EP0615226A2 - Method for noise reduction in disturbed voice drannels - Google Patents
Method for noise reduction in disturbed voice drannels Download PDFInfo
- Publication number
- EP0615226A2 EP0615226A2 EP94102963A EP94102963A EP0615226A2 EP 0615226 A2 EP0615226 A2 EP 0615226A2 EP 94102963 A EP94102963 A EP 94102963A EP 94102963 A EP94102963 A EP 94102963A EP 0615226 A2 EP0615226 A2 EP 0615226A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- channels
- speech
- interference
- noise reduction
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000009467 reduction Effects 0.000 title claims abstract description 12
- 238000009499 grossing Methods 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 10
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 238000012937 correction Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 5
- 238000012805 post-processing Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L2021/02161—Number of inputs available containing the signal or the noise to be suppressed
- G10L2021/02166—Microphone arrays; Beamforming
Definitions
- the invention relates to a method according to the preamble of patent claim 1.
- Such a method is used in automatic speech recognition or in hands-free systems to improve speech quality, e.g. in offices or in a motor vehicle.
- Disrupted speech is easier to grasp if it is recorded with two or more channels. Language and interference should be present in each channel.
- the multi-channel signals are processed with digital signal processing.
- the transit time difference of the useful signal in the individual channels must first be determined. It will later be possible to merge the individual channels into one channel in the correct phase.
- an acoustic directional lobe is set for this event.
- the noise reduction is first carried out in each individual channel. Since the noise reduction does not work correctly, distortions and artificial insertions (e.g. "musical tones") can occur. When merging the individual processed channels, these errors are averaged and thus reduced.
- the sum signal is then post-processed using the cross-correlation of the signals in the individual channels. It is assumed that interference or reverberation is less correlated than the useful signal of the channels.
- a method for merging 2 disturbed speech channels is described in the publication "Multimicrophone signal-processing technique to remove room reverberation from speech signals” by Allen, Berkley and Blauert (J: Acoust. Soc. Am., Vol. 62, No. 4, October 1977) and out “Noise Suppression Signal Processing Using 2-Point Received Signals” by Kaneda and Tohyame (Electronics and Communication in Japan, Vol. 67-A, No. 12, 1984).
- the first method is intended for the dehalling of speech signals and does not use a real phase compensation of the useful signal and the dehalling with noise reduction is only carried out in a post-processing stage.
- the second method uses a simple linear phase compensation of the channels, but here too the noise is only reduced in the post-processing stage.
- the invention is therefore based on the object of specifying a method for noise reduction in which the noise reduction is carried out in several stages and a significant improvement in the speech quality is achieved.
- the microphone signals x and y are transformed into the frequency range (FFT, Fast Fourier Transformation).
- the segments are half overlapped and weighted with a Hanning window.
- the segments are each N values long and are expanded by an additional N zeros.
- the transformed segments X l (i) and Y l (i) result.
- the output signal z results after inverse transformation and the overlap of the segments.
- the sampling rate of the signals x and y is, for example, 12 kHz.
- the long-term mean of the magnitude spectrum is subtracted (spectral subtraction H SPS ).
- the short-term average K and the long-term average L are used to calculate a first adaptive smoothing constant ⁇ .
- the interference spectrum S nn (i) is estimated with ⁇ .
- This adaptive smoothing constant replaces the otherwise common speech pause detector.
- S ⁇ xx, l ( i ) (1 - ⁇ l ) S ⁇ xx, l - 1 ( i ) + ⁇ l
- Part of the background noise is allowed to create a natural auditory impression and to mask part of the "musical tones".
- a second adaptive smoothing with ⁇ is used to reduce a further part of the "musical tones" by smoothing the power density S xx little during speech and strongly smoothing during pause.
- the method specified in the unpublished patent application P 42 43 831 is used to calculate the linear phase shift between useful parts in the channels. This method fits seamlessly into the noise reduction method according to the invention.
- the phase shift is estimated from a selected number of the maximums of the cross power density and the phase correction is achieved by multiplication in the frequency domain with the all-pass function H ALLP .
- X ⁇ l ( i ): X ⁇ l ( i )H ALLP
- l X ⁇ l ( i ): X ⁇ l ( i ) (cos ( i * ⁇ ) + j sin ( i * ⁇ ))
- phase correction is carried out for the other channel.
- the first channel serves as a reference.
- the directional filters for the channels are calculated using a "beamforming process". Various cases can be considered as noise. Different directional filters H R result depending on the noise situation . A set of these filters is selected, however, if the system status is known in later operation, it is possible to switch to a specific set or the filters can be continuously adapted.
- the "Beamforming method” is the Frost gradient method ("An Algorithm for Linearly Constrained Adaptive Array Processing" Proc. IEEE, Vol. 60, No. 8, 1972) or according to Sondhi and Elko ("Adaptive Optimization of Microphone Arrays under a Nonlinear Contraint” Int. Conf. on ASSP, Tokyo, 1096, pp. 981-984).
- the method according to the invention is not limited to systems with two channels, but can be used for multi-channel systems (3 and more channels).
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Circuit For Audible Band Transducer (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method according to the preamble of patent claim 1.
Ein derartiges Verfahren findet Anwendung bei der automatischen Spracherkennung oder bei Freisprechanlagen zur Verbesserung der Sprachqualität, z.B. in Büroräumen oder im Kraftfahrzeug.Such a method is used in automatic speech recognition or in hands-free systems to improve speech quality, e.g. in offices or in a motor vehicle.
Gestörte Sprache ist besser erfaßbar, wenn sie mit zwei oder mehreren Kanälen aufgezeichnet wird. Dabei soll in jedem Kanal Sprache und Störung vorhanden sein. Die mehrkanaligen Signale werden mit einer digitalen Signalverarbeitung aufbereitet.Disrupted speech is easier to grasp if it is recorded with two or more channels. Language and interference should be present in each channel. The multi-channel signals are processed with digital signal processing.
Bei mehrkanaligen Systemen ist zunächst der Laufzeitunterschied des Nutzsignals in den einzelnen Kanälen zu ermitteln. Dabei wird es später möglich, die einzelnen Kanäle wieder phasenrichtig zu einem Kanal zusammenzuführen.In the case of multi-channel systems, the transit time difference of the useful signal in the individual channels must first be determined. It will later be possible to merge the individual channels into one channel in the correct phase.
Von besonderem Interesse sind Systeme mit 2 Kanälen, da sich hiermit bereits ein räumliches Schallfeld nach einzelnen Richtungen auflösen läßt, der Rechenaufwand aber noch erträglich bleibt.Systems with 2 channels are of particular interest because they can already be used to resolve a spatial sound field in individual directions, but the computational effort remains tolerable.
Ist die Richtung bekannt, aus der das interessierende Schallereignis eintrifft, wird eine akustische Richtkeule auf dieses Ereignis eingestellt.If the direction from which the sound event of interest arrives is known, an acoustic directional lobe is set for this event.
Die Geräuschreduktion wird zunächst in jedem einzelnen Kanal durchgeführt. Da die Geräuschreduktion nicht fehlerfrei arbeitet können Verzerrungen und künstliche Einfügungen (z.B. "musical tones") entstehen. Bei der Zusammenführung der einzelnen verarbeiteten Kanälen ergibt sich eine Mittelung und damit Verringerung dieser Fehler.The noise reduction is first carried out in each individual channel. Since the noise reduction does not work correctly, distortions and artificial insertions (e.g. "musical tones") can occur. When merging the individual processed channels, these errors are averaged and thus reduced.
Das Summensignal wird anschließend nachverarbeitet, indem die Kreuzkorrelation der Signale in den einzelnen Kanälen verwendet wird. Dabei wird vorausgesetzt daß Störungen oder Nachhall weniger korreliert ist als das Nutzsignal der Kanäle.The sum signal is then post-processed using the cross-correlation of the signals in the individual channels. It is assumed that interference or reverberation is less correlated than the useful signal of the channels.
Ein Verfahren zur Zusammenführung von 2 gestörten Sprachkanälen ist aus der Veröffentlichung "Multimicrophone signal-processing technique to remove room reverberation from speech signals" von Allen, Berkley und Blauert (J: Acoust. Soc. Am., Vol.62, No. 4, October 1977) und aus "Noise Suppression Signal Processing Using 2-Point Received Signals" von Kaneda und Tohyame (Electronics and Communication in Japan, Vol. 67-A, No. 12, 1984) bekannt. Das erste Verfahren ist zur Enthallung von Sprachsignalen gedacht und verwendet keinen echten Phasenausgleich des Nutzsignals und die Enthallung mit Geräuschreduktion wird nur in einer Nachverarbeitungsstufe durchgeführt. Das zweite Verfahren benutzt einen einfachen linearen Phasenausgleich der Kanäle, die Geräuschreduktion erfolgt aber auch hier nur in der Nachverarbeitungsstufe.A method for merging 2 disturbed speech channels is described in the publication "Multimicrophone signal-processing technique to remove room reverberation from speech signals" by Allen, Berkley and Blauert (J: Acoust. Soc. Am., Vol. 62, No. 4, October 1977) and out "Noise Suppression Signal Processing Using 2-Point Received Signals" by Kaneda and Tohyame (Electronics and Communication in Japan, Vol. 67-A, No. 12, 1984). The first method is intended for the dehalling of speech signals and does not use a real phase compensation of the useful signal and the dehalling with noise reduction is only carried out in a post-processing stage. The second method uses a simple linear phase compensation of the channels, but here too the noise is only reduced in the post-processing stage.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren zur Geräuschreduktion anzugeben, bei dem die Geräuschreduktion in mehreren Stufen durchgeführt und eine deutliche Verbesserung der Sprachqualität erzielt wird.The invention is therefore based on the object of specifying a method for noise reduction in which the noise reduction is carried out in several stages and a significant improvement in the speech quality is achieved.
Die Aufgabe wird gelöst durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale. Vorteilhafte Ausgestaltungen und/oder Weiterbildungen sind den Unteransprüchen zu entnehmen.The object is achieved by the features specified in the characterizing part of patent claim 1. Advantageous refinements and / or further developments can be found in the subclaims.
Mit dem erfindungsgemäßen Verfahren werden die räumlichen und die zeitlichen Eigenschaften des Nutzsignals und der Störung systematisch ausgenutzt:
- 1.) räumliche Eigenschaft der Schallfelder:
- a) Dämpfung von Punktstörquellen
Mit digitalen Richtungsfiltern am Eingang der Kanäle wird zusammen mit der Phasenschätzung eine akustische Richtkeule auf den Sprecher ausgerichtet. Für die Phasenschätzung wird das in der unveröffentlichten deutschen Patentanmeldung P 42 43 831 beschriebene Verfahren verwendet. Es ist robust gegenüber Störungen und benötigt nur einen geringen Rechenaufwand. Die Richtungsfilter sind fest eingestellt. Es wird angenommen, daß der Sprecher sich relativ nahe an den Mikrofonen befindet (Abstand ≦ 1m) und sich nur in einem beschränkten Bereich bewegt. Instationäre und stationäre Punkt-Störquellen werden durch diese räumliche Auswertung gedämpft. - b) Dämpfung von diffusen Störquellen
In der Nachverarbeitung werden mit Hilfe der Kreuzkorrelation die diffusen Stör- und Hallanteile gedämpft.
- a) Dämpfung von Punktstörquellen
- 2.) zeitliche Signaleigenschaften:
Die spektrale Subtraktion schätzt die Störung in den Sprachpausen und führt eine betragsmäßige Subtraktion im Spektralbereich durch. Hier werden die zeitlich stationären Störanteile gedämpft. - 3.) Mittelung der Kanäle (Addition):
Durch die räumliche Trennung der Aufnahmekanäle (Mikrofone in einem bestimmten Abstand) treten Fehler der spektralen Subtraktion (Verzerrung und "musical tones") in den einzelnen Kanälen z.T. zeitlich zufällig auf. Eine Mittelung der Kanäle vermindert diesen Fehler.
- 1.) spatial property of the sound fields:
- a) Attenuation of point sources of interference
With digital directional filters at the entrance of the channels, an acoustic directional lobe is aligned with the speaker together with the phase estimation. The method described in the unpublished German patent application P 42 43 831 is used for the phase estimation. It is robust against interference and requires little computing effort. The directional filters are fixed. It is assumed that the speaker is relatively close to the microphones (distance ≦ 1m) and only moves in a limited area. Transient and stationary point sources of interference are dampened by this spatial evaluation. - b) Attenuation of diffuse sources of interference
In post-processing, the cross-correlation dampens the diffuse interference and Hall components.
- a) Attenuation of point sources of interference
- 2.) Temporal signal properties:
The spectral subtraction estimates the disturbance in the speech pauses and carries out an amount-based subtraction in the spectral range. Here the temporally stationary disturbance components are damped. - 3.) Averaging the channels (addition):
Due to the spatial separation of the recording channels (microphones at a certain distance), spectral subtraction errors (distortion and "musical tones") in the individual channels sometimes occur at random in time. Averaging the channels reduces this error.
Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert und Bezugnahme auf schematische Zeichnungen.
- FIG. 1
- zeigt ein Blockdiagramm des gesamten Verfahrens.
- FIG. 2
- zeigt einen Vergleich der gemittelten Ausgangsleistungen Z verschiedener Verfahren mit der Leistung des Original-Geräuschsignals (Beispiel: Mikrofonabstand 12cm, Fahrzeug mit 140km/h). Es wird die zunehmende Geräuschreduktion gezeigt wenn die Verarbeitung mit einem Kanal, mit zwei Kanälen und mit zwei Kanälen mit Nachverarbeitung durchgeführt wird.
- FIG. 1
- shows a block diagram of the entire method.
- FIG. 2nd
- shows a comparison of the average output powers Z of different methods with the power the original sound signal (example: microphone distance 12cm, vehicle at 140km / h). The increasing noise reduction is shown when the processing is carried out with one channel, with two channels and with two channels with post-processing.
Die Mikrofonsignale x und y werden in den Frequenzbereich transformiert (FFT, Fast Fourier-Transformation). Die Segmente sind halb überlappt und werden mit einem Hanning-Fenster gewichtet. Die Segmente sind jeweils N Werte lang und werden um weitere N Nullen erweitert. Die Transformationslänge wird beispielsweise zu 2N = 512 gewählt. Es ergeben sich die transformierten Segmente Xl(i) und Yl(i). Das Ausgangssignal z ergibt sich nach Rücktransformation und der Überlappung der Segmente. l bezeichnet den Blockindex der Segmente, i die diskrete Frequenz (i=0,1,2...,2N-1). Die Abtastrate der Signale x und y beträgt z.B. 12kHz.The microphone signals x and y are transformed into the frequency range (FFT, Fast Fourier Transformation). The segments are half overlapped and weighted with a Hanning window. The segments are each N values long and are expanded by an additional N zeros. The transformation length is chosen to be 2N = 512, for example. The transformed segments X l (i) and Y l (i) result. The output signal z results after inverse transformation and the overlap of the segments. l denotes the block index of the segments, i the discrete frequency (i = 0,1,2 ..., 2N-1). The sampling rate of the signals x and y is, for example, 12 kHz.
Im Frequenzbereich wird der Langzeitmittelwert des Betragsspektrums subtrahiert (Spektrale Subtraktion HSPS). Das Kurzzeitmittel K und das Langzeitmittel L werden benutzt, um eine erste adaptive Glättungkonstante β zu berechnen. Mit β wird das Störspektrum Snn(i) geschätzt. Diese adaptive Glättungskonstante ersetzt den sonst üblichen Sprachpausendetektor. l bezeichnet den Blockindex, i die diskrete Frequenz. Als Glättungskonstante βo wird z.B. βo = 0.03 verwendet.
mit
With
Das Störspektrum wird normiert und subtrahiert.
Eine modifizierte Form ergibt sich mit:
Für die Leistungsdichte Sxx,l eines Kanales gilt:
fo wird als "spectral floor" bezeichnet. Es wird ein Teil des Hintergrundgeräuschs zugelassen, um einen natürlich Höreindruck zu erzeugen und um einen Teil der "musical tones" zu maskieren. α ist ein Überschätzfaktor für das Geräusch und dient der weiteren Reduzierung des Restgeräuschs. Für diese Werte kann z.B. fo = 0.2 und α = 1.5 gewählt werden.The following applies to the power density S xx, l of a channel:
f o is referred to as "spectral floor". Part of the background noise is allowed to create a natural auditory impression and to mask part of the "musical tones". α is an overestimation factor for the noise and serves to further reduce the residual noise. For these values, for example, f o = 0.2 and α = 1.5 can be selected.
Im Gegensatz zu den bekannten Formen der spektralen Substraktion wird eine zweite adaptive Glättung mit α dazu benutzt einen weiteren Teil der "musical tones" zu reduzieren, indem die Leistungsdichte Sxx bei Sprache wenig und bei Pause stark geglättet wird.In contrast to the known forms of spectral subtraction, a second adaptive smoothing with α is used to reduce a further part of the "musical tones" by smoothing the power density S xx little during speech and strongly smoothing during pause.
Für den zweiten Kanal Y gelten die entsprechenden Gleichungen.The corresponding equations apply to the second channel Y.
Zur Berechnung der linearen Phasenverschiebung zwischen Nutzanteilen in den Kanälen wird das in der nicht vorveröffentlichen Patentanmeldung P 42 43 831 angegebene Verfahren verwendet. Dieses Verfahren fügt sich nahtlos in das erfindungsgemäße Geräuschreduktionsverfahren ein. Die Phasenverschiebung wird an einer ausgewählten Anzahl der Maximas der Kreuzleistungsdichte geschätzt und die Phasenkorrektur durch Multiplikation im Frequenzbereich mit der Allpaßfunktion HALLP erreicht.
Bei mehr als zwei Kanälen wird die Phasenkorrektur für den jeweils weiteren Kanal durchgeführt. Der erste Kanal dient als Referenz.If there are more than two channels, the phase correction is carried out for the other channel. The first channel serves as a reference.
Durch ein "Beamforming-Verfahren" werden für die Kanäle die Richtungsfilter berechnet. Dabei können als Geräusch verschiedene Fälle betrachtet werden. Es ergeben sich entsprechend der Geräuschsituation verschiedene Richtungsfilter HR. Es wird ein Satz dieser Filter ausgewählt, jedoch kann falls im späteren Betrieb der Systemzustand bekannt ist, auf einem bestimmten Satz umgeschaltet werden oder die Filter können ständig adaptiert werden. Als "Beamforming-Verfahren" wird beispielsweise das Gradientenverfahren nach Frost ("An Algorithm for Linearly Constrained Adaptive Array Processing" Proc. IEEE, Vol. 60, No. 8, 1972) oder nach Sondhi und Elko ("Adaptive Optimization of Microphone Arrays under a Nonlinear Contraint" Int. Conf. on ASSP, Tokyo, 1096, S. 981-984) verwendet.The directional filters for the channels are calculated using a "beamforming process". Various cases can be considered as noise. Different directional filters H R result depending on the noise situation . A set of these filters is selected, however, if the system status is known in later operation, it is possible to switch to a specific set or the filters can be continuously adapted. For example, the "Beamforming method" is the Frost gradient method ("An Algorithm for Linearly Constrained Adaptive Array Processing" Proc. IEEE, Vol. 60, No. 8, 1972) or according to Sondhi and Elko ("Adaptive Optimization of Microphone Arrays under a Nonlinear Contraint" Int. Conf. on ASSP, Tokyo, 1096, pp. 981-984).
Für die Richtungsfilterung ergibt sich im Frequenzbereich die Multiplikation:
Die Addition der Kanäle ergibt mit den Richtungsfiltern die Gesamt-Richtcharakteristik und das Ausgangssignal
Außerdem führt die Addition der Kanäle zu einer Mittelung und damit Reduzierung der statistischen Fehler der spektralen Subtraktion.In addition, the addition of the channels leads to an averaging and thus reduction of the statistical errors of the spectral subtraction.
Anschließend wird die Kreuzleistungsdichte der beiden Kanäle mit Hilfe einer Glättungskonstanten (z.B. γ = 0.3) be rechnet.
Die Kreuzleistungsdichte Sxy wird mit der Summe der Leistungsdichten Sxx, Syy der einzelnen Kanäle normiert. Es ergibt sich eine modifizierte Kohärenzfunktion:
mit
With
Für das Ausgangssignal Z gilt:
Werden Richtungsfilter nach dem Verfahren von Sondhi und Elko verwendet, ist ein inverses Filter zur Frequenzgangkorrektur erforderlich. Dieses Filter dient der Anhebung der tieferen Frequenzen, weil der Frequenzgang der Richtungsfilter (für die gewünschte Richtung, Richtung des Sprechers) zu einer Absenkung dieser Frequenzen führt. Dieses Filter HINV kann auf einfache Weise aus dem berechneten Frequenzgang approximiert werden.
Wird die Adaption nach dem Verfahren von Frost durchgeführt, ist kein inverses Filter erforderlich, weil der Frequenzgang in Richtung des Sprechers den konstanten Wert 1 hat.If the adaptation is carried out using the Frost method, an inverse filter is not necessary because the Frequency response in the direction of the speaker has a constant value of 1.
Das erfindungsgemäße Verfahren ist nicht auf Systeme mit zwei Kanälen beschränkt, sondern auf Mehrkanalsysteme (3 und mehr Kanäle) anwendbar.The method according to the invention is not limited to systems with two channels, but can be used for multi-channel systems (3 and more channels).
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4307688A DE4307688A1 (en) | 1993-03-11 | 1993-03-11 | Method of noise reduction for disturbed voice channels |
DE4307688 | 1993-03-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0615226A2 true EP0615226A2 (en) | 1994-09-14 |
EP0615226A3 EP0615226A3 (en) | 1995-08-23 |
EP0615226B1 EP0615226B1 (en) | 1999-05-06 |
Family
ID=6482502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94102963A Expired - Lifetime EP0615226B1 (en) | 1993-03-11 | 1994-02-28 | Method for noise reduction in disturbed voice channels |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0615226B1 (en) |
DE (2) | DE4307688A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998003965A1 (en) * | 1996-07-19 | 1998-01-29 | Daimler-Benz Ag | Method of reducing voice signal interference |
EP1251493A2 (en) * | 2001-04-14 | 2002-10-23 | DaimlerChrysler AG | Method for noise reduction with self-adjusting spurious frequency |
EP1286333A1 (en) * | 2001-08-21 | 2003-02-26 | Culturecom Technology (Macau) Ltd. | Method and apparatus for processing a sound signal |
US11741973B2 (en) | 2015-03-09 | 2023-08-29 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19942868A1 (en) * | 1999-09-08 | 2001-03-15 | Volkswagen Ag | Method for operating a multiple microphone arrangement in a motor vehicle and a multiple microphone arrangement itself |
DE19955156A1 (en) * | 1999-11-17 | 2001-06-21 | Univ Karlsruhe | Method and device for suppressing an interference signal component in the output signal of a sound transducer means |
DE10120231A1 (en) * | 2001-04-19 | 2002-10-24 | Deutsche Telekom Ag | Single-channel noise reduction of speech signals whose noise changes more slowly than speech signals, by estimating non-steady noise using power calculation and time-delay stages |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4112430A (en) * | 1977-06-01 | 1978-09-05 | The United States Of America As Represented By The Secretary Of The Navy | Beamformer for wideband signals |
US4653102A (en) * | 1985-11-05 | 1987-03-24 | Position Orientation Systems | Directional microphone system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066842A (en) * | 1977-04-27 | 1978-01-03 | Bell Telephone Laboratories, Incorporated | Method and apparatus for cancelling room reverberation and noise pickup |
JPS5715597A (en) * | 1980-07-02 | 1982-01-26 | Nippon Gakki Seizo Kk | Microphone device |
US4811404A (en) * | 1987-10-01 | 1989-03-07 | Motorola, Inc. | Noise suppression system |
JPH01118900A (en) * | 1987-11-01 | 1989-05-11 | Ricoh Co Ltd | Noise suppressor |
DE4012349A1 (en) * | 1989-04-19 | 1990-10-25 | Ricoh Kk | Noise elimination device for speech recognition system - uses spectral subtraction of sampled noise values from sampled speech values |
GB8911153D0 (en) * | 1989-05-16 | 1989-09-20 | Smiths Industries Plc | Speech recognition apparatus and methods |
US5267323A (en) * | 1989-12-29 | 1993-11-30 | Pioneer Electronic Corporation | Voice-operated remote control system |
DE4106405C2 (en) * | 1990-03-23 | 1996-02-29 | Ricoh Kk | Noise suppression device for a speech recognition system |
-
1993
- 1993-03-11 DE DE4307688A patent/DE4307688A1/en not_active Withdrawn
-
1994
- 1994-02-28 DE DE59408194T patent/DE59408194D1/en not_active Expired - Lifetime
- 1994-02-28 EP EP94102963A patent/EP0615226B1/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4112430A (en) * | 1977-06-01 | 1978-09-05 | The United States Of America As Represented By The Secretary Of The Navy | Beamformer for wideband signals |
US4653102A (en) * | 1985-11-05 | 1987-03-24 | Position Orientation Systems | Directional microphone system |
Non-Patent Citations (2)
Title |
---|
INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING 1991, Bd. 5, 14.Mai 1991 - 17.Mai 1991 TORONTO, CA, Seiten 3581-3584, KELLERMANN 'A self-steering digital microphone array' * |
SIGNAL PROCESSING VI - THEORIES AND APPLICATIONS. PROCEEDINGS OF EUSIPCO-92, SIXTH EUROPEAN SIGNAL PROCESSING CONFERENCE, 24.August 1992 - 27.August 1992 BRUSSELS, BE, Seiten 1633-1636, LE BOUQUIN ET AL. 'Study of a noise cancellation system based on the coherence function' * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998003965A1 (en) * | 1996-07-19 | 1998-01-29 | Daimler-Benz Ag | Method of reducing voice signal interference |
US6687669B1 (en) | 1996-07-19 | 2004-02-03 | Schroegmeier Peter | Method of reducing voice signal interference |
EP1251493A2 (en) * | 2001-04-14 | 2002-10-23 | DaimlerChrysler AG | Method for noise reduction with self-adjusting spurious frequency |
EP1251493A3 (en) * | 2001-04-14 | 2003-11-19 | DaimlerChrysler AG | Method for noise reduction with self-adjusting spurious frequency |
US7020291B2 (en) | 2001-04-14 | 2006-03-28 | Harman Becker Automotive Systems Gmbh | Noise reduction method with self-controlling interference frequency |
EP1286333A1 (en) * | 2001-08-21 | 2003-02-26 | Culturecom Technology (Macau) Ltd. | Method and apparatus for processing a sound signal |
US11741973B2 (en) | 2015-03-09 | 2023-08-29 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal |
US11881225B2 (en) | 2015-03-09 | 2024-01-23 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal |
Also Published As
Publication number | Publication date |
---|---|
EP0615226A3 (en) | 1995-08-23 |
DE4307688A1 (en) | 1994-09-15 |
EP0615226B1 (en) | 1999-05-06 |
DE59408194D1 (en) | 1999-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69409121T2 (en) | INTERFERENCE REDUCTION SYSTEM FOR A BINAURAL HEARING AID | |
DE69905035T2 (en) | NOISE REDUCTION BY SPECTRAL SUBTRACTION USING LINEAR FOLDING PRODUCT AND CAUSAL FILTERING | |
DE69531136T2 (en) | Method and device for multi-channel compensation of an acoustic echo | |
US5400409A (en) | Noise-reduction method for noise-affected voice channels | |
DE60316704T2 (en) | MULTI-CHANNEL LANGUAGE RECOGNITION IN UNUSUAL ENVIRONMENTS | |
DE69932626T2 (en) | SIGNAL PROCESSING DEVICE AND METHOD | |
DE102010023615B4 (en) | Signal processing apparatus and signal processing method | |
EP0747880B1 (en) | System for speech recognition | |
DE4243831A1 (en) | Procedure for estimating the runtime on disturbed voice channels | |
EP1143416A2 (en) | Time domain noise reduction | |
DE102008027848A1 (en) | Echo cancellers, echo cancellation and computer readable storage media | |
DE69512540T2 (en) | Method and device for analyzing an echo signal and adaptive echo canceller which uses it | |
EP3375204B1 (en) | Audio signal processing in a vehicle | |
DE112007003625T5 (en) | Echo cancellation device, echo cancellation system, echo cancellation method and computer program | |
DE69616724T2 (en) | Method and system for speech recognition | |
EP1189419B1 (en) | Method and device for eliminating the loudspeaker interference on microphone signals | |
EP3065417B1 (en) | Method for suppressing interference noise in an acoustic system | |
EP1155561B1 (en) | Method and device for suppressing noise in telephone devices | |
EP0615226B1 (en) | Method for noise reduction in disturbed voice channels | |
DE69817461T2 (en) | Method and device for the optimized processing of an interference signal during a sound recording | |
DE602005000897T2 (en) | Input sound processor | |
DE102018117558A1 (en) | ADAPTIVE AFTER-FILTERING | |
DE10137348A1 (en) | Noise filtering method in voice communication apparatus, involves controlling overestimation factor and background noise variable in transfer function of wiener filter based on ratio of speech and noise signal | |
DE10025655B4 (en) | A method of removing an unwanted component of a signal and system for distinguishing between unwanted and desired signal components | |
DE3230391C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19950920 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19980610 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLERCHRYSLER AG |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59408194 Country of ref document: DE Date of ref document: 19990610 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990702 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59408194 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59408194 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE Effective date: 20120411 Ref country code: DE Ref legal event code: R081 Ref document number: 59408194 Country of ref document: DE Owner name: NUANCE COMMUNICATIONS, INC. (N.D.GES.D. STAATE, US Free format text: FORMER OWNER: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, 76307 KARLSBAD, DE Effective date: 20120411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120224 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: NUANCE COMMUNICATIONS, INC., US Effective date: 20120924 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130228 Year of fee payment: 20 Ref country code: FR Payment date: 20130301 Year of fee payment: 20 Ref country code: DE Payment date: 20130220 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59408194 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140301 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140227 |