EP0618342B1 - Système de verrouillage dans un puit et méthode d'utilisation - Google Patents

Système de verrouillage dans un puit et méthode d'utilisation Download PDF

Info

Publication number
EP0618342B1
EP0618342B1 EP19940302262 EP94302262A EP0618342B1 EP 0618342 B1 EP0618342 B1 EP 0618342B1 EP 19940302262 EP19940302262 EP 19940302262 EP 94302262 A EP94302262 A EP 94302262A EP 0618342 B1 EP0618342 B1 EP 0618342B1
Authority
EP
European Patent Office
Prior art keywords
assembly
sleeve
actuation
lock
seal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940302262
Other languages
German (de)
English (en)
Other versions
EP0618342A2 (fr
EP0618342A3 (fr
Inventor
Andrew Cooksey
Jim Williamson
Clark Robison
James Vick
Chris C/O Halliburton House Dines
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/041,793 external-priority patent/US5617918A/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP0618342A2 publication Critical patent/EP0618342A2/fr
Publication of EP0618342A3 publication Critical patent/EP0618342A3/fr
Application granted granted Critical
Publication of EP0618342B1 publication Critical patent/EP0618342B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/02Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing

Definitions

  • the present invention relates generally to wellbore lock systems and to methods and apparatus for their use in tubular members disposed within a wellbore; and more particularly relates to such wellbore lock systems of a design particularly useful in relatively large or "full bore” applications.
  • locks are run into the wellbore on either wireline or slickline.
  • the lock configuration provide minimal drag against the tubular string as the lock is inserted within the string. It is also desirable that the lock be capable of being set relatively simply, and therefore relatively inexpensively.
  • a lock assembly for a wellbore which comprises a housing assembly; an actuation assembly operatively associated with said housing assembly and movable in relation to said housing assembly; at least one engagement member coupled to said housing assembly, the or each engagement member being movable from a first position wherein the or each engagement member is substantially radially retracted relative to said housing assembly, to a second position wherein the or each engagement member is operatively extended relative to said housing assembly; and a sealing assembly coupled to said housing assembly, said sealing assembly comprising an expandable seal element having an interior surface, said sealing assembly operatively associated with said actuation assembly to facilitate radial expansion of said interior surface of said seal element upon predetermined movement of said actuation assembly, wherein said actuation assembly comprises a first sleeve which is movable from a first position to a second position, said sleeve operatively coupled to the or each engagement member to facilitate movement of the or each engagement member from said first, substantially radially retracted position
  • the actuation assembly may be longitudinally movable in relation to said housing assembly.
  • the or each engagement member may be movable from a first position wherein said engagement member is radially retracted substantially entirely within the outer diameter of said housing assembly, to a second position.
  • the lock assembly may further comprise a second expandable backup member coupled to said housing assembly proximate said expandable seal element, said second expandable backup member also operatively associated with said actuation assembly to facilitate radial expansion of both said backup members upon predetermined movement of said actuation assembly.
  • the first position of the engagement members facilitates the movement of the lock assembly through a tubular string while minimizing dragging against the interior sidewalls of the string, while the second, relatively radially extended, position allows the lock to selectively mechanically engage a profile within the tubular string to facilitate mechanically securing the lock in position.
  • the lock assembly also includes a sealing assembly which includes a seal element which is operated by expanding the internal diameter of the seal element, resulting in expansion of the external diameter.
  • the actuation assembly includes a packing element actuation sleeve which includes a first section having a first diameter, and a second section having a second, larger diameter.
  • the first, relatively smaller, diameter of the actuation sleeve in an unactuated position, will radially underlie the seal element, and allow the seal element to remain in a relatively relaxed, and therefore unexpanded, state.
  • the actuation sleeve may then be moved to a second position, wherein the second. relatively larger, section will underlie the seal element, with the second section being cooperatively sized and configured to cause expansion of the internal diameter of the seal element, thereby urging the outer surface of the seal element into engagement with a profile.
  • a lock assembly adapted to traverse an assembly of tubular members disposed in a wellbore and to selectively engage a profile including recesses installed within said tubular member assembly
  • lock assembly comprises a housing assembly; an actuation assembly operatively coupled to said housing assembly in longitudinally movable relation thereto; a plurality of engagement members operatively coupled to said housing assembly, said engagement members movable from a first position wherein said engagement members are substantially radially retracted relative to said housing assembly and facilitate traversal of said lock through said tubular member assembly, to a second position wherein said engagement members are operatively extended relative to said housing assembly to operatively engage said recesses in said profile; an annular seal element operatively associated with said housing and said actuation assembly, said annular seal element movable from a first condition wherein the exterior diameter of said seal element facilitates the traversal of said lock through said tubular member assembly, to a second condition wherein the exterior diameter of said seal element is expanded to sealingly engage
  • the actuation assembly may comprise a packing element actuation sleeve, said packing element actuation sleeve having a section of a first relatively smaller diameter which is radially proximate said annular seal element when said annular seal element is in said first condition, said packing element actuation sleeve further comprising a second section of a relatively larger diameter, which second section is radially proximate said annular seal element when said annular seal element is in said second condition.
  • the lock assembly will include a sealing assembly which includes not only at least one expandable seal element, but also may involve one or more expandable backup member generally adjacent to the seal element and formed of a material adequate to prevent undesirable extrusion of the seal element.
  • This backup material may also be incorporated into this seal element as a one piece sub assembly.
  • the invention further contemplates the use of a lock assembly having more than one seal elements in longitudinally spaced relation to one another, and adapted to engage a nipple having a control line inlet therein.
  • the spaced seal elements preferably lie on opposed sides of the port, and thereby facilitate fluid communication between a control line and the interior of the lock assembly.
  • the lock will be coupled to a surface controlled, flow control device, such as, for example, a subsurface safety valve, thereby facilitating control of the flow control device through lock 10.
  • Figs. 1A-B depict one exemplary embodiment of lock in accordance with the present invention, illustrated in an operative attachment to an exemplary running tool, and disposed within a tubular string including a nipple.
  • Figs. 2A-B depict the latch member actuation portion in varying stages of actuation; depicted in Fig. 2A with latch members 24 in a "locating" position; and depicted in Fig. 2B in a locked position.
  • Figs. 3A-B depict the lock of Fig. 1 in an actuated position.
  • Fig. 4 depicts the latch member actuation sleeve of the lock of Fig. 1 in greater detail, illustrated partially in oblique section.
  • Fig. 5 depicts the sealing assembly of the lock of Fig. 1 in greater detail, and in an actuated position, illustrated partially in vertical section.
  • Figs. 6A-B depict an alternative embodiment of backup ring suitable for use with the present invention.
  • Figs. 7A-B depict the backup ring of Fig. 6 installed in an operational relation on a lock; depicted in Fig. 7A in an unexpanded state; and depicted in Fig. 7B in an expanded state.
  • Figs. 8A-D depict an alternative embodiment of a lock in accordance with the present invention, depicted in a combination with a subsurface safety valve forming an equipment string in accordance with the present invention.
  • Fig. 9 depicts an alternative embodiment of a dual sealing arrangement in accordance with the present invention.
  • Lock 10 is depicted coupled to an exemplary running tool 100 in an exemplary operating application.
  • Lock 10 and running tool 100 are depicted within a casing string 11 including a nipple 120.
  • Lock 10 includes a mandrel assembly, indicated generally at 12, a housing 14, and a lower sub 16.
  • Mandrel assembly 12 includes a coupling sub 18 which is threadably coupled at 20 to an internal mandrel 22.
  • Mandrel assembly 12 extends generally coaxially with, and partially within, housing 14.
  • the plurality of engagement members such as latching members (or “dogs") 24 are each retained at least partially within a respective aperture 25 in housing 14.
  • Each latch member 24 is retained in an operative relation relative to the remainder of lock 10 by an actuation spring 26 and actuation sleeve 28.
  • Actuation sleeve 28 extends generally concentrically relative to internal mandrel 22, and in slidable relation thereto.
  • Actuation sleeve 28 includes a first portion of a first diameter 29 and a second portion of a second larger diameter 31.
  • a shoulder 33 is formed at the transition between the first and second portions.
  • Actuation sleeve 28 further includes a plurality of longitudinal grooves 35, each in registry with a respective latch member 24, with each groove 35 having a bottom surface configured to form a radially extending detent portion 30 proximate its lower end.
  • Actuation sleeve 28 further includes a generally annular recess 32 which is engageable with an external locating shoulder 34 formed on internal mandrel 22.
  • Each actuation spring 26 includes a retaining tab 36 which engages a recess 38 in housing 14. Each actuation spring 26 then includes a central "dog leg” portion, indicated generally at 40, including two bends 42 and 44, forming an actuation surface shoulder 46. Each actuation spring 26 terminates in an extension 48 which extends into a central aperture 50 of each latch member 24, and which is engageable with a generally radially inward tab 52 and a relatively radially outward shoulder 54. The interaction of extension 48 with tab 52 and shoulder 54 allows actuation spring 26 to selectively urge latch member 24 radially outwardly, as will be described later herein, and also to retain latch member 24 in an operative relation relative to housing 14.
  • Inner sleeve 54 is threadably coupled at 56 to housing 14.
  • Inner sleeve 54 has a generally upwardly extending annular portion 58 which includes a longitudinal groove 60 therein.
  • a generally lower portion 62 of inner sleeve 54 defines a portion of the internal bore through lock 10.
  • Lower sub 16 is threadably coupled at 64 to inner sleeve 54, and includes an upwardly extending annular portion 66 which cooperates with housing 14 to define a sealing assembly retention recess, indicated generally at 68.
  • Housing 14, inner sleeve 54, and lower sub 16 also cooperatively define an annular chamber 70.
  • a packing element actuation sleeve 72 is slidably retained within chamber 70.
  • Packing element actuation sleeve 72 includes a longitudinal recess 74 which engages an actuation lug 76 coupled to inner mandrel 22, and extending through longitudinal groove 60 in upper portion 58 of inner sleeve 62.
  • Packing element retention recess 68 is an annular gap, which facilitates the placement of a packing assembly, indicated generally at 78, around packer element actuation sleeve 72.
  • packing element assembly 78 will include a generally annular elastomeric seal element 80, with a solid, but radially expandable backup ring 82 on each side of elastomeric seal element 80 in recess 68.
  • elastomeric seal element 80 will be a nitrile element, of approximately 80-90 durometer.
  • each backup ring 82 will be a solid, but expandable, element, such as may be formed of unfilled virgin polyetheretherketone ("PEEK").
  • PEEK unfilled virgin polyetheretherketone
  • Packing element actuation sleeve 72 includes an annular recess 74 which, in a first, unactuated, position will underlie the elements of packing element assembly 78. Also in such first position, a seal surface 86 will underlie and sealingly engage a conventional O-ring seal 88a on annular extension 66 of lower sub 16. Similarly, a conventional O-ring seal 88b will sealingly engage the external surface of packing element actuation sleeve 72.
  • Lock 10 will be designed to be placed within casing (or another tubular member), having an internal diameter of 2.992 inches (7.600 cm). In such application, a profile 122 will preferably have a seal surface diameter of 2.875 inches (7.302 cm) (the landing nipple inside diameter seal bore).
  • housing 14 of lock 10 will preferably have an external diameter of approximately 2.83 inches (7.19 cm).
  • backup rings 82 will each have a nominal internal nonexpanded diameter of approximately 2.310 inches (5.867 cm) and a nominal external diameter of approximately 2.790 inches (7.087 cm).
  • Elastomeric seal element 80 will preferably have a nominal internal diameter of approximately 2.250 inches (5.715 cm), and a nominal external diameter of approximately 2.810 inches (7.137 cm).
  • Annular recess 84 preferably has a diameter of approximately 2.265 inch (5.753 cm), or .117 inch (0.297 cm) smaller than the outer diameter of the remainder of packing element actuation sleeve 72.
  • running tool 100 of a type suitable for use in placing lock 10 within a well.
  • Running tool 100 will preferably be of a conventional design such as the model R running tool manufactured by OTIS Engineering Corporation of Dallas, Texas. The use of the model R running tool is familiar to those skilled in the art. Accordingly, the structure and operation of running tool 100 will be described here only briefly.
  • Running tool 100 includes a central mandrel assembly 102 telescopingly retained relative to a housing 104. Central mandrel assembly 102 is coupled through a shear pin 106, to inner sleeve 54 of lock 10. Running tool 100 also includes a plurality of nipple locating members 110 which will engage a lower shoulder of a nipple, but will retract into recesses 108 of mandrel assembly 102 upon relative movement of central mandrel assembly 102 relative to housing assembly 104.
  • nipple locator members 110 will engage a locating shoulder 121 of nipple 120. Further upward movement applied through the running tool 100, through central mandrel 102, will act through shear pin 106 to exert a generally upward pull on lower sub 16, inner sleeve 62 and housing 14.
  • these components, as well as packing element actuation sleeve 72, actuation spring 26 and latch members 24 will move upwardly relative to inner mandrel 22 and particularly relative to detente portion 30 of actuation sleeve 28. This movement will preferably be relatively short, on the order of .375 inch (0.952 cm).
  • nipple locator members will retract into recesses 108 in mandrel assembly 102 and facilitate movement of running tool 100 and lock 10 upwardly through nipple 120.
  • latch members 24 of lock 10 will retract to enter nipple 120, but are spring biased outwardly, and will extend to engage complimentary recesses 127 formed in nipple profile 122.
  • Latch members 124 and nipple profile 122 preferably have complimentary tapered surfaces 124 which facilitate upward movement of latch members 24 through nipple profile 122, but which resist downward movement.
  • nipple profile 122 includes two longitudinally spaced shoulders which extend generally perpendicularly relative to the longitudinal axis of nipple profile 122.
  • This expansion facilitates establishing of a sealing engagement between elastomeric seal element 80 and nipple 120, with backup rings 82 being similarly expanded to avoid extrusion of elastomeric seal element 80.
  • the movement of packing element actuation sleeve 72 concentrically to inner sleeve 54 facilitates inner sleeve 54 providing structural support for actuation sleeve 72 as it serves to expand packing element assembly 78. This support facilitates actuation sleeve 72 being formed as a relatively thin annular component.
  • Backup ring 140 may be utilized in place of either or both of backup rings 82, formed of PEEK, as described earlier herein.
  • Backup ring 140 is a solid ring having a circumferentially tapered (or "scarf") cut 142 therein.
  • Backup ring 140 is formed such that in an unexpanded condition, as depicted in Figs. 6C-D, relative ends 144 and 146 on either side of tapered cut 142 will overlap, thereby establishing a reduced diameter state of backup ring 140.
  • Tapered cut 142 is oriented to facilitate ends 144 and 146 moving toward an adjacent, overlapping, relation when ring 140 is not subjected to an expanding force.
  • Backup ring 140 is also formed such that when in an expanded condition, both the internal and external diameters, 147 and 148, respectively are, or closely approximate, perfect circular shapes. Such conformity assures that in an operating environment, backup ring 140 will establish a uniform backup surface for an associated elastomeric seal (element 80 in Fig. 1).
  • a reduced diameter portion 150 of an actuation sleeve 152 allows ends 144 and 146 to overlap. Expansion of backup ring 140 around a larger diameter section 152 causes backup ring 140 to assume a planar, circular, shape.
  • Backup ring 140 may be formed of any appropriate material having a suitably low modulus of elasticity.
  • backup ring 140 will be formed of titanium, because of both its relatively low modulus of elasticity, and its suitability for use in hydrogen sulfide (H 2 S) environments.
  • ring 140 will be machined with a slightly oversized outer diameter and a slightly undersized internal diameter.
  • tapered cut 142 will be made into solid ring, typically removing approximately .032 inch (0.081 cm) of material.
  • the ring will be generally uniformly compressed such that the external diameter decreases. This compression will induce permanent deformation in the ring.
  • the ring may be expanded to where relative ends 144 and 146 are engaged, and ring 40 forms a continuous annular member.
  • the outer diameters and interior diameters will then preferably be machined to finish diameters.
  • FIG. 8A-D therein is depicted an alternative embodiment of a lock and full bore nipple in accordance with the present invention, and incorporated in a system with a surface controlled subsurface safety valve, in an exemplary configuration.
  • a surface controlled subsurface safety valve which are operated through use of a hydraulic control line extending to the surface has long presented a problem to the use of full bore nipples.
  • the complexity of providing a hydraulic fluid passage from the surface, into the tubular member and subsequently to the safety valve has required relatively restricted nipple configurations.
  • Figs. 8A-D depict a full bore nipple and lock design, indicated generally at 160, in combination with a subsurface safety valve, indicated generally at 162.
  • Nipple 163 includes a seal bore 165 and a recessed profile 163a. Seal bore 165 is in fluid communication with a central fluid passage 167, which is coupled in a conventional matter to a control line 169. Fluid to control the subsurface safety valve will be applied through control line 169 in a manner known to those skilled in the art.
  • Lock assembly 164 operates in a manner similar to that described relative to lock 10. The portion of lock 164 above actuation lug 76 is preferably essentially identical to that as described relative to lock 10. Elements of lock 164 which are essentially identical to those described relative to lock 10 have been numbered similarly, and elements which are functionally similar though possibly of a slightly different configuration have been indicated with primes. As can be seen in Fig.
  • lock assembly does not include a lower sub 16, but includes a coupling sub 166 which facilitates coupling of lock 164 to subsurface safety valve assembly 162.
  • Coupling sub 166, housing 14, and inner sleeve 62' cooperatively define an annular passage 70' within which packing element actuation sleeve 172 may move.
  • Coupling sub 166 and housing 14 cooperatively define a packing element retention recess 68' housing packing element assembly 168.
  • Packing element assembly 168 includes two seal assemblies 78a, 78b, each of which may be essentially identical to seal assembly 78 of lock 10. Seal assemblies 78a, 78b are separated in spaced relation by a ported spacer ring 170, including, preferably, a plurality of ports 172 therethrough.
  • ported spacer ring will be formed of virgin PEEK, as are backup rings 82.
  • packer actuation sleeve 172 includes two recesses 174, 176 which will underlie a respective seal assembly 78a, 78b when lock 164 is in an unactuated position, but which will be longitudinally offset from the respective seal assembly 78a, 78b, when lock 164 is set within nipple 163, as depicted in Figs. 8A-D.
  • packing element actuation sleeve 172 includes a port 178 proximate recess 174.
  • port 178 provides fluid communication between control line 169 and control fluid passage 167 to an internal chamber 180.
  • Coupling sub 166 preferably includes at least one fluid passage 182 which is in fluid communication with chamber 180.
  • This fluid passage then communicates with pressure chamber 174 in subsurface safety valve 162 to facilitate selective operation of piston sleeve 176 to operate safety valve 162 in a conventional manner.
  • piston sleeve 176 is maintained in a relatively downward position where it retains flapper valve 184 in an open position, as depicted in Fig. 8D. If fluid pressure is not applied to maintain piston sleeve 176 in this position, return spring 188 will urge piston sleeve 176 upwardly, allowing flapper valve 184 to close.
  • Subsurface safety valve 162 as depicted herein may be substantially a Series 10 surface controlled subsurface safety valve, as manufactured by Otis Engineering Corporation of Dallas, Texas. The operation of such subsurface safety valves is well known in the art.
  • safety valve 162 is merely one of many types of safety valves or other surface controlled flow control devices known to the art and suitable for use in accordance with the present invention.
  • Fig. 9A-B therein is depicted an alternative sealing arrangement for a lock establishing a flow path with a ported nipple.
  • the sealing arrangement in Fig. 9A-9B is similar to that depicted relative to lock 164. However, the sealing arrangement has been modified to shorten the length of the sealing assembly, thereby facilitating the use of a packing element actuation sleeve 192 having a single recess 194.
  • the sealing configuration includes a packing element assembly 193 including a central ported backup ring 196, with an elastomeric seal element 80 on each side thereof, and with a backup ring 82 at each end.
  • Ported backup ring 196 may be formed similarly to backup rings 82, with the exception that ported space of ring will preferably have an axial dimension of approximately 0.5 inch (1.25 cm).
  • ported backup ring 196 will be formed of virgin PEEK, as are backup rings 82.
  • the operation of the sealing configuration is similar to that previously described relative to lock 10 and lock assembly 164.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Claims (7)

  1. Un dispositif de verrouillage pour un puits, qui comporte un logement (14); et un ensemble de commande (28,32) qui fonctionne conjointement avec ledit logement (14) et qui peut se déplacer relativement audit logement (14); au moins un élément d'engagement (24) couplé au dit logement (14), l'élément d'engagement ou chaque élément d'engagement pouvant être déplacé à partir d'une première position dans laquelle ledit élément d'engagement ou chacun des éléments d'engagement fonctionne par déploiement relativement au dit logement (14); et un ensemble d'étanchéité (78) couplé au dit logement, ledit ensemble d'étanchéité comportant un joint étanche (80) expansible qui possède une surface intérieure, ledit ensemble d'étanchéité fonctionnant conjointement avec ledit ensemble de commande pour faciliter l'expansion radiale de ladite surface intérieure du joint étanche lorsque survient un mouvement prédéterminé du dit ensemble de commande, ledit ensemble de commande comportant un premier manchon (28) qui peut se déplacer d'une première position à une seconde position, ledit manchon fonctionnant conjointement par couplage avec l'élément d'engagement ou avec chaque élément d'engagement pour faciliter le mouvement de cet élément d'engagement ou de chacun de ces éléments d'engagement à partir de ladite première position pratiquement rétractée radialement, quand ledit manchon se trouve dans ladite première position, jusqu'à la seconde position déployée de fonctionnement, quand ledit manchon se trouve dans ladite seconde position, caractérisé en ce que ledit manchon peut de plus être déplacé jusqu'à une troisième position dans laquelle ledit manchon est proche du ou des élément(s) d'engagement pour bloquer ledit ou les dits élément(s) d'engagement dans ladite position déployée de fonctionnement, et en ce que ledit ensemble d'étanchéité comporte de plus un élément de support expansible (82) qui possède une surface intérieure, ladite surface intérieure de l'élément de support (82) étant disposée de manière à se déployer radialement lorsque survient ledit mouvement prédéterminé du dit ensemble de commande.
  2. Un ensemble de verrouillage selon la revendication 1, dans lequel ledit ensemble de commande (28,72) peut se déplacer longitudinalement relativement au dit logement (14).
  3. Un ensemble de verrouillage selon la revendication 1 ou 2, dans lequel un au moins des dits éléments d'engagement (24) peut être déplacé à partir d'une première position dans laquelle ledit élément d'engagement est rétracté radialement et pratiquement entièrement à l'intérieur du diamètre extérieur du dit logement (14), jusqu'à une seconde position.
  4. Un ensemble de verrouillage selon la revendication 1, 2 ou 3, qui comporte de plus un second élément de support expansible (82) couplé au dit logement (14) adjacent au dit élément d'étanchéité expansible (80); ledit second élément de support expansible fonctionne également conjointement avec ledit ensemble de commande pour faciliter l'expansion radiale des deux éléments de support lorsque survient un mouvement prédéterminé du dit ensemble de commande (28,72).
  5. Un ensemble de verrouillage adapté pour traverser un ensemble d'éléments tubulaires disposés dans un puits et pour s'engager avec un profil incluant des évidements installés à l'intérieur du dit ensemble d'éléments tubulaires; ledit ensemble de verrouillage comporte un logement (14); un ensemble de commande (28,72) qui fonctionne par couplage avec ledit logement en relation mobile longitudinale avec celui-ci; une pluralité d'éléments d'engagement (24) qui fonctionnent par couplage avec ledit logement, les dits éléments d'engagement pouvant être déplacés à partir d'une première position dans laquelle les éléments d'engagement sont pratiquement rétractés radialement relativement au dit logement et facilitent le passage dudit verrou à travers ledit ensemble d'éléments tubulaires, jusqu'à une seconde position dans laquelle les dits éléments d'engagement fonctionnent par déploiement relativement au logement pour engager les dits évidements dans ledit profil; un joint annulaire (80) qui fonctionne conjointement avec ledit logement et ledit ensemble de commande, ledit joint annulaire pouvant être déplacé à partir d'un premier état dans lequel le diamètre extérieur du dit joint facilite le passage du dit verrou à travers ledit ensemble d'éléments tubulaires, jusqu'à un second état dans lequel le diamètre extérieur du dit joint est expansé pour s'engager de manière étanche avec ledit profil; ladite association entre ledit joint étanche et ledit ensemble de commande est configuré pour obtenir l'expansion des diamètres intérieur et extérieur du joint par le biais du mouvement longitudinal du dit ensemble de commande relativement au dit logement, ledit ensemble de commande comportant un premier manchon (28) qui peut être déplacé à partir d'une première position jusqu'à une seconde position, ledit manchon fonctionnant par couplage avec les dits éléments d'engagement pour faciliter leur mouvement à partir de ladite première position pratiquement rétractée radialement, quand ledit manchon est en sa première position, jusqu'à ladite seconde position déployée de fonctionnement, quand ledit manchon est en sa seconde position, caractérisé en ce que ledit manchon peut de plus être déplacé jusqu'à une troisième position dans laquelle ledit manchon est adjacent aux dits éléments d'engagement pour maintenir lesdits éléments d'engagement dans ladite position déployée de fonctionnement.
  6. Un ensemble de verrouillage selon la revendication 5, dans lequel ledit ensemble de commande comporte un manchon de commande de garniture d'étanchéité (72), ledit manchon de commande de garniture d'étanchéité possédant une section d'un premier diamètre relativement plus petit qui est radialement adjacente au dit joint annulaire (80) quand ledit joint annulaire est en son premier état; ledit manchon de commande de garniture d'étanchéité comporte de plus une seconde section d'un diamètre relativement plus grand, qui est radialement adjacente au dit joint annulaire quand ledit joint annulaire est en son second état.
  7. L'utilisation d'un ensemble de verrouillage tel que revendiqué dans l'une quelconque des revendications 1 à 6 avec des éléments tubulaires disposés dans un puits.
EP19940302262 1993-04-01 1994-03-29 Système de verrouillage dans un puit et méthode d'utilisation Expired - Lifetime EP0618342B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41793 1987-04-23
US08/041,793 US5617918A (en) 1992-08-24 1993-04-01 Wellbore lock system and method of use

Publications (3)

Publication Number Publication Date
EP0618342A2 EP0618342A2 (fr) 1994-10-05
EP0618342A3 EP0618342A3 (fr) 1995-06-28
EP0618342B1 true EP0618342B1 (fr) 1998-06-03

Family

ID=21918353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940302262 Expired - Lifetime EP0618342B1 (fr) 1993-04-01 1994-03-29 Système de verrouillage dans un puit et méthode d'utilisation

Country Status (3)

Country Link
EP (1) EP0618342B1 (fr)
CA (1) CA2120311A1 (fr)
SG (1) SG47676A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2248287C (fr) 1998-09-22 2002-05-21 Laurier E. Comeau Coupleur a surete integree pour dispositif de verrouillage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250331A (en) * 1962-10-08 1966-05-10 William G Boyle Locking device for well tools
US3436084A (en) * 1966-01-10 1969-04-01 Dow Chemical Co Packer for well treatment
US4116277A (en) * 1977-04-12 1978-09-26 Gray Tool Company Full flow tubing plug with locked anchor and method
US4284137A (en) * 1980-01-07 1981-08-18 Taylor William T Anti-kick, anti-fall running tool and instrument hanger and tubing packoff tool
US4288082A (en) * 1980-04-30 1981-09-08 Otis Engineering Corporation Well sealing system
US4349204A (en) * 1981-04-29 1982-09-14 Lynes, Inc. Non-extruding inflatable packer assembly
US5119875A (en) * 1989-11-15 1992-06-09 Otis Engineering Corporation Hydraulically actuated lock system
US5311938A (en) * 1992-05-15 1994-05-17 Halliburton Company Retrievable packer for high temperature, high pressure service
US5348087A (en) * 1992-08-24 1994-09-20 Halliburton Company Full bore lock system

Also Published As

Publication number Publication date
CA2120311A1 (fr) 1994-10-02
EP0618342A2 (fr) 1994-10-05
SG47676A1 (en) 1998-04-17
EP0618342A3 (fr) 1995-06-28

Similar Documents

Publication Publication Date Title
US5617918A (en) Wellbore lock system and method of use
US11028657B2 (en) Method of creating a seal between a downhole tool and tubular
CA2087673C (fr) Outil de verrouillage du type perforateur
EP2675989B1 (fr) Outil étagé
AU2012276071B2 (en) Extrusion-resistant seals for expandable tubular assembly
CA2827462C (fr) Joint d'ancrage
US5479989A (en) Sleeve valve flow control device with locator shifter
CA2496331C (fr) Dispositif d'etancheite pour soupape de surete
US5372201A (en) Annulus pressure actuated casing hanger running tool
US7779925B2 (en) Seal assembly energized with floating pistons
WO2009111434A2 (fr) Manchon télescopique d’isolement de fracturation
US4542792A (en) Method and removable auxiliary apparatus for permanently locking open a well flow control device
US5330001A (en) Lead in guide assembly
EP0618342B1 (fr) Système de verrouillage dans un puit et méthode d'utilisation
EP2719856B1 (fr) Ensemble d'étancheité pour vanne de sécurité de puits
WO2006095160A1 (fr) Bouchon d’arbre
GB2586537A (en) Dual isolation bore seal system
GB2589544A (en) Sealing method and associated apparatus
GB2272466A (en) Method and means for operating in a downhole wellbore tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): GB NL

17P Request for examination filed

Effective date: 19950913

17Q First examination report despatched

Effective date: 19970106

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HALLIBURTON ENERGY SERVICES, INC.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020328

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030329

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001