EP0616557A1 - Separateur centrifuge - Google Patents
Separateur centrifugeInfo
- Publication number
- EP0616557A1 EP0616557A1 EP93923702A EP93923702A EP0616557A1 EP 0616557 A1 EP0616557 A1 EP 0616557A1 EP 93923702 A EP93923702 A EP 93923702A EP 93923702 A EP93923702 A EP 93923702A EP 0616557 A1 EP0616557 A1 EP 0616557A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- rotor
- outlet
- centrifugal separator
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 70
- 238000000926 separation method Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B1/00—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
- B04B1/04—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
- B04B1/08—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
Definitions
- the present invention concerns a centrifugal separator comprising a rotor, which forms an inlet chamber for liquid mixture of components, a separation chamber connected to the inlet chamber, an outlet chamber, which via a passage communicates with the separation chamber, for the reception of a liquid separated during operation in the separation chamber, and which is so designed that liquid present therein during operation forms a rotating liquid body with a radially inwards directed free liquid surface.
- the centrifugal separator also comprises a stationary discharge device, which from the said liquid body extends radially inwards to a central outlet, and in which at least one outlet channel is formed, one end of which has an inlet located in said liquid body, and the other end of which opens into an outlet connected to the discharge device.
- the centrifugal separator comprises means connected to the rotor, which are arranged to entrain the separated liquid present in the outlet chamber in the rotation of the rotor during operation of the rotor and at the same time admit flow of such liquid in the outlet chamber radially outwards to the inlet of the outlet channel.
- the means, which in the outlet chamber shall entrain the liquid into the rotation of the rotor is designed as at least one disk fixedly connected to the rotor and con- centrical to the same.
- the outwardly directed liquid flow in the outlet chamber is distributed in more layers having a large total cross-sectional area, where ⁇ by the flow velocities in the layers and consequently the risk of air admixture decreases.
- the object of the present invention is to provide a centrifugal separator of the kind initially described, in which the risk of air admixture in a discharge separated liquid is less than in hitherto known centri- fugal separators of this kind with corresponding capa ⁇ bility to entrain the separated liquid in the outlet chamber.
- the means to entrain, during the operation of the rotor, the separated liquid present in the outlet chamber comprises several around the rota ⁇ tional axis distributed and with the rotor rotating elongated elements, which between themselves form flow spaces, which extend axially, radially and in a circum ⁇ ferential direction of the rotor.
- the elongated elements are straight and regularly oriented in an essential axial direction but they can alternatively be directed radially.
- the elongated elements are irregularly oriented and abut with advantage against each other.
- the elongated elements can be supplemented by at least one wing fixedly connected to the rotor, the wing extending radially and axially in the outlet chamber, in a way such that an efficient entrainment of the liquid in the outlet chamber is obtained.
- FIG. 1 schematically shows an axial section through a part of a centrifugal separator according to the invention
- Fig 2 shows a view of a detail in a centrifugal separator according to the invention
- Fig 3 shows a section along the line III-III in figure 2.
- the part of the centrifugal separator shown in figure 1 comprises a rotor, which has a lower part 1 and an upper part 2, which are joined together by a locking ring 3. Inside the rotor an axially movable valve slide 4 is arranged.
- This valve slide delimits together with the upper part 2 a separation chamber 5 and is arranged to open and close an outlet passage between the separation chamber 5 and outlet openings 6 to let out inter ⁇ mittently a component, which has been separated from a mixture supplied to the rotor and been accumulated at the periphery of the separation chamber.
- the valve slide 4 delimits together with the lower part 1 a closing chamber 7, which is provided with an inlet and a throttled outlet for a closing liquid. These in- and outlets are not shown in the figure.
- a disc stack 8 consis ⁇ ting of a number of conical separation discs is arranged between a distributor 9 and the upper part 2.
- the upper part 2 forms in its, in the figure shown, upper end an outlet chamber 10, to which a specific lighter liquid separated during operation from a mixture supplied to the rotor can flow from the separation chamber 5 via a passage 11 and in the outlet chamber 10 form a rotating liquid body with a radially inwards directed free liquid surface at a certain radial level.
- the outlet chamber 10 is delimited by two axial end walls 12, 13 and a circumferential wall 14, which extends between these.
- a stationary inlet tube 15 is arranged, which opens in the interior of the distributor 9.
- a stationary outlet tube 16 is arranged for the specific lighter liquid in the supplied mixture.
- the outlet tube 16 extends into the outlet chamber 10.
- a stationary discharge device 17 is arranged around the inlet tube 15. The discharge device 17 extends from the rotational liquid body radially inwards to the inlet tube 15 and forms inside itself at least one outlet channel 18, one end of which has a peripheral inlet 19, and the other end of which opens in the interior of the outlet tube 16.
- means 20 are arranged fixedly connected to the end walls 12 and 13. These means 20 are arranged to entrain the liquid present in the outlet chamber 10 during operation in the rotation of the rotor and admit flow of the same radially outwards to the inlet 19 of the outlet channel 18.
- Figure 2 and 3 show more in detail the design of said means 20.
- the means 20 comprise an annular circular disc 21, which is fixedly connected to an end wall 12 or 13 concent- rical to the rotation axis.
- On the axial side of the disc, which is directed towards the stationary discharge device 17 several elongated elements 22 are distributed around the rotational axis and form between themselves flow spaces, which extend axially, radially and in the circumferential direction of the rotor.
- the elongated elements 22 are fixedly connec ⁇ ted to each other via the disc 21 and is directed axially.
- the flow spaces between the elongated elements 22 are open in the direction toward the stationary discharge device 17.
- the means 20 shown as an example also comprises three wings fixedly connected to the disc 21, which extends radially and axially in the outlet chamber 10.
- a centrifugal separator which is designed according to the invention works in the following manner:
- the rotor Upon start of the centrifugal separator the rotor is brought to rotate and the separation chamber 5 is closed by supplying a closing liquid to the closing chamber 7 through an inlet (not shown). After the separation chamber 5 has been closed the liquid mixture, which is to be centrifugally treated is supplied to the separation chamber 5 through the inlet tube 15 and the distributor 9. Gradually the separation chamber 5 is filled up, the rotor reaches the rotational speed in operation and the conditions are stabilized inside the separation chamber. The components contained in the liquid mixture are separated under the influence of the centrifugal forces acting on the same.
- the separation is then mainly taken place in the inter- spaces between the conical discs in the disc stack 8.
- the specific heavier component is thrown radially outwards and is accumulated in the radially outermost part of the separation chamber, whereas the specific lighter liquid flows radially inwards in these interspaces.
- the specific heavier component is intermittently dis ⁇ charged during operation by bringing the valve slide 4 during periods of time uncover the peripheral outlet openings 6.
- the specific lighter liquid flows out through the separation chamber 5 through the passage 11 to the outlet chamber 10, in which it forms a rotating liquid body with a radially inwards directed free liquid surface.
- the liquid present in the outlet chamber 10 is discharged through the outlet channel 18 in the stationary discharge device 17 via its inlet 19.
- the entrainment of the liquid present in the outlet chamber 10 is taking place gently by the means 20 rotating with the rotor and by other internal surfaces of the walls of the outlet chamber.
- the liquid located closest to the discharge device 17 is slowed down by the contact with the external surfaces of the discharge device 17. Thereby, different parts of the liquid volume located in the outlet chamber 10 will obtain different rotational speeds.
- the contact between the liquid and the external surfaces of the discharge device 17 result in that a circulating flow is generated in the outlet chamber 10, the liquid flowing radially inwards along the external surfaces of the discharge device 17 and radially out ⁇ wards in layers, which extend along and connect the elongated elements 22 and along internal surfaces of the walls of the outlet chamber 10.
- said means also comprise a wing liquid also flows radially outwards in layers along this. This flow radially outwards is distributed over relatively large layers.
- the local maximum flow velocities can be kept low, which is especially important at the free liquid surface as the risk of air admixture is especially high there.
- the passage 11 is arranged at essentially the same radius as the radius at which the inlet 19 of the outlet channel 18 is located, the radial outwardly directed flow is to be referred to the internal circulation in the outlet chamber 10.
Landscapes
- Centrifugal Separators (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9203056A SE470493B (sv) | 1992-10-19 | 1992-10-19 | Centrifugalseparator med i en utmatningskammare anordnade långsträckta medbringande element |
SE9203056 | 1992-10-19 | ||
PCT/SE1993/000845 WO1994008723A1 (fr) | 1992-10-19 | 1993-10-15 | Separateur centrifuge |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0616557A1 true EP0616557A1 (fr) | 1994-09-28 |
EP0616557B1 EP0616557B1 (fr) | 1999-02-03 |
Family
ID=20387506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93923702A Expired - Lifetime EP0616557B1 (fr) | 1992-10-19 | 1993-10-15 | Separateur centrifuge |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0616557B1 (fr) |
JP (1) | JP3165443B2 (fr) |
DE (1) | DE69323416T2 (fr) |
ES (1) | ES2129524T3 (fr) |
SE (1) | SE470493B (fr) |
WO (1) | WO1994008723A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10143405C2 (de) * | 2001-09-05 | 2003-12-18 | Westfalia Separator Ag | Schälscheibenvorrichtung zum Ableiten von Flüssigkeit aus einer Zentrifugentrommel |
US8598022B2 (en) | 2009-10-27 | 2013-12-03 | Advanced Technology Materials, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
TWI582836B (zh) | 2010-02-26 | 2017-05-11 | 恩特葛瑞斯股份有限公司 | 用以增進離子植入系統中之離子源的壽命及性能之方法與設備 |
WO2015023903A1 (fr) | 2013-08-16 | 2015-02-19 | Entegris, Inc. | Implantation de silicium dans des substrats et fourniture de compositions de précurseur du silicium à cette fin |
DE102017103065B4 (de) | 2017-02-15 | 2021-01-21 | Flottweg Se | Auslasseinrichtung eines Separators |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE176539C (fr) * | ||||
CH156097A (fr) * | 1930-12-30 | 1932-07-31 | Leonard Ringius Carlos | Dispositif pour machines purifieuses et écrémeuses de lait. |
US2125453A (en) * | 1934-06-30 | 1938-08-02 | Laval Separater Company De | Antifroth discharging means for centrifugal separators |
SE459159B (sv) * | 1987-10-08 | 1989-06-12 | Alfa Laval Separation Ab | Centrifugalseparator med utmatningsorgan |
-
1992
- 1992-10-19 SE SE9203056A patent/SE470493B/sv not_active IP Right Cessation
-
1993
- 1993-10-15 WO PCT/SE1993/000845 patent/WO1994008723A1/fr active IP Right Grant
- 1993-10-15 DE DE69323416T patent/DE69323416T2/de not_active Expired - Lifetime
- 1993-10-15 ES ES93923702T patent/ES2129524T3/es not_active Expired - Lifetime
- 1993-10-15 JP JP50991394A patent/JP3165443B2/ja not_active Expired - Fee Related
- 1993-10-15 EP EP93923702A patent/EP0616557B1/fr not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9408723A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE69323416D1 (de) | 1999-03-18 |
DE69323416T2 (de) | 1999-06-10 |
ES2129524T3 (es) | 1999-06-16 |
SE470493B (sv) | 1994-06-06 |
EP0616557B1 (fr) | 1999-02-03 |
JP3165443B2 (ja) | 2001-05-14 |
SE9203056D0 (sv) | 1992-10-19 |
JPH07502454A (ja) | 1995-03-16 |
WO1994008723A1 (fr) | 1994-04-28 |
SE9203056L (sv) | 1994-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5779619A (en) | Centrifugal separator | |
EP0809536B1 (fr) | Dispositif d'entree pour un separateur centrifuge | |
US5362292A (en) | Centrifugal separator | |
US6183407B1 (en) | Centrifugal separator having axially-extending, angled separation discs | |
US5045049A (en) | Centrifugal separator | |
JP3431598B2 (ja) | 遠心分離機用ロータ | |
EP0612270B1 (fr) | Separateur centrifuge | |
EP1105219B1 (fr) | Dispositif d'entrainement pour separateur centrifuge | |
US5518494A (en) | Centrifugal separator with air entrainment suppression | |
US5599271A (en) | Method of regulating the outlet flow of a liquid separated in a centrifugal separator and a centrifugal separator to carry out the method | |
EP0616557A1 (fr) | Separateur centrifuge | |
US5024648A (en) | Centrifugal separator with a discharge device | |
US6200252B1 (en) | Reaction-driven centrifugal rotor with outlet chamber entrainment members | |
US6319186B1 (en) | Method and a device for cleaning of a centrifugal separator | |
EP0703829B1 (fr) | Separateur centrifuge | |
WO1988002664A1 (fr) | Separateur centrifuge pourvu d'un organe d'evacuation fixe | |
WO1989008502A1 (fr) | Separateur centrifuge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19951227 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990203 |
|
REF | Corresponds to: |
Ref document number: 69323416 Country of ref document: DE Date of ref document: 19990318 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2129524 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20081005 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20081121 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20081028 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081014 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081015 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100501 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091015 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091016 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121010 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20121011 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69323416 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20131016 |