separate electrical branches. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, - daß mehrere räumlich getrennte Antennenanordnungen, die jeweils aus mehreren Modulen und/oder Modulgruppen bestehen, vorhanden sind und - daß die getrennten Anordnungen über zugehörige optische Teiler an das optische Strahlformungs-Netzwerk angeschlossen sind. Group antenna according to one of the preceding claims, characterized in that - That there are several spatially separate antenna arrangements, each consisting of several modules and / or module groups, and - That the separate arrangements are connected to the optical beam shaping network via associated optical dividers. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Strahlerelemente, deren zeilen- oder matrixförmige Anordnung sowie die Module sowie deren zeilen- oder matrixförmige Anordnung auf eine elektromagnetische Strahlung im Millimeterwellen- oder Mikrometerwellen-Bereich abgestimmt sind.Group antenna according to one of the preceding claims, characterized in that the radiator elements, their line or matrix arrangement and the modules and their line or matrix arrangement are matched to electromagnetic radiation in the millimeter wave or micrometer wave range. Gruppenantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, - daß das Strahlformungs-Netzwerk mindestens eine optishe Verzweigung in Form einer Stern- oder Baumstruktur enthält, - daß das Strahlformungs-Netzwerk für einen optisch bidirektionalen Zeitmultiplexbetrieb ausgelegt ist und - daß in der zentralen Steuer- und Auswerteeinheit ein optischer Isolator vorhanden ist zur optischen Trennung der ausgesandten und empfangenen optischen Signale. Group antenna according to one of the preceding claims, characterized in that that the beam forming network contains at least one optical branch in the form of a star or tree structure, - That the beam shaping network is designed for an optically bidirectional time division multiplex operation and - That an optical isolator is present in the central control and evaluation unit for the optical separation of the emitted and received optical signals.
EP94106631A 1993-05-03 1994-04-28 Phased array antenna with optical beamforming device Expired - Lifetime EP0623969B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4314406A DE4314406C2 (en) 1993-05-03 1993-05-03 Group antenna with optical beam shaping network
DE4314406 1993-05-03

Publications (3)

Publication Number Publication Date
EP0623969A2 true EP0623969A2 (en) 1994-11-09
EP0623969A3 EP0623969A3 (en) 1995-12-27
EP0623969B1 EP0623969B1 (en) 2001-06-27

Family

ID=6486914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94106631A Expired - Lifetime EP0623969B1 (en) 1993-05-03 1994-04-28 Phased array antenna with optical beamforming device

Country Status (2)

Country Link
EP (1) EP0623969B1 (en)
DE (2) DE4314406C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693561B2 (en) 2018-09-03 2020-06-23 Electronics And Telecommunications Research Institute Apparatus and method for beamforming communication
CN112600586A (en) * 2021-03-05 2021-04-02 北京永为正信电子技术发展有限公司 Communication terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613824A1 (en) * 1996-04-06 1997-10-16 Univ Dresden Tech Optical microwave generation method for mobile radio system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006650A2 (en) * 1978-06-30 1980-01-09 Hollandse Signaalapparaten B.V. Radar system
US4814773A (en) * 1983-05-11 1989-03-21 Hughes Aircraft Company Fiber optic feed network for radar
US4885589A (en) * 1988-09-14 1989-12-05 General Electric Company Optical distribution of transmitter signals and antenna returns in a phased array radar system
US5051754A (en) * 1990-08-15 1991-09-24 Hughes Aircraft Company Optoelectronic wide bandwidth photonic beamsteering phased array
DE4136801A1 (en) * 1991-11-08 1993-05-13 Daimler Benz Ag Group antenna for multiple transmit and receive modes - has input stages providing conversion to optical form for handling over optical fibre antenna network
US5247309A (en) * 1991-10-01 1993-09-21 Grumman Aerospace Corporation Opto-electrical transmitter/receiver module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006650A2 (en) * 1978-06-30 1980-01-09 Hollandse Signaalapparaten B.V. Radar system
US4814773A (en) * 1983-05-11 1989-03-21 Hughes Aircraft Company Fiber optic feed network for radar
US4885589A (en) * 1988-09-14 1989-12-05 General Electric Company Optical distribution of transmitter signals and antenna returns in a phased array radar system
US5051754A (en) * 1990-08-15 1991-09-24 Hughes Aircraft Company Optoelectronic wide bandwidth photonic beamsteering phased array
US5247309A (en) * 1991-10-01 1993-09-21 Grumman Aerospace Corporation Opto-electrical transmitter/receiver module
DE4136801A1 (en) * 1991-11-08 1993-05-13 Daimler Benz Ag Group antenna for multiple transmit and receive modes - has input stages providing conversion to optical form for handling over optical fibre antenna network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
20 TH EUROPEAN MICROWAVE CONFERENCE, Bd.1, September 1990, BUDAPEST, HUNGARY Seiten 89 - 94 P. R. HERCZFELD 'The application of lightwave technology to microwaves' *
ELECTRONICS LETTERS, Bd.27, Nr.5, 28. Februar 1991, STEVENAGE GB Seiten 404 - 406 E. PANSINI ET AL 'Experimental evaluation of optical signal distribution for phased array antenna' *
MICROWAVE JOURNAL, Bd.35, Nr.7, Juli 1992, NORWOOD, MA, US Seiten 74 - 83 A. SEEDS 'Optical beamforming techniques for phased-array antennas' *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693561B2 (en) 2018-09-03 2020-06-23 Electronics And Telecommunications Research Institute Apparatus and method for beamforming communication
CN112600586A (en) * 2021-03-05 2021-04-02 北京永为正信电子技术发展有限公司 Communication terminal device
CN112600586B (en) * 2021-03-05 2021-05-28 北京永为正信电子技术发展有限公司 Communication terminal device

Also Published As

Publication number Publication date
EP0623969B1 (en) 2001-06-27
DE4314406C2 (en) 2002-11-21
EP0623969A3 (en) 1995-12-27
DE59409791D1 (en) 2001-08-02
DE4314406A1 (en) 1994-11-10

Similar Documents

Publication Publication Date Title
DE69838827T2 (en) Dividerless optical switch with broadcast capability
EP0461380B1 (en) Data transmission radio system, particularly cellular radio system
DE69836111T2 (en) Optical transmitter-receiver
DE69827739T2 (en) Coherent optical communication system
EP0354567B1 (en) Sending and receiving part for a bidirectional coherent optical communication system
EP0105177B1 (en) Optical coupler
EP0383138A2 (en) Device for the direct optical reception of a plurality of wave lengths
EP0762674A2 (en) Method and circuit to transmit received signals from an antenna to a base station of a radio system
EP0096327A1 (en) Distribution network
CN110275143B (en) High-integration microwave photon MIMO radar signal transceiving device and method
DE112020005597T5 (en) ARRAY-BASED OPTICAL COMMUNICATION LINKS IN FREE SPACE
EP0623969B1 (en) Phased array antenna with optical beamforming device
DE60131322T2 (en) Optoelectronic transmission system in a turbulent medium with photodetector matrix and time compensation
US5721556A (en) Fiberoptic manifold and time delay arrangement for a phased array antenna
EP0288418B1 (en) Optical information transmission method with heterodyne reception
DE102022123727A1 (en) OPTICAL MULTILINK TERABIT TERMINAL
DE3827589C2 (en)
WO2021175969A1 (en) System with optical carrier distribution
EP0788253A2 (en) Fibre optic communication network with reduction of interference
DE4136801A1 (en) Group antenna for multiple transmit and receive modes - has input stages providing conversion to optical form for handling over optical fibre antenna network
EP0386635B1 (en) Device for distributing wide-band signals through a branched coaxial-cable network
DE102018220368B3 (en) Motor vehicle with a detection device for detecting the motor vehicle environment by a radar method
EP0928076B1 (en) Hybrid transmission system having a fallback solution for connections with high availability requirements
EP0790717B1 (en) Device for transmittimg several received broadband radio signals to a signal receiver and signal receiver therefor
WO2020043830A1 (en) Wireless access device, and network with fiber-optic data transmission and wireless access device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19960510

17Q First examination report despatched

Effective date: 19990720

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AEROSPACE AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 59409791

Country of ref document: DE

Date of ref document: 20010802

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011018

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100413

Year of fee payment: 17

Ref country code: DE

Payment date: 20100423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100415

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409791

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59409791

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111101

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031