EP0614453A4 - Manufacture of trimethylolpropane. - Google Patents

Manufacture of trimethylolpropane.

Info

Publication number
EP0614453A4
EP0614453A4 EP19930920413 EP93920413A EP0614453A4 EP 0614453 A4 EP0614453 A4 EP 0614453A4 EP 19930920413 EP19930920413 EP 19930920413 EP 93920413 A EP93920413 A EP 93920413A EP 0614453 A4 EP0614453 A4 EP 0614453A4
Authority
EP
European Patent Office
Prior art keywords
formaldehyde
alcohol
hydrogenation
methanol
trimethylolpropane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19930920413
Other languages
French (fr)
Other versions
EP0614453A1 (en
Inventor
Jeffrey S Salek
Joseph Pugach
Carole L Elias
Leonard A Cullo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Braskem America Inc
Original Assignee
Aristech Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aristech Chemical Corp filed Critical Aristech Chemical Corp
Publication of EP0614453A1 publication Critical patent/EP0614453A1/en
Publication of EP0614453A4 publication Critical patent/EP0614453A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Trimethylolpropane of high purity is efficiently made by mixing the aldol reaction product of formaldehyde and n-butyraldehyde with at least about 20 wt % of a lower alcohol prior to hydrogenation to allow recovery of high purity product by simple distillation. In a less preferred mode, the alcohol may be added after hydrogenation, resulting in a smaller improvement over previous processes.

Description


  
 



   MANUFACTURE OF TRIMETHYLOLPROPANE
Technical Field
 This invention relates to the production of trimethylolpropane and particularly to conducting the hydrogenation of the reaction product of n-butyraldehyde (NBAL) and formaldehyde in the presence of at least 20% of a lower alcohol of the formula R1R2CHOH where   R    and R2 are independently hydrogen or alkyl groups having 1 to about 5 carbon atoms but together have no more than 6 carbon atoms.



  Background of the Invention
 The conventional production of trimethylolpropane typically entails the reaction of n-butyraldehyde and formaldehyde (usually an aqueous solution) to obtain the aldol reaction product which may then be hydrogenated over a hydrogenation catalyst either with or without treatment intended to purify it. Representative of the prior art are
U.S. Patents 4,122,290 and 4,514,578 to Immel et al and 4,594,461 to Merger et al, which may use a trialkyl-amine catalyst in the aldol step. While the conventional commercial processes have served more or less satisfactorily in the context of the state of the art, our process is much more efficient and the product is much more pure.



   Commercially, formaldehyde is available in either of two forms, paraformaldehyde or as an  aqueous solution (referred to herein as aqueous formaldehyde). Paraformaldehyde is a crystalline solid consisting of a linear polymeric form of formaldehyde of the molecular formula, HO(CH2)nH where n = 8-100. Aqueous formaldehyde consists predominently as formaldehyde in its monomeric form.



  On standing, it will gradually react with itself forming oligomeric formaldehyde and paraformaldehyde. This is commonly inhibited by adding up to 15% methanol as a stabilizer. Where "formaldehyde" is used hereafter, we mean that either formaldehyde in the form of paraformaldehyde or aqueous formaldehyde is acceptable unless otherwise specified.



   Klein, in U.S. Patent 3,076,854, treats a crude trimethylolpropane by solvent extracting with an alcohol such as amyl alcohol, re-extracting with water, heating with methanol in the presence of a strong acid, and passing through an ion exchange bed to remove metals. Purification was not accomplished by distillation as in the present invention.



   In East German Patent 142,184, Dietze et al follow a more or less conventional TMP preparation by distillation to obtain a distillation bottoms comprising about 3% of the reaction product; this bottoms portion is treated with methanol and passed through a strong acid resin to liberate additional TMP.



   Merger et al, in European Patent 289,921, treat the hydrogenated effluent of the trialkylamine catalyzed reaction of n-butyraldehyde and aqueous formaldehyde in one of two ways. In the first they  remove water and excess trialkylamine by distillation at 100-2000C. Trialkylamine which is tied up as its formate salt reacts with trimethylolalkane under distillation conditions to give free trialkylamine and formate esters of the polyol. They then add methanol and either an alcoholate of an alkalai or alkaline earth metal to liberate the trimethylolalkane which is recovered by distillation. The second method involves removal of the excess water and free trialkylamine by distillation followed by the addition of methanol to the distillation bottoms. This mixture is then heated to 100-2000C under pressure, and trialkylamine and methylformate are removed by distillation.

  The water concentration in this instance is quite stringent and can be no more than 5-15%. While the product is finally recovered by distillation, no mention is made of purity.



  Our process does not require any special treatment before alcohol addition and leads to a product of very high purity.



   Raue et al, in Example 1 of East German
Patent 273,434, describe a process for recovering formaldehyde from the Ca(OH)2 catalyzed reaction of higher aldehydes with formaldehyde to form polymethylolalkanes. The treatment first requires neutralization of the reaction effluent followed by addition of methanol, stripping of lights at 500C under vacuum, treating with acetonitrile, removing calcium salts, adding additional methanol and stripping up to 900C to remove lights including  formaldehyde. No mention is made of product recovery. Our process is simple, different, and leads to high purity TMP.



  Summary of the Invention
 Our process involves an aldol reaction of n-butyraldehyde and formaldehyde followed directly by a hydrogenation step conducted in the presence of at least about 20% by weight lower alcohol of the formula   R 1R2   CHOH where   R1    and   R2    are independently hydrogen or alkyl groups having 1 to about 5 carbon atoms but together have no more than 6 carbon atoms.



  In the hydrogenation step the catalyst, preferably copper chromite, is used at temperatures in the range of about 1000C to about 2000C, and relatively low pressures, in the range of 500 to about 3000 psi. Our invention will give good yields of desired product, having very high purity, as will become apparent in the section below.



   To make the hydrogenation feed, the n-butyraldehyde and the formaldehyde should be employed in molar ratios of about 0.5 to about 10, preferably 0.5 to 5 and most preferably about 1 to about 2.5.



   We prefer to use a hydrogenation feed containing 20 to 90% alcohol, preferably 30-60% alcohol, and most preferably 50% alcohol; the preferred alcohol is methanol. The alcohol may be added after hydrogenation; however, the most benefit is derived from adding the alcohol prior to hydrogenation, which is our preferred mode.  



  Detailed Description of the Invention
 Our invention will be described with particular attention to the examples below.



  Specific Procedure using Paraformaldehyde
 A specific reaction using paraformaldehyde may be described as follows: The reaction is performed in a reflux apparatus wherein 1.00 equivalent of NBAL, 2.50 equivalents of paraformaldehyde, and about 0.04 to 0.05 equivalents of triethylamine have been placed under an inert atmosphere. With overhead stirring, the reaction mixture is heated, initially, in a water bath at 500C; the temperature is gradually increased to 800C over a one-hour period. The reaction is continued for an additional hour and terminated. The clear molten liquid is diluted in an alcohol, preferably methanol, and hydrogenated by passing the reaction solution over a conventional copper chromite catalyst at about   1600C    and about 1000 psi H2. High purity TMP product   ( > 998)    is recovered in good yield by distillation.

 

  Specific Procedure using Aqueous Formaldehyde
 Another specific reaction using aqueous formaldehyde may be described as follows: The reaction is performed in a reflux apparatus wherein 1.00 equivalent of NBAL, 2.50 equivalents of aqueous formaldehyde, and about 0.04 to 0.08 equivalents of triethylamine have been placed under an inert atmosphere. Preferably the NBAL is added dropwise  over a 0.25-1 hour period to the stirred mixture of aqueous formaldehyde and triethylamine. With overhead stirring, the reaction mixture is heated in a water bath at 600C for two hours. The clear liquid is diluted in an alcohol preferably methanol and hydrogenated by passing the reaction solution over a conventional copper chromite catalyst at about 1600C and about 1000 psi. High purity TMP product ( > 99%) is recovered in good yield by distillation.



  General Procedure using Formaldehyde
 More generally, with 1 equivalent of NBAL we may place in a reaction vessel from about 2 to about 10 equivalents of formaldehyde and about 0.001 to about 1.0 (preferably about 0.05 to about 0.5) equivalent of a tertiary amine catalyst. The reaction mixture is stirred at 60-800C until most of the NBAL is consumed. The resulting solution is diluted in an alcohol preferably methanol and hydrogenated using a hydrogenation catalyst. High purity TMP product is obtained in good yield by distillation.



  Example 1
 A series of batch aldol reactions were performed in glassware as follows:
 A. n-Butyraldehyde (1069.3 g, 14.89 mol), paraformaldehyde (1223.4 g, 37.07 mol), water (132.4 g, 7.35 mol), and triethylamine (75.0 g, 0.74 mol) were added into a 3-neck roundbottom flask  equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was placed in a water bath at 500C. The bath was heated to a temperature of 800C over a period of 2 hours at which point  > 99% of the n-butyraldehyde was reacted.



  The reaction mixture was diluted in methanol to make a 50 wt   %    aldol in methanol solution. A continuous hydrogenation was performed by passing the methanolic aldol effluent upward through a fixed-bed of copper chromite at   1600C,    0.5   her 1    liquid hour space velocity (LHSV), and 1000 psig H2. The resultant hydrogenation product was batch distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.18% purity, 73.3% recovery).



   B. n-Butyraldehyde (643.7 g, 8.93 mol), aqueous formaldehyde (1811.2 g, 22.32 mol), and triethylamine (45.2 g, 0.45 mol) were added into a 3-neck roundbottom flask equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was lowered into a water bath at 400C. The bath was heated to a temperature of   60"C    over a period of 1 hour and continued for an additional hour at which point 97% of the n-butyraldehyde was reacted. The reaction mixture was diluted in methanol to make a 50 wt % aldol in methanol solution. A continuous hydrogenation was performed by passing the methanolic aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5   hr    LHSV, and 1000 psig H2.



  The resultant hydrogenation product was batch  distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.07% purity, 68.4% recovery).



   C. Example 1.A. was repeated except that the aldol reaction mixture was diluted in n-butyl alcohol rather than methanol to make a 50 wt % aldol in n-butyl alcohol solution. High purity trimethylolpropane product was obtained (99.15% purity, 72.3% recovery).



   D. The "control" experiment was performed by repeating Example 1.B. without adding the methanol solvent prior to hydrogenation. The trimethylolpropane product recovered was of lower purity (98.33% purity, 73.0% recovery).



   The data for these four experiments are summarized in Table I. The results reveal the surprising improvement in trimethylolpropane purity made possible by the addition of a suitable alcohol solvent to aldol reaction product prior to hydrogenation.  



   Table I
Example 1A. 1B. 1C. 1D.("control")
HCHO paraform- aqueous paraform- aqueous
Type aldehyde formaldehyde aldehyde formaldehyde
Added n-butyl
Solvent methanol methanol alcohol none
Solvent
Level (wt %) 50 % 50   %      SO    %   5    %
 (contained)
Distilled   TNP   
Purity (wt %) 99.18 % 99.07 % 99.15 % 98.33 %
TMP
Recovery 73 % 68 % 72 % 73 %  
Example 2
 Two batch aldol reactions were performed in glassware as follows:
 A. n-Butyraldehyde (772.4 g, 10.71 mol), aqueous formaldehyde (2173.4 g, 26.78 mol), and triethylamine (54.2 g, 0.54 mol) were added into a 3-neck roundbottom flask equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser.

  The apparatus was lowered into a water bath at   40"C.    The bath was heated to a temperature of 600C over a period of 2 hours at which point  > 99% of the n-butyraldehyde was reacted. The reaction mixture was diluted in methanol to make a 90 wt    %    methanol solution. A continuous hydrogenation was performed by passing the methanolic aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5 hr 1 LHSV, and 1000 psig H2.



  The resultant hydrogenation product was batch distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.02% purity, 66% recovery).



   B. n-Butyraldehyde (943.4 g, 13.08 mol), paraformaldehyde (1079.3 g, 33.71 mol), water (116.8 g, 6.48 mol) and triethylamine (66.2 g, 0.65 mol) were added into a 3-neck roundbottom flask equipped with an. overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was lowered into a water bath at 500C. The bath was heated to a temperature of 800C over a period of 1 hour and continued for an additional hour at which point 99% of the n-butyraldehyde was reacted. The reaction mixture was diluted in methanol to make a  20 wt % methanol solution. A continuous hydrogenation was performed by passing the methanolic aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5   her 1   
LHSV, and 1000 psig H2. 

  The resultant hydrogenation product was batch distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.01% purity, 91% recovery).



   The data for these two experiments, when compared to Example 1A. and Example 1B., show similar TMP distilled purities ( > 99%) in good recoveries using higher (90 wt %) and lower (20 wt %) methanol levels. These results are displayed in Table II.  



   Table II
Example 1A. 1B. 2A. 2B.



  HCHO paraform- aqueous aqueous paraform
Type aldehyde formaldehyde formaldehyde aldehyde
Added
Solvent methanol methanol methanol methanol
Solvent
Level (wt %) 50   %    50 % 90   %    20   %   
Distilled
TMP
Purity (wt %) 99.18 % 99.07 % 99.02 % 99.01 %
TMP
Recovery 73 % 68 % 66 % 91 %  
Example 3
 A batch aldol reaction was performed in glassware as follows:
 n-Butyraldehyde (600.0 g, 8.32 mol), paraformaldehyde (686.4 g, 20.80 mol), water (74.31 g, 4.12 mol), and triethylamine (42.1 g, 0.42 mol) were added into a 3-neck roundbottom flask equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was lowered into a water bath at 500C. The bath was heated to temperature of 800C over a period of 2 hours at which point 99% of the n-butyraldehyde was reacted.



  The reaction mixture was diluted to make a 50 wt    %    aldol in 2-methyl-1-butanol solution. A continuous hydrogenation was performed by passing the aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5   her 1    LHSV, and 1000 psig H2. The resultant hydrogenation product was batch distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.49% purity, 72% recovery).



   The results obtained from this experiment, when compared to Example 1A., show similar distilled TMP purity and recovery using a different indigenous alcoholic solvent, 2-methyl-1-butanol (Table III).  



   Table III
Example 1A. 3.



  HCHO paraform- paraform
Type aldehyde aldehyde
Added
Solvent methanol 2-methyl-1-butanol
Solvent
Level (wt %) 50 % 50 %
Distilled
TMP
Purity (wt %) 99.18   %    99.49 %
TMP
Recovery
 73 % 72 %  
Example 4
 A batch aldol reaction was performed in glassware as follows:
 n-Butyraldehyde (772.4 g, 10.71 mol), aqueous formaldehyde (2173.4 g, 26.78 mol), and triethylamine (54.2 g, 0.54 mol) were added into a 3-neck roundbottom flask equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was lowered into a water bath at 400C. The bath was heated to a temperature of 600C over a period of 2 hours at which point  > 99% of the n-butyraldehyde was reacted.

  A continuous hydrogenation was performed by passing the undiluted aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5   her 1    LHSV, and 1000 psig H2. The resultant hydrogenation product was diluted in methanol to make a 50 wt    %    solution and batch distilled using an 8-inch long packed column to recover trimethylolpropane product (98.92% purity, 68% recovery).



   The result obtained from this experiment, when compared to Example 1D., (the "control" experiment using alcoholic solvent was not added prior to hydrogenation or distillation), shows an improved distilled TMP purity at a similar recovery.



  However, the product purity was not quite as high when the alcoholic solvent was added to the aldol effluent prior to hydrogenation (such as shown in
Example 1A. or Example 3.) which is our most preferred mode. These results are displayed together in Table IV.  



   Table IV
Example 1A. 1D. 3. 4.



      ("control")   
HCHO paraform- aqueous paraform- aqueous
Type aldehyde formaldehyde aldehyde formaldehyde
Added
Solvent methanol none 2-methyl- methanol
 1-butanol (after
 hydrogen
 ation)
Solvent
Level (wt %) 50 % 5 % 50   t    50 %
 (contained) (after
 hydrogen
 ation)
Distilled
TMP
Purity (wt %) 99.18   %    98.33 % 99.49 % 98.92   %   
TMP
Recovery
 73 % 73 % 72 % 68 %  
Example 5
 A batch aldol reaction was performed in glassware as follows:
 n-Butyraldehyde (960.0 g, 13.31 mol), paraformaldehyde (1098.3 g, 33.28 mol), water (111.3 g, 6.17 mol) and triethylamine (67.4 g, 0.67 mol) were added into a 3-neck roundbottom flask equipped with an overhead stirrer, inert atmosphere purge, and a reflux condenser. The apparatus was lowered into a water bath at 500C.

  The bath was heated to a temperature of 800C over a period of 1 hour and continued for an additional hour at which point 98% of the n-butyraldehyde was reacted. The reaction mixture was diluted in isopropyl alcohol (IPA) to make a 50 wt   %    solution. A continuous hydrogenation was performed by passing the methanolic aldol effluent upward through a fixed-bed of stabilized copper chromite at   1600C,    0.5   her 1   
LHSV, and 1000 psig H2. The resultant hydrogenation product was batch distilled using an 8-inch long packed column to recover high purity trimethylolpropane product (99.29% purity, 70% recovery).

 

   The data for this experiment, when compared to Example 1A. and Example 1B., show similar TMP distilled purities ( > 99%) in good recoveries using a 20 alcohol as solvent. These results are shown in Table V.  



   Table V
Example lA. 1B. V.



  HCHO paraform- aqueous paraform
Type aldehyde formaldehyde aldehyde
Added isopropyl
Solvent methanol methanol alcohol
Solvent
Level (wt %) 50 % 50 % 50 %
Distilled
TMP
Purity (wt %) 99.18   %    99.07 % 99.29 %
TMP
Recovery 73   E    68 % 70 % 

Claims

Claims 1. Method of making high purity trimethylolpropane comprising reacting n-butyraldehyde and formaldehyde under aldol reaction conditions and hydrogenating the reaction product in the presence of at least about 20 wt % (based on the mixture of alcohol and said reaction product) of an alcohol of the formula R1R2CHOH where R1 and R2 are independently selected from hydrogen and alkyl groups having 1 to about 5 carbon atoms but together have no more than 6 carbon atoms.
2. Method of claim 1 wherein the hydrogenation is conducted in the presence of a copper chromite catalyst.
3. Method of claim 1 wherein the hydrogenation is conducted at a pressure in the range of about 500 to about 3000 psig.
4. Method of claim 1 wherein the alcohol comprises methanol.
5. Method of claim 1 wherein the aldol reaction step is conducted in the presence of a catalyst comprising an amine of the formula R1R2R3N wherein R1, R2 and R3 are independently selected from alkyl and aryl groups having from 1 to 5 carbon atoms and R1 and R2 may form a substituted or unsubstituted cyclic group having about 5 to about 10 carbon atoms.
6. Method of claim 5 wherein the aldol reaction step is conducted in the presence of a triethylamine catalyst.
7. Method of claim 1 wherein the formaldehyde is in the form of paraformaldehyde.
8. Method of claim 1 wherein the formaldehyde is in the form of aqueous formaldehyde.
9. Method of claim 1 wherein trimethylolpropane of greater than 99% purity is recovered by distillation.
10. Method of claim 1 wherein the hydrogenation step is conducted at a temperature of about 1000C to about 2000C.
11. Method of claim 1 wherein the molar ratio of n-butyraldehyde to formaldehyde in the aldol reaction is about 1:2 to about 1:5.
12. Method of claim 4 wherein the methanol is present in an amount from about 30% to about 60% of the hydrogenation feed.
13. Method of making trimethylolpropane comprising reacting n-butyraldehyde and formaldehyde under aldol conditions, hydrogenating the reaction product thereof, adding to said reaction product at least about 20% by weight of an alcohol of the formula R1R2CHOH where R1 and R2 are independently selected from hydrogen and alkyl groups having 1 to about 5 carbon atoms but together have no more than about 6 carbon atoms, and distilling the resulting mixture to obtain a high purity trimethylolpropane.
14. Method of claim 13 wherein the alcohol is added to the hydrogenated reaction product in an amount between about 20% by weight and about 90% by weight of the mixture after such addition.
15. Method of claim 13 wherein the alcohol is methanol.
EP19930920413 1992-09-25 1993-08-27 Manufacture of trimethylolpropane. Withdrawn EP0614453A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US95052492A 1992-09-25 1992-09-25
US950524 1992-09-25
PCT/US1993/008140 WO1994007831A1 (en) 1992-09-25 1993-08-27 Manufacture of trimethylolpropane

Publications (2)

Publication Number Publication Date
EP0614453A1 EP0614453A1 (en) 1994-09-14
EP0614453A4 true EP0614453A4 (en) 1994-09-21

Family

ID=25490541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930920413 Withdrawn EP0614453A4 (en) 1992-09-25 1993-08-27 Manufacture of trimethylolpropane.

Country Status (4)

Country Link
EP (1) EP0614453A4 (en)
JP (1) JPH07501561A (en)
CA (1) CA2124189A1 (en)
WO (1) WO1994007831A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542036A1 (en) * 1995-11-10 1997-05-15 Basf Ag Process for the preparation of polyalcohols
SG79241A1 (en) * 1997-10-22 2001-03-20 Koei Chemical Co Producing method for trimethylolalkane
JP4669097B2 (en) * 1999-12-28 2011-04-13 日本曹達株式会社 Post-treatment method for reaction using Lewis acid
KR100837523B1 (en) * 2006-03-07 2008-06-12 주식회사 엘지화학 Method for Preparing Trimethylolpropane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1014089B (en) * 1956-05-05 1957-08-22 Basf Ag Process for the preparation of 2,2-dimethylpropanediol- (1,3)
FR1230558A (en) * 1959-03-31 1960-09-16 Ets Kuhlmann Process for preparing neo-pentyl-glycol
DE2054601A1 (en) * 1970-11-06 1972-05-10 Ruhrchemie Ag, 4200 Oberhausen-Holten Process for the production of dihydric alcohols
EP0142090A2 (en) * 1983-11-11 1985-05-22 BASF Aktiengesellschaft Process for the preparation of trimethylol alcanes from alcanols and formaldehyde
DE3644675A1 (en) * 1986-12-30 1988-07-14 Ruhrchemie Ag METHOD FOR PRODUCING 2,2-DIMETHYLPROPANDIOL- (1,3)
US5144088A (en) * 1991-04-26 1992-09-01 Aristech Chemical Corporation Manufacture of neopentyl glycol (I)
US5185478A (en) * 1991-06-17 1993-02-09 Aristech Chemical Corporation Manufacture of neopentyl glycol (IIA)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2702582C3 (en) * 1977-01-22 1980-12-04 Bayer Ag, 5090 Leverkusen Process for the preparation of trimethylolalkanes
US4855515A (en) * 1987-08-12 1989-08-08 Eastman Kodak Company Process for the production of neopentyl glycol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1014089B (en) * 1956-05-05 1957-08-22 Basf Ag Process for the preparation of 2,2-dimethylpropanediol- (1,3)
FR1230558A (en) * 1959-03-31 1960-09-16 Ets Kuhlmann Process for preparing neo-pentyl-glycol
DE2054601A1 (en) * 1970-11-06 1972-05-10 Ruhrchemie Ag, 4200 Oberhausen-Holten Process for the production of dihydric alcohols
EP0142090A2 (en) * 1983-11-11 1985-05-22 BASF Aktiengesellschaft Process for the preparation of trimethylol alcanes from alcanols and formaldehyde
DE3644675A1 (en) * 1986-12-30 1988-07-14 Ruhrchemie Ag METHOD FOR PRODUCING 2,2-DIMETHYLPROPANDIOL- (1,3)
US5144088A (en) * 1991-04-26 1992-09-01 Aristech Chemical Corporation Manufacture of neopentyl glycol (I)
US5185478A (en) * 1991-06-17 1993-02-09 Aristech Chemical Corporation Manufacture of neopentyl glycol (IIA)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9407831A1 *

Also Published As

Publication number Publication date
EP0614453A1 (en) 1994-09-14
JPH07501561A (en) 1995-02-16
WO1994007831A1 (en) 1994-04-14
CA2124189A1 (en) 1994-04-14

Similar Documents

Publication Publication Date Title
EP0536377B1 (en) Manufacture of neopentyl glycol (i)
EP0522368B2 (en) Manufacture of neopentyl glycol (IV)
KR100694344B1 (en) Method of producing highly pure trimethylolpropane
US5532417A (en) Manufacture of neopentyl glycol (IV)
EP0522367B1 (en) Manufacture of neopentyl glycol (III)
US5763690A (en) Manufacture of trimethylolpropane
EP0614453A4 (en) Manufacture of trimethylolpropane.
US5185478A (en) Manufacture of neopentyl glycol (IIA)
KR20000071062A (en) PROCESS TO CONTINUOUSLY PREPARE AN AQUEOUS MIXTURE OF ε-CAPROLACTAM AND ε-CAPROLACTAM PRECURSORS
JPH09268150A (en) Production of ditrimethylolpropane
US6441254B1 (en) Process for preparing trimethylol compounds and formic acid
EP0599883B1 (en) Continuous process for the preparation of 2-ethyl-2-(hydroxymethyl)hexanal and 2-butyl-2-ethyl-1,3-propanediol
KR20020062666A (en) Method for The Decomposition of High Boiling By-Products Produced in The Synthesis of Polyhydric Alcohols
US7227044B2 (en) Cycloalkanone composition
EP0543970B1 (en) Manufacture of neopentyl glycol (iia)
KR100231644B1 (en) Process for producing neopentylglycol
US6281394B1 (en) Method for producing vicinal diols or polyols
JPH05117187A (en) Process for manufacturing neopentyl glycol
WO1999041249A1 (en) Processes for producing dialdehyde monoacetals
KR20020064670A (en) Production of dimethylolcarboxylic acid
JPH11217351A (en) Production of dimethylolalkanoic acid
KR20180047257A (en) Trimethylolpropane manufacturing device and method using thereof
CN118119584A (en) Process for the preparation of neopentyl glycol
HU225622B1 (en) Improved method for producing 2-acetylcarboxylic acid esters
JPH11130719A (en) Purification of dimethylolalkanal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19940803

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19941015