EP0615582B1 - Ignition system for an internal combustion engine - Google Patents

Ignition system for an internal combustion engine Download PDF

Info

Publication number
EP0615582B1
EP0615582B1 EP92923383A EP92923383A EP0615582B1 EP 0615582 B1 EP0615582 B1 EP 0615582B1 EP 92923383 A EP92923383 A EP 92923383A EP 92923383 A EP92923383 A EP 92923383A EP 0615582 B1 EP0615582 B1 EP 0615582B1
Authority
EP
European Patent Office
Prior art keywords
ignition
ignition system
diagnosis
fault
afsdzu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92923383A
Other languages
German (de)
French (fr)
Other versions
EP0615582A1 (en
Inventor
Ulrich Mayer
Peter Kaltenbrunn
Wolfgang Hoeptner
Karsten Mischker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0615582A1 publication Critical patent/EP0615582A1/en
Application granted granted Critical
Publication of EP0615582B1 publication Critical patent/EP0615582B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • F02P11/06Indicating unsafe conditions

Definitions

  • the invention relates to an ignition system for internal combustion engines according to the preamble of the main claim.
  • An ignition circuit monitoring system is already known for ignition systems, in which an ignition current sensor generates a sensor signal with each ignition, which is stored in a memory and read out after each ignition. The memory content is in turn reset before each next ignition, so that an ignition failure is detected if there is no sensor signal.
  • this ignition circuit monitoring does not offer the possibility of detecting the frequency of misfires or the load on the ignition system due to the misfires. For example, a single misfire that is followed by a very large number of correct ignitions is negligible, but the same number of misfires as correct ignitions is disadvantageous.
  • a central control unit sets the ignition diagnosis signal to a first predetermined level before each ignition and switches the ignition diagnosis signal either after every correct or after every incorrect ignition, the ignition being monitored by a sensor arranged in the ignition circuit is dependent on the sensor signal to a second level.
  • the ignition system according to the invention with the characterizing features of the main claim has the advantage that an ignition diagnosis signal is detected and evaluated cylinder-selectively.
  • the ignition diagnostic signal is statistically weighted in an evaluation device for each cylinder after an ignition, so that the threshold for initiating emergency measures to protect the catalytic converter is only exceeded when a certain number of misfires occurs in a predeterminable time. Another advantage is that the ignition in the cylinder does not have to be interrupted, and so this cylinder has the possibility of healing.
  • the weighted ignition diagnosis value (ZÜNTAB) is limited to this when an applicable maximum value (AFXDZU) is reached and the number of correct ignitions via the distance between the error threshold (AFSDZU) and the maximum value (AFXDZU) until a healing detection of a previously defective cylinder is determined.
  • FIG. 1 shows the basic structure of an ignition system for detecting the ignition diagnosis signal
  • FIG. 2 shows an ignition diagnosis signal
  • FIG. 3 shows the program sequence for weighting the ignition diagnosis signal
  • Figure 4 is a graph of the weighted ignition diagnostic value for a cylinder.
  • a distributorless ignition device consisting of a microprocessor 1, ignition coils 2 and 3, although more ignition coils can also be connected, which is indicated by the dashed lines, spark plugs 4 and 5, ignition transistors 6 and 7, an ignition current sensor 8, a monitoring circuit 9 and an evaluation device 10 arranged in the microprocessor.
  • the operation of this circuit arrangement will be described in the following.
  • the primary windings of the ignition coils 2 and 3 are connected to the battery voltage U B , so that when the ignition transistors 6 and 7 are actuated by the microprocessor 1, a charging current flows in the corresponding primary winding of the ignition coil 2 or 3.
  • the closing times of the ignition transistors are determined by an ignition computer contained in the microprocessor 1.
  • the ignition transistor is brought into the blocking state, so that a high voltage is generated in the secondary windings of the ignition coils, which then causes an ignition spark at the spark plugs.
  • an ignition current sensor 8 is arranged between the output of the secondary winding and ground in such a way that all the secondary windings are summarized in one point 11 beforehand.
  • the ignition current sensor 8 thus detects the signals of all ignition coils. To detect an ignition signal, it is also possible, for example, to detect the operating voltage transformed on the primary side.
  • the ignition signal detected by the ignition current sensor 8 is passed on to a monitoring circuit 9.
  • the output of the monitoring circuit is set to a high level by the microprocessor 1 before each ignition. Each time the ignition runs correctly, the ignition current sensor 8 transmits it Ignition signal of the output 12 of the monitoring circuit switched from high to low. If no ignition has been triggered or the ignition has not proceeded properly, the output 12 of the monitoring circuit 9 remains at a high level. An ignition diagnosis signal is thus present at the output 12 of the monitoring circuit 9, which is fed to the evaluation device 10 of the microprocessor 1.
  • the evaluation circuit 10 can assign the ignition diagnosis signal to the corresponding cylinder in each case by means of a comparison with the ignition sequence.
  • a circuit is also conceivable in which the output 12 of the monitoring circuit 9 remains high after a correct ignition and a faulty ignition causes a switch to low. Ultimately, it is also possible to set output 12 to low before each ignition and to switch to high if the ignition is correct or to remain low.
  • FIG. 2 shows how the ignition diagnosis signal (ignition OK) is formed.
  • the diagram shows the crankshaft angle (KW) of the internal combustion engine.
  • the microprocessor 1 sets the ignition diagnosis signal (ignition OK) to 1 (high) before each ignition (Z), so that this ignition diagnosis signal has a predetermined level at the time of ignition (Z). If ignition now takes place in cylinder 1 (Z1), the ignition diagnosis signal (ignition OK) is set to zero by the signal of the ignition current sensor 8. If no ignition signal was transmitted by the ignition current sensor 8, as in the present case with cylinder 3 (Z3), the ignition diagnosis signal remains at the predetermined level (high). This creates the typical digital ignition diagnosis signal sequence (Zünd OK).
  • the ignition diagnosis signal can be assigned to a cylinder at each measuring point (MP) via the signal sequence. The malfunctioning cylinder can thus be diagnosed.
  • FIG. 3 shows the program flow chart in the microprocessor 1 for the statistical evaluation of the ignition diagnosis signal (Zünd OK) and will be explained below together with FIG. 4.
  • FIG. 4 shows the statistical weighting of the cylinder-selective ignition diagnosis signals (Zünd OK) for a cylinder, as it takes place in the program shown in FIG. 3.
  • a query 20 checks whether an evaluation of the signals is possible. It is checked, for example, whether the battery voltage U B has the required level, since immediately after the start U B is too small and so no signals are detected. If the answer is yes to this question, ie an evaluation is possible, the cylinder is selected in a work step 21, the ignition diagnosis signal (ignition OK) of which is to be weighted. In the following work step 22, the ignition diagnosis signal (ignition OK) of this cylinder (Z) is now used for the evaluation after the ignition point (Z).
  • a query 23 checks whether the ignition diagnosis signal (ignition OK) is zero. If this is the case, ie the ignition in the cylinder was OK, the value 1 is subtracted from the weighted ignition diagnosis value (ZÜNTAB) in a work step 24. A query 25 then checks whether ZÜNTAB ⁇ 0. If this is the case, the weighted ignition diagnosis value (ZÜNTAB) for this cylinder is reset to zero in step 26. The no output of query 25 and work step 26 lead to query 27. If query 23 was answered with no, ie the ignition diagnosis signal was not correct for this cylinder, the weighted ignition diagnosis value (ZÜNTAB) increased by an amount (DAFDZU). This amount (DAFDZU) is specified in the application for each engine type.
  • query 29 checks whether the weighted ignition diagnosis value (ZÜNTAB) has exceeded a maximum permissible limit value (AFXDZU). If this is the case, the weighted ignition diagnosis value is limited to this maximum permissible value (AFXDZU) in step 30.
  • the no output of query 29 and work step 30 also lead to query 27.
  • query 27 it is now checked whether the weighted ignition diagnosis value (ZÜNTAB) is greater than one Threshold (AFSDZU) is above which emergency measures to protect the catalytic converter should be initiated.
  • This threshold (AFSDZU) is defined in the application for each engine type and can also be changed depending on the operating conditions of the engine.
  • the threshold (AFSDZU) is generally chosen to be greater than zero and less than or equal to the maximum permissible value. If this threshold (AFSDZU) was exceeded by the weighted ignition diagnosis value (ZÜNTAB), cylinder-specific emergency measures such as, for example, switching off the injection in this cylinder are initiated in work step 31. Then, in step 32, global measures for protecting the catalytic converter, such as switching off the lambda control, are carried out. The no output of query 27 leads to work step 33, by which no cylinder-selective emergency measures are initiated or emergency measures previously activated in this cylinder are withdrawn. In the subsequent query 34 it is checked whether all cylinders (Z1-Z n ) work properly.
  • step 35 the global emergency measures are also withdrawn in step 35. However, if a cylinder still works incorrectly, the global emergency measures remain activated or are activated.
  • step 36 the ignition diagnosis signal is then reset and, for example, stored in a memory.
  • step 37 the cylinder number is increased by one and the ignition diagnosis signal is weighted for this cylinder.
  • the limitation of the weighted ignition diagnosis value (ZÜNTAB) to a permissible maximum value (AFXDZU) and to the minimum value 0 can also be seen.
  • This diagram also shows very clearly that while the permissible threshold (AFSDZU) is exceeded an error is detected in this cylinder, so that corresponding cylinder-selective and global emergency measures are initiated and an error is displayed to the driver at the same time.
  • the distance between the maximum value (AFXDZU) and the permissible threshold (AFSDZU) determines the number of correct ignitions that must occur in succession on the affected cylinder until the ignition defect is recognized as healing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The proposal is for an ignition system for internal combustion engines with a monitoring circuit (9) which, on the occurrence of defective ignition, takes suitable emergency measures to protect the catalyst. To this end the ignition system comprises an evaluation device (10) which applies a statistical weighting to the ignition diagnosis signal (ZÜND OK) and, when a certain threshold of the weighted ignition diagnosis value (ZÜNTAB) is exceeded, triggers suitable emergency measures, whereby the evaluation is continued so that, when the figures drop below the defect threshold (AFSDZU), correction is recognised and the emergency measures are lifted.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Zündanlage für Brennkraftmaschinen nach der Gattung des Hauptanspruchs. Es ist schon für Zündanlagen eine Zündkreisüberwachung bekannt, bei der bei jeder Zündung von einem Zündstromsensor ein Sensorsignal erzeugt wird, das in einen Speicher abgelegt und nach jeder Zündung ausgelesen wird. Der Speicherinhalt wiederum wird vor jeder nächsten Zündung zurückgesetzt, so daß bei einem fehlenden Sensorsignal ein Zündausfall erkannt wird. Diese Zündkreisüberwachung bietet aber keine Möglichkeit, die Häufigkeit von Zündaussetzern bzw. die Belastung der Zündanlage aufgrund der Zündaussetzer, zu erfassen. So ist beispielsweise ein einzelner Zündaussetzer dem dann eine sehr große Anzahl ordnungsgemäßer Zündungen folgt, vernachlässigbar, jedoch gleiche Anzahl Zündaussetzer wie ordnungsgemäße Zündungen nachteilig.The invention relates to an ignition system for internal combustion engines according to the preamble of the main claim. An ignition circuit monitoring system is already known for ignition systems, in which an ignition current sensor generates a sensor signal with each ignition, which is stored in a memory and read out after each ignition. The memory content is in turn reset before each next ignition, so that an ignition failure is detected if there is no sensor signal. However, this ignition circuit monitoring does not offer the possibility of detecting the frequency of misfires or the load on the ignition system due to the misfires. For example, a single misfire that is followed by a very large number of correct ignitions is negligible, but the same number of misfires as correct ignitions is disadvantageous.

Aus DE-A-40 16 307 ist eine Zündanlage für Brennkraftmaschinen mit einer Überwachungsschaltung zur Erzeugung eines digitalen Zündungs-Diagnose-Signals bekannt.From DE-A-40 16 307 an ignition system for internal combustion engines with a monitoring circuit for generating a digital ignition diagnosis signal is known.

Bei dieser Anlage setzt eine zentrale Steuereinheit das Zündungs-Diagnose-Signal vor jeder Zündung auf ein erstes vorbestimmtes Niveau und schaltet das Zündungs-Diagnose-Signal entweder nach jeder ordnungsgemäßen oder nach jeder nicht ordnungsgemäßen Zündung, wobei die Zündung von einem im Zündkreis angeordneten Sensor überwacht wird, vom Sensorsignal abhängig auf ein zweites Niveau.In this system, a central control unit sets the ignition diagnosis signal to a first predetermined level before each ignition and switches the ignition diagnosis signal either after every correct or after every incorrect ignition, the ignition being monitored by a sensor arranged in the ignition circuit is dependent on the sensor signal to a second level.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Zündanlage mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß ein Zündungs-Diagnose-Signal erfaßt und zylinderselektiv ausgewertet wird.The ignition system according to the invention with the characterizing features of the main claim has the advantage that an ignition diagnosis signal is detected and evaluated cylinder-selectively.

Dabei wird für jeden Zylinder nach einer Zündung das Zündungs-Diagnose-Signal in einer Auswerteeinrichtung statistisch gewichtet, so daß erst bei einer bestimmten Anzahl Zündaussetzer in einer vorgebbaren Zeit die Schwelle zum Einleiten von Notmaßnahmen zum Schutz des Katalysators überschritten wird. Als weiterer Vorteil ist anzusehen, daß die Zündung in dem Zylinder nicht unterbrochen werden muß, und so dieser Zylinder die Möglichkeit der Heilung hat.The ignition diagnostic signal is statistically weighted in an evaluation device for each cylinder after an ignition, so that the threshold for initiating emergency measures to protect the catalytic converter is only exceeded when a certain number of misfires occurs in a predeterminable time. Another advantage is that the ignition in the cylinder does not have to be interrupted, and so this cylinder has the possibility of healing.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Zündanlage möglich. Besonders vorteilhaft ist, daß zur Bildung des gewichteten Zündungs-Diagnose-Wertes bei einer fehlerhaften Zündung ein Betrag, der größer als 1 ist, zum vorherigen Diagnose-Wert hinzuaddiert und bei einer ordnungsgemäßen Zündung der Wert 1 abgezogen wird. Der Wert, der bei einer fehlerhaften Zündung hinzuaddiert wird, wird in der Applikation für jeden Motortyp ermittelt. Die Schwelle, ab welcher Notmaßnahmen eingeleitet werden, wird ebenfalls in der Applikation festgelegt. Letztendlich sei noch als Vorteil zu erwähnen, daß der gewichtete Zündungs-Diagnose-Wert (ZÜNTAB) bei Erreichen eines applizierbaren Maximalwertes (AFXDZU) auf diesen begrenzt wird und über den Abstand der Fehlerschwelle (AFSDZU) zum Maximalwert (AFXDZU) die Zahl der korrekten Zündugnen bis zu einer Heilungserkennung eines vorher deekten Zylinders festgelegt wird.Advantageous further developments and improvements of the ignition system specified in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous that, in order to form the weighted ignition diagnosis value in the event of a faulty ignition, an amount which is greater than 1 is added to the previous diagnosis value and the value 1 is subtracted in the case of a correct ignition. The value that is added in the event of a faulty ignition is determined in the application for each engine type. The threshold from which emergency measures are initiated is also specified in the application. Ultimately, it should also be mentioned as an advantage that the weighted ignition diagnosis value (ZÜNTAB) is limited to this when an applicable maximum value (AFXDZU) is reached and the number of correct ignitions via the distance between the error threshold (AFSDZU) and the maximum value (AFXDZU) until a healing detection of a previously defective cylinder is determined.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 den Prinzipaufbau einer Zündanlage zur Erfassung des Zündungs-Diagnose-Signals, Figur 2 ein Zündungs-Diagnose-Signal, Figur 3 den Programmablauf zur Wichtung des Zündungs-Diagnose-Signals und Figur 4 ein Diagramm des gewichteten Zündungs-Diagnose-Wertes für einen Zylinder.Embodiments of the invention are shown in the drawing and explained in more detail in the following description. 1 shows the basic structure of an ignition system for detecting the ignition diagnosis signal, FIG. 2 shows an ignition diagnosis signal, FIG. 3 shows the program sequence for weighting the ignition diagnosis signal and Figure 4 is a graph of the weighted ignition diagnostic value for a cylinder.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 ist eine verteilerlose Zündeinrichtung dargestellt, die aus einem Mikroprozessor 1, Zündspulen 2 und 3, wobei durchaus auch noch mehr Zündspulen angeschlossen sein können, was mit den gestrichelten Linien angedeutet ist, Zündkerzen 4 und 5, Zündtransistoren 6 und 7, einem Zündstromsensor 8, einer Überwachungsschaltung 9 und einer im Mikroprozessor angeordneten Auswerteeinrichtung 10 besteht.In Figure 1, a distributorless ignition device is shown, consisting of a microprocessor 1, ignition coils 2 and 3, although more ignition coils can also be connected, which is indicated by the dashed lines, spark plugs 4 and 5, ignition transistors 6 and 7, an ignition current sensor 8, a monitoring circuit 9 and an evaluation device 10 arranged in the microprocessor.

Die Wirkungsweise dieser Schaltungsanordnung soll im folgenden beschrieben werden. Die Primärwicklungen der Zündspulen 2 und 3 sind mit der Batteriespannung UB verbunden, so daß bei einer Ansteuerung der Zündtransistoren 6 und 7 vom Mikroprozessor 1 in der entsprechenden Primärwicklung der Zündspule 2 bzw. 3 ein Ladestrom fließt. Die Schließzeiten der Zündtransistoren wird dabei von einem, im Mikroprozessor 1 enthaltenen, Zündungsrechner festgelegt. Zum Auslösen der Zündung wird der Zündtransistor in den sperrenden Zustand gebracht, so daß in den Sekundärwicklungen der Zündspulen eine Hochspannung erzeugt wird, die dann an den Zündkerzen einen Zündfunken bewirkt. Im Sekundärkreis jeder Zündspule ist ein Zündstromsensor 8 zwischen Ausgang der Sekundärwicklung und Masse angeordnet in der Art, daß vorher alle Sekundärwicklungen in einem Punkt 11 zusammengefaßt sind. Damit erfaßt der Zündstromsensor 8 die Signale aller Zündspulen. Zur Erfassung eines Zündungssignals ist es beispielsweise auch möglich, die auf die Primärseite transformierte Brennspannung zu erfassen. Das vom Zündstromsensor 8 erfaßte Zündsignal wird an eine Überwachungsschaltung 9 weitergegeben. Der Ausgang der Überwachungsschaltung wird vor jeder Zündung von dem Mikroprozessor 1 auf High-Niveau gesetzt. Bei jeder ordnungsgemäß verlaufenen Zündung wird, auf Grundlage des vom Zündstromsensor 8 übertragenen Zündungssignals der Ausgang 12 der Überwachungsschaltung von High auf Low geschaltet. Wurde keine Zündung ausgelöst bzw. ist die Zündung nicht ordnungsgemäß verlaufen, so bleibt der Ausgang 12 der Überwachungsschaltung 9 auf High-Niveau. Somit liegt an dem Ausgang 12 der Überwachungsschaltung 9 ein Zündungs-Diagnose-Signal an, welches an die Auswerteeinrichtung 10 des Mikroprozessors 1 geführt wird. Die Auswerteschaltung 10 kann über einen Vergleich mit der Zündfolge das Zündungs-Diagnose-Signal jeweils dem entsprechenden Zylinder zuordnen. Denkbar ist auch eine Schaltung, bei der der Ausgang 12 der Überwachungsschaltung 9 nach einer korrekten Zündung auf High bleibt und eine fehlerhafte Zündung ein Umschalten auf Low bewirkt. Letztendlich ist es auch möglich den Ausgang 12 vor jeder Zündung auf Low zu setzen und bei einer korrekten Zündung auf High umzuschalten bzw. auf Low zu verbleiben.The operation of this circuit arrangement will be described in the following. The primary windings of the ignition coils 2 and 3 are connected to the battery voltage U B , so that when the ignition transistors 6 and 7 are actuated by the microprocessor 1, a charging current flows in the corresponding primary winding of the ignition coil 2 or 3. The closing times of the ignition transistors are determined by an ignition computer contained in the microprocessor 1. To trigger the ignition, the ignition transistor is brought into the blocking state, so that a high voltage is generated in the secondary windings of the ignition coils, which then causes an ignition spark at the spark plugs. In the secondary circuit of each ignition coil, an ignition current sensor 8 is arranged between the output of the secondary winding and ground in such a way that all the secondary windings are summarized in one point 11 beforehand. The ignition current sensor 8 thus detects the signals of all ignition coils. To detect an ignition signal, it is also possible, for example, to detect the operating voltage transformed on the primary side. The ignition signal detected by the ignition current sensor 8 is passed on to a monitoring circuit 9. The output of the monitoring circuit is set to a high level by the microprocessor 1 before each ignition. Each time the ignition runs correctly, the ignition current sensor 8 transmits it Ignition signal of the output 12 of the monitoring circuit switched from high to low. If no ignition has been triggered or the ignition has not proceeded properly, the output 12 of the monitoring circuit 9 remains at a high level. An ignition diagnosis signal is thus present at the output 12 of the monitoring circuit 9, which is fed to the evaluation device 10 of the microprocessor 1. The evaluation circuit 10 can assign the ignition diagnosis signal to the corresponding cylinder in each case by means of a comparison with the ignition sequence. A circuit is also conceivable in which the output 12 of the monitoring circuit 9 remains high after a correct ignition and a faulty ignition causes a switch to low. Ultimately, it is also possible to set output 12 to low before each ignition and to switch to high if the ignition is correct or to remain low.

In Figur 2 ist dargestellt, wie das Zündungs-Diagnose-Signal (Zünd OK) gebildet wird. Das Diagramm zeigt den Kurbelwellenwinkel (KW) der Brennkraftmaschine. Vom Mikroprozessor 1 wird das Zündungs-Diagnose-Signal (Zünd OK) vor jeder Zündung (Z) auf 1 (High) gesetzt, damit hat dieses Zündungs-Diagnose-Signal zum Zeitpunkt der Zündung (Z) jeweils ein vorbestimmtes Niveau. Erfolgt nun im Zylinder 1 (Z1) eine Zündung, so wird das Zündungs-Diagnose-Signal (Zünd OK) vom Signal des Zündstromsensors 8 auf Null gesetzt. Wurde vom Zündstromsensor 8 kein Zündsignal übertragen, wie im vorliegenden Fall bei Zylinder 3 (Z3), so bleibt das Zündungs-Diagnose-Signal auf dem vorbestimmten Niveau (High). Damit entsteht die typische digitale Zündungs-Diagnose-Signalfolge (Zünd OK). Über die Signalfolge läßt sich das Zündungs-Diagnose-Signal in jedem Meßpunkt (MP) einem Zylinder zuordnen. Damit kann der fehlerhaft arbeitende Zylinder diagnostiziert werden.FIG. 2 shows how the ignition diagnosis signal (ignition OK) is formed. The diagram shows the crankshaft angle (KW) of the internal combustion engine. The microprocessor 1 sets the ignition diagnosis signal (ignition OK) to 1 (high) before each ignition (Z), so that this ignition diagnosis signal has a predetermined level at the time of ignition (Z). If ignition now takes place in cylinder 1 (Z1), the ignition diagnosis signal (ignition OK) is set to zero by the signal of the ignition current sensor 8. If no ignition signal was transmitted by the ignition current sensor 8, as in the present case with cylinder 3 (Z3), the ignition diagnosis signal remains at the predetermined level (high). This creates the typical digital ignition diagnosis signal sequence (Zünd OK). The ignition diagnosis signal can be assigned to a cylinder at each measuring point (MP) via the signal sequence. The malfunctioning cylinder can thus be diagnosed.

In Figur 3 ist der Programmablaufplan im Mikroprozessor 1 für die statistische Auswertung des Zündungs-Diagnose-Signals (Zünd OK) dargestellt und soll im folgenden gemeinsam mit der Figur 4 erläutert werden.FIG. 3 shows the program flow chart in the microprocessor 1 for the statistical evaluation of the ignition diagnosis signal (Zünd OK) and will be explained below together with FIG. 4.

Die Figur 4 zeigt die statistische Wichtung der zylinderselektiven Zündungs-Diagnose-Signale (Zünd OK) für einen Zylinder, wie sie im in Figur 3 dargestellten Programm abläuft. Zu Beginn des Verfahrens in Figur 3 wird in einer Abfrage 20 überprüft, ob eine Auswertung der Signale möglich ist. Dabei wird beispielsweise kontrolliert, ob die Batteriespannung UB die erforderliche Höhe aufweist, da direkt nach dem Start UB zu klein ist und so keine Signale erfaßt werden. Bei einem ja auf diese Frage, d.h. eine Auswertung ist möglich, wird in einem Arbeitsschritt 21 der Zylinder ausgewählt, dessen Zündungs-Diagnose-Signal (Zünd OK) gewichtet werden soll. Im folgenden Arbeitsschritt 22 wird nach dem Zündzeitpunkt (Z) nun jeweils das Zündungs-Diagnose-Signal (Zünd OK) dieses Zylinders (Z) zur Auswertung herangezogen. In einer Abfrage 23 wird überprüft, ob das Zündungs-Diagnose-Signal (Zünd OK) gleich Null ist. Ist dies der Fall, d.h. die Zündung in dem Zylinder war in Ordnung, so wird in einem Arbeitsschritt 24 von dem gewichteten Zündungs-Diagnose-Wert (ZÜNTAB) der Wert 1 abgezogen. In einer Abfrage 25 wird sodann kontrolliert, ob ZÜNTAB < 0 ist. Ist dies der Fall, so wird im Arbeitsschritt 26 der gewichtete Zündungs-Diagnose-Wert (ZÜNTAB) für diesen Zylinder auf Null zurückgesetzt. Der Nein-Ausgang der Abfrage 25 und der Arbeitsschritt 26 führen zur Abfrage 27. Wurde die Abfrage 23 mit nein beantwortet, d.h. das Zündungs-Diagnose-Signal war für diesen Zylinder nicht ordnungsgemäß, so wird der gewichtete Zündungs-Diagnose-Wert (ZÜNTAB) um einen Betrag (DAFDZU) erhöht. Dieser Betrag (DAFDZU) wird in der Applikation für jeden Motortyp festgelegt. Nach diesem Arbeitsschritt 28 wird in der Abfrage 29 kontrolliert, ob der gewichtete Zündung-Diagnose-Wert (ZÜNTAB) einen maximal zulässigen Begrenzungswert (AFXDZU) überschritten hat. Ist dies der Fall, so wird im Arbeitsschritt 30 der gewichtete Zündungs-Diagnose-Wert auf diesem maximal zulässigen Wert (AFXDZU) begrenzt. Der Nein-Ausgang der Abfrage 29 und der Arbeitsschritt 30 führt ebenfalls an die Abfrage 27. In der Abfrage 27 wird nun überprüft, ob der gewichtete Zündungs-Diagnose-Wert (ZÜNTAB) größer als eine Schwelle (AFSDZU) ist, ab deren Überschreitung Notmaßnahmen zum Schutz des Katalysators eingeleitet werden sollen. Diese Schwelle (AFSDZU) wird in der Applikation für jeden Motortyp festgelegt und kann ebenfalls in Abhängigkeit von Betriebsbedingungen des Motors veränderbar sein. Dabei wird die Schwelle (AFSDZU) im allgemeinen größer als Null und kleiner oder gleich dem maximal zulässigen Wert gewählt werden. Wurde diese Schwelle (AFSDZU) vom gewichteten Zündungs-Diagnose-Wert (ZÜNTAB) überschritten, so werden im Arbeitsschritt 31 zylinderselektive Notmaßnahmen wie beispielsweise das Abschalten der Einspritzung in diesem Zylinder eingeleitet. Anschließend werden im Arbeitsschritt 32 globale Maßnahmen zum Schutz des Katalysators wie beispielsweise die Abschaltung der Lambda-Regelung vorgenommen. Der Nein-Ausgang der Abfrage 27 führt zu dem Arbeitsschritt 33, durch den keine zylinderselektiven Notmaßnahmen eingeleitet bzw. bisher in diesem Zylinder aktivierte Notmaßnahmen zurückgenommen werden. In der anschließenden Abfrage 34 wird geprüft, ob alle Zylinder (Z₁-Zn) ordnungsgemäß arbeiten. Ist dies der Fall (Ja-Ausgang), werden im Arbeitsschritt 35 auch die globalen Notmaßnahmen zurückgenommen. Sollte jedoch noch ein Zylinder fehlerhaft arbeiten, so bleiben die globalen Notmaßnahmen aktiviert bzw. werden aktiviert. Im Arbeitsschritt 36 wird anschließend das Zündungs-Diagnose-Signal zurückgesetzt und beispielsweise in einem Speicher abgelegt. In einem Arbeitsschritt 37 wird nun die Zylindernummer um eins erhöht und die Wichtung des Zündungs-Diagnose-Signals für diesen Zylinder vorgenommen. Durch Ablegen des Zündungs-Diagnose-Signals in einem Speicher ist es möglich, beim Besuch einer Werkstatt rückblickend die Funktion der Zündanlage zu überprüfen und eventuell notwendige Reparaturen durchzuführen.FIG. 4 shows the statistical weighting of the cylinder-selective ignition diagnosis signals (Zünd OK) for a cylinder, as it takes place in the program shown in FIG. 3. At the beginning of the method in FIG. 3, a query 20 checks whether an evaluation of the signals is possible. It is checked, for example, whether the battery voltage U B has the required level, since immediately after the start U B is too small and so no signals are detected. If the answer is yes to this question, ie an evaluation is possible, the cylinder is selected in a work step 21, the ignition diagnosis signal (ignition OK) of which is to be weighted. In the following work step 22, the ignition diagnosis signal (ignition OK) of this cylinder (Z) is now used for the evaluation after the ignition point (Z). A query 23 checks whether the ignition diagnosis signal (ignition OK) is zero. If this is the case, ie the ignition in the cylinder was OK, the value 1 is subtracted from the weighted ignition diagnosis value (ZÜNTAB) in a work step 24. A query 25 then checks whether ZÜNTAB <0. If this is the case, the weighted ignition diagnosis value (ZÜNTAB) for this cylinder is reset to zero in step 26. The no output of query 25 and work step 26 lead to query 27. If query 23 was answered with no, ie the ignition diagnosis signal was not correct for this cylinder, the weighted ignition diagnosis value (ZÜNTAB) increased by an amount (DAFDZU). This amount (DAFDZU) is specified in the application for each engine type. After this step 28, query 29 checks whether the weighted ignition diagnosis value (ZÜNTAB) has exceeded a maximum permissible limit value (AFXDZU). If this is the case, the weighted ignition diagnosis value is limited to this maximum permissible value (AFXDZU) in step 30. The no output of query 29 and work step 30 also lead to query 27. In query 27 it is now checked whether the weighted ignition diagnosis value (ZÜNTAB) is greater than one Threshold (AFSDZU) is above which emergency measures to protect the catalytic converter should be initiated. This threshold (AFSDZU) is defined in the application for each engine type and can also be changed depending on the operating conditions of the engine. The threshold (AFSDZU) is generally chosen to be greater than zero and less than or equal to the maximum permissible value. If this threshold (AFSDZU) was exceeded by the weighted ignition diagnosis value (ZÜNTAB), cylinder-specific emergency measures such as, for example, switching off the injection in this cylinder are initiated in work step 31. Then, in step 32, global measures for protecting the catalytic converter, such as switching off the lambda control, are carried out. The no output of query 27 leads to work step 33, by which no cylinder-selective emergency measures are initiated or emergency measures previously activated in this cylinder are withdrawn. In the subsequent query 34 it is checked whether all cylinders (Z₁-Z n ) work properly. If this is the case (yes output), the global emergency measures are also withdrawn in step 35. However, if a cylinder still works incorrectly, the global emergency measures remain activated or are activated. In step 36, the ignition diagnosis signal is then reset and, for example, stored in a memory. In a step 37, the cylinder number is increased by one and the ignition diagnosis signal is weighted for this cylinder. By storing the ignition diagnosis signal in a memory, it is possible to retrospectively check the function of the ignition system when visiting a workshop and to carry out any necessary repairs.

In Figur 4 ist das Zündungs-Diagnose-Signal (Zünd OK) dargestellt. Es ist deutlich zu erkennen, daß jeweils bei einer fehlerhaften Zündung (ZÜND OK =1) der gewichtete Zündungs-Diagnose-Wert (ZÜNTAB) um den Betrag (DAFDZU) im Beispielsfall um 4 erhöht und bei einer ordnungsgemäßen Zündung um 1 dekrementiert wird. Ebenfalls zu erkennen ist die Begrenzung des gewichteten Zündungs-Diagnose-Wertes (ZÜNTAB) auf einen zulässigen Maximalwert (AFXDZU) und auf den Minimalwert 0. Diesem Diagramm ist ebenfalls sehr gut zu entnehmen, daß während der Zeit des Überschreitens der zulässigen Schwelle (AFSDZU) ein Fehler in diesem Zylinder erkannt wird, so daß entsprechende zylinderselektive und globale Notmaßnahmen eingeleitet werden und gleichzeitig eine Fehleranzeige für den Fahrer erfolgt.The ignition diagnosis signal (ignition OK) is shown in FIG. It can be clearly seen that in the case of a faulty ignition (IGNIT OK = 1), the weighted ignition diagnosis value (IGNTAB) is increased by the amount (DAFDZU) in the example by 4 and decremented by 1 if the ignition is correct. The limitation of the weighted ignition diagnosis value (ZÜNTAB) to a permissible maximum value (AFXDZU) and to the minimum value 0 can also be seen. This diagram also shows very clearly that while the permissible threshold (AFSDZU) is exceeded an error is detected in this cylinder, so that corresponding cylinder-selective and global emergency measures are initiated and an error is displayed to the driver at the same time.

Der Abstand des Maximalwertes (AFXDZU) von der zulässigen Schwelle (AFSDZU) bestimmt die Zahl der korrekten Zündungen, die nacheinander an dem betroffenen Zylinder bis zum Erkennen der Heilung des Zündungs-Defekts auftreten müssen.The distance between the maximum value (AFXDZU) and the permissible threshold (AFSDZU) determines the number of correct ignitions that must occur in succession on the affected cylinder until the ignition defect is recognized as healing.

Claims (9)

  1. Ignition system for internal combustion engines with a monitoring circuit for generating a digital ignition diagnosis signal of such a type that a central control unit of the ignition system sets the ignition diagnosis signal to a first predetermined level before each ignition and switches the ignition diagnosis signal to a second level depending on the sensor signal either after each correct or after each incorrect ignition, the ignition being monitored by a sensor arranged in the ignition circuit, characterized in that an analysis device records the respective level of each ignition diagnosis signal (zünd OK) cylinder-selectively and undertakes a statistical weighting with preceding ignition diagnosis signals for each cylinder and in that an ignition diagnosis value (ZÜNTAB) weighted in this manner introduces emergency measures for protecting a catalyzer when a specified fault threshold (AFSDZU) is exceeded.
  2. Ignition system according to Claim 1, characterized in that the analysis device increases the weighted ignition diagnosis value (ZÜNTAB) by an amount (DAFDZU) in the case of each faulty ignition and reduces it by 1 in the case of a correct ignition
  3. Ignition system according to Claim 2, characterized in that the amount (DAFDZU) is greater than 1 in the case of a faulty ignition.
  4. Ignition system according to one of the preceding claims, characterized in that the fault threshold (AFSDZU) can be adjusted in practice for each engine type to values > 1.
  5. Ignition system according to one of the preceding claims, characterized in that the ignition diagnosis value (ZÜNTAB) is limited to an applicable maximum value (AFXDZU).
  6. Ignition system according to one of the preceding claims, characterized in that the interval between the maximum value (AFXDZU) and the fault threshold (AFSDZU) determines the number of correct ignitions until correction of a fault is recognized.
  7. Ignition system according to one of the preceding claims, characterized in that in the case of fault correction, the ignition diagnosis value (ZÜNTAB) leads to the resetting of all the emergency measures when it falls below the fault threshold (AFSDZU).
  8. Ignition system according to one of the preceding claims, characterized in that when the fault threshold (AFSDZU) is exceeded, storage of the fault in the vehicle and a fault display for the driver are provided.
  9. Ignition system according to one of the preceding claims, characterized in that in the case of a fault, the injection for the corresponding cylinder is interrupted and the lambda control is switched off.
EP92923383A 1991-12-05 1992-11-12 Ignition system for an internal combustion engine Expired - Lifetime EP0615582B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4140147 1991-12-05
DE4140147A DE4140147A1 (en) 1991-12-05 1991-12-05 IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES
PCT/DE1992/000938 WO1993011356A1 (en) 1991-12-05 1992-11-12 Ignition system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0615582A1 EP0615582A1 (en) 1994-09-21
EP0615582B1 true EP0615582B1 (en) 1996-03-27

Family

ID=6446363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923383A Expired - Lifetime EP0615582B1 (en) 1991-12-05 1992-11-12 Ignition system for an internal combustion engine

Country Status (6)

Country Link
US (1) US5490489A (en)
EP (1) EP0615582B1 (en)
JP (1) JP3231324B2 (en)
DE (2) DE4140147A1 (en)
ES (1) ES2085654T3 (en)
WO (1) WO1993011356A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216972B2 (en) * 1995-08-04 2001-10-09 株式会社日立製作所 Ignition device for internal combustion engine
FR2768186B1 (en) * 1997-09-11 1999-10-15 Siemens Automotive Sa METHOD AND DEVICE FOR DIAGNOSING AN IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JP2003511612A (en) 1999-10-06 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ignition apparatus and method for internal combustion engine
DE19956032A1 (en) * 1999-11-22 2001-05-23 Volkswagen Ag Misfire detection circuit in an internal combustion engine
US6761156B2 (en) * 2002-02-20 2004-07-13 Daimlerchrysler Corporation Multiplexed single wire control and diagnosis of an electrical object
ATE360875T1 (en) * 2002-08-05 2007-05-15 Thyssenkrupp Krause Gmbh TEST CIRCUIT FOR AN IGNITION COIL AND METHOD FOR TESTING AN IGNITION COIL
DE102007052360A1 (en) 2007-11-02 2009-05-07 Robert Bosch Gmbh Method of operating a device
US9534984B2 (en) * 2013-12-19 2017-01-03 Ford Global Technologies, Llc Spark plug fouling detection for ignition system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138433A (en) * 1989-10-24 1991-06-12 Japan Electron Control Syst Co Ltd Misfire cylinder detecting device for internal combustion engine
EP0442687B1 (en) * 1990-02-14 1998-04-15 Lucas Industries Public Limited Company Method of and apparatus for detecting misfire
DE4016307C2 (en) * 1990-05-21 2000-03-02 Bosch Gmbh Robert Ignition circuit monitoring on an internal combustion engine
KR950004612B1 (en) * 1990-06-25 1995-05-03 미쓰비시덴키가부시키가이샤 Apparatus and method for detecting misfiring in internal combustion engine

Also Published As

Publication number Publication date
DE4140147A1 (en) 1993-06-09
ES2085654T3 (en) 1996-06-01
JP3231324B2 (en) 2001-11-19
JPH07501594A (en) 1995-02-16
US5490489A (en) 1996-02-13
WO1993011356A1 (en) 1993-06-10
DE59205878D1 (en) 1996-05-02
EP0615582A1 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
DE68921750T2 (en) DEFINITION DETECTING DEVICE.
DE4126961C2 (en) Knock control method and device for internal combustion engines
DE19913746C2 (en) Method for the detection of misfiring and catalytic converter misfires in internal combustion engines
EP1092087B1 (en) Method for monitoring the function of detectors in an internal combustion engine and electronic control device working in accordance with said method
EP0484691B1 (en) Method and apparatus for detecting anomalies in the operation of combustion engines
DE10064088A1 (en) Knock control device for an internal combustion engine
EP1222385A1 (en) Device and method for ignition in an internal combustion engine
DE4437480C1 (en) Method for monitoring the function of an internal combustion engine for detecting misfires
EP0326898B1 (en) Method of detecting misfiring in combustion engines
EP0656096B1 (en) Ignition system for internal combustion engines with misfire detection through comparison with reference firings in the same ignition coil
DE3852390T2 (en) Device for detecting misfires in spark-ignited internal combustion engines.
DE4303241C2 (en) Device for detecting and deciding whether a misfire occurs in an internal combustion engine
EP0615582B1 (en) Ignition system for an internal combustion engine
DE10257383A1 (en) Misfire detection device for an internal combustion engine
DE19524499B4 (en) Ignition system for an internal combustion engine
DE4244181C2 (en) Misfire detection system for an internal combustion engine
EP0544682B1 (en) Ignition system for internal-combustion engines
EP1313947B1 (en) Method for operating an internal combustion engine and corresponding arrangement
EP1141542B1 (en) Ignition system and ignition control method
WO1990002873A1 (en) Electronic engine control with performance check for the final ignition stage
DE4129292C2 (en) Ignition malfunction detection method
DE10133005B4 (en) Method and device for detecting the interruption of the voltage supply of an ignition coil
DE19957731C2 (en) Method for detecting faults in double spark ignition coils for internal combustion engines
DE19829622A1 (en) Knock-sensing and spark-retarding circuit
DE19956381A1 (en) Device and method for igniting an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT SE

17Q First examination report despatched

Effective date: 19950807

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59205878

Country of ref document: DE

Date of ref document: 19960502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085654

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041118

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041125

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051114

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205878

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59205878

Country of ref document: DE