EP0613579A1 - Small size constant torque voice coil motor - Google Patents

Small size constant torque voice coil motor

Info

Publication number
EP0613579A1
EP0613579A1 EP92925370A EP92925370A EP0613579A1 EP 0613579 A1 EP0613579 A1 EP 0613579A1 EP 92925370 A EP92925370 A EP 92925370A EP 92925370 A EP92925370 A EP 92925370A EP 0613579 A1 EP0613579 A1 EP 0613579A1
Authority
EP
European Patent Office
Prior art keywords
actuator
base
disk
disks
disk drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92925370A
Other languages
German (de)
French (fr)
Other versions
EP0613579A4 (en
Inventor
Frederick Mark Stefansky
Wallis A. Dague
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Conner Peripherals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conner Peripherals Inc filed Critical Conner Peripherals Inc
Priority to EP97202839A priority Critical patent/EP0828241A1/en
Publication of EP0613579A1 publication Critical patent/EP0613579A1/en
Publication of EP0613579A4 publication Critical patent/EP0613579A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/121Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a single recording/reproducing device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/22Supporting the heads; Supporting the sockets for plug-in heads while the head is out of operative position
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • G11B5/55Track change, selection or acquisition by displacement of the head
    • G11B5/5521Track change, selection or acquisition by displacement of the head across disk tracks

Definitions

  • the present invention relates to disk drives; more particularly, to hard (or fixed) disk drives. Description of the Related Art.
  • the heads associated with the top and bottom surfaces of a disk can move relative to the disk to the point where the different heads are in different cylinders -- a cylinder being defined as a vertical segment representing the same track on the top
  • This problem is known as mechanical off-track and is compounded by increased track densities.
  • the spindle on which the disks rotate is supported by and extends through both the casing and the cover.
  • the protrusion of the spindle through the casing and the cover provides possible points of entry for contaminants.
  • the stepper motor is located outside of the casing, requiring a seal between the stepper motor and the casing.
  • manufacturers of conventional disk drives provide a breather filter and design the disk drives so that the rotation of the disks causes the disk drives to exhaust air through leaks in the seals and to intake air only through the breather filter.
  • a fairly course filter must be provided in the breather filter for a flow of air to exist, and thus contaminants enter the disk drive through the filter paper.
  • a cast casing is difficult to manufacture with precision, particularly the location of mounting points for elements of the drive supported by the casing. Mounting holes must be drilled after the casing is cast, and the mounting holes must be aligned with the casing and with each other. More importantly, however, a three-dimensional, cast casing flexes due to thermal stresses causing the above-mentioned mechanical off- track problems .
  • a flex circuit In conventional disk drives which use a voice coil to pivot an actuator arm in order to position the heads with respect to the disk, a flex circuit, having one end attached to the actuator arm and the other end attached to a fixed point in the disk drive, transfers the information signals to and from the heads.
  • the standard orientation of such a flex circuit is a loop extending away from the disk. The distance between the point at which the flex circuit is attached to the actuator and the end of the disk drive is limited, and thus the radius of the arc or curve of the flex circuit is small and the length of the flex circuit itself is limited. Therefore, the entire flex circuit moves when the actuator arm is pivoted and a torque is exerted on the actuator arm by the flex circuit.
  • the torque exerted on the actuator arm must be compensated for, either added to or subtracted from the torque created by the voice coil, when performing a seek operation. This compensation is complicated by the fact that the torque exerted on the actuator by the flex circuit varies with the position of the actuator.
  • latch devices have been used to lock the arm of a voice coil in a particular position when the disk drive is not operating.
  • the trend in latch devices is to utilize a high power unit which is separately assembled to provide reliability.
  • high power latch devices generate a large amount of heat which is not desirable in a disk drive or any other area in a computer.
  • the operation of conventional latch devices can be position dependent.
  • the orientation of the disk drive and the computer in which the disk drive is installed could effect the reliability of the latch device. Such a positional dependence of reliability is not satisfactory for portable computers.
  • the data access time of the disk drive is critical to overall system performance. In many cases, the speed at which the disk accesses data and provides it to the microprocessor is the main performance bottleneck in the system.
  • One critical factor in disk access time is the "seek time" of a drive, generally defined as the time the actuator takes to access particular data at a particular track location on the magnetic disk. The total access time is generally a function of the efficiency of the actuator motor in moving the read/write heads along the arcuate path between consecutive tracks of the disk, and the data throughput of the control electronics.
  • an object of the present invention to provide a disk drive having a low height and a low weight.
  • a further object of the present invention is to provide a multiple platter (disk) , disk drive having a one inch height form factor.
  • Another object of the present invention is to provide a disk drive which is resistant to damage from physical shocks.
  • Another object of the present invention is to provide a low height disk drive having an increased data storage capacity.
  • Another object of the present invention is to provide a disk drive in which any mechanical off tracking of the heads is mechanically minimized and electronically corrected.
  • Another object of the present invention is to provide a disk drive assembly in which a single electrical connector transfers all electrical currents and data signals from the environment in which the disks reside to the exterior of the environment, and in which a header which communicates those electrical signals through the base plate is the only communication between the interior and exterior of the drive.
  • Another object of the invention is to provide an improved voice coil motor design, and specifically a disk drive having an efficient actuator positioning mechanism.
  • a disk drive including: a head-disk assembly, having a base having a top and a bottom, storage means, supported on said top of said base, for storing data, solid storage means comprising two disks, interactive means for reading information from and writing information on said disks, actuator means, supported on said base and responsive to control signals, for selectively positioning said interactive means with respect to said disks means, and a cover sealably attached to said base to enclose said disks, said interactive means, and said actuator means; and control means, mounted on said head-disk assembly so that said control means is adjacent to said bottom of said base, for generating control signals to control said actuator means and for providing information signals to and receiving information signals from said interactive means, said head-disk assembly, said control means having an overall maximum height of approximately one inch ( 1" ) .
  • a specific advantage of the present invention is that the disk drive has a reduced height with respect to conventional disk drives utilizing disks of approximately the same diameter.
  • the three and one-half inch (3.5") single platter and multiple platter drives of the present invention have an overall height of one inch (1").
  • the disk drive of the present invention is light in weight — the drives of the present invention weighs slightly more than one pound.
  • a further advantage of the present invention is that a single electrical connector (header) transfers all electrical signals between the exterior and the interior of the casing, thereby reducing the possibility of the introduction of contaminants into the controlled environment within the casing.
  • the disk drive of the present invention does not require a breather filter.
  • a further advantage of the disk drive of the present invention is that it includes a voice coil actuator assembly including means for mounting a plurality of read/write heads with respect to a storage means; and means for positioning said mounting means at a plurality of positions with respect to said disk, wherein said means for positioning has relatively equal efficiency between the inside diameter and the outside diameter of the disk.
  • Figs. 1-7 illustrate a first embodiment of the disk drive of the present invention.
  • the disk drive of the present invention BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1-7 illustrate a first embodiment of the disk drive of the present invention.
  • Fig. 1 is an isometric view of the first embodiment of a disk drive according to the present invention
  • Fig. 2 is an isometric view of the first embodiment of the disk drive of the present invention with the cover removed;
  • Fig. 3 is a cross-sectional view along line 3-3' of Fig. 2;
  • Fig. 4 is an exploded view of the first embodiment of the disk drive of the present invention
  • Fig. 5 is an end view of the first embodiment of the disk drive of the present invention
  • Fig. 6 illustrates the actuator assembly
  • Fig. 7 illustrates the latch mechanism.
  • Figs. 8-12 illustrate a second embodiment of the disk drive of the present invention.
  • Figs. 7 illustrates the latch mechanism.
  • Figs. 8-12 illustrate a second embodiment of the disk drive of the present invention.
  • Figs. 7 illustrates the latch mechanism.
  • Figs. 8-12 illustrate a second embodiment of the disk drive of the present invention.
  • Fig. 8 is an isometric view of the second embodiment of a disk drive according to the present invention with the cover removed;
  • Fig 9 is an exploded isometric view of the second embodiment of the disk drive of the present invention;
  • Fig. 10 is an exploded, isometric, bottom view of the printed circuit board and the base of the second embodiment of a disk drive according to the present invention
  • Fig. 11 is an end view of the second embodiment of a disk drive according to the present invention.
  • Fig. 12 is an exploded, isometric view of a portion of the actuator and the latch mechanism utilized in the second embodiment of the present invention.
  • Figs. 13-19 illustrate a third embodiment of the disk drive of the present invention.
  • Figs. 13-19 illustrate a third embodiment of the disk drive of the present invention.
  • Figs. 13-19 illustrate a third embodiment of the disk drive of the present invention.
  • Fig. 13 is an exploded, isometric view of the third embodiment of the disk drive according to the present invention.
  • Fig. 14 is a plan view of the third embodiment of the disk drive according to the present invention.
  • Fig. 15 is a view along line 15-15 in Fig. 14;
  • Fig. 16 is an exploded, partial view of the actuator assembly of the third embodiment of the disk drive of the present invention.
  • Fig. 17 is a partial plan view of the actuator assembly of the third embodiment of the present invention
  • Fig. 18 is a cross-sectional view along line 18-18 in Fig. 17
  • Fig. 19 is an enlarged, cross-sectional view of the gasket and cover assembly along line 19-19 in Fig. 13.
  • Fig. 20 is a plan view of the actuator assembly of the third embodiment of the present invention with the top plate and top magnet removed, detailing the relationship between the actuator coil and actuator magnet construction used therein.
  • Fig. 21 is a graph representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the first embodiment of the disk drive of the present invention over the full stroke of the actuator's movement from the inner diameter to the outer diameter of the disk.
  • Figs. 22-23 are graphs representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the second embodiment of the disk drive of the present invention over the full stroke of the actuator's movement.
  • Fig. 24 is a graph representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the third embodiment of the disk drive of the present invention over the full stroke of the actuato 's movement.
  • Disk drives according to the present invention will be described with reference to Figs. 1-24.
  • the disk drives described herein include, for example, one or two hard disks with a magnetic coating and utilize Winchester technology; however, the disk drive of the present invention may utilize various numbers of disks and other types of disks, for example, optical disks, and other read/write technologies, for example, lasers.
  • the diameter of the disks utilized in the disk drive of the present invention have a diameter on the order of 3.75 inches, or so-called "3% inch" disks; the disk drive of the present invention can be implemented with disks of other diameters whether larger or smaller than 3.75 inches.
  • a disk drive in accordance with either the first, second, or third embodiments of the present invention has the following outline dimensions: Height 1.0" (2.54 cm); Length 5.75" (14.61 cm); and Width 4.0" (10.16 cm).
  • the total weight is slightly over one (1) pound; for the first embodiment, 1.3 lbs (0.59 kg) for the second embodiment, and 1.16 lbs for the third embodiment.
  • the disk drive of the present invention is one-half (%) of the size of a one-half (%) height 5-1/4" inch disk drive.
  • the disk drive of the present invention weighs approximately 1/3 to 1/2 of the weight of standard 3%" disk drives of 20 Mb capacity. Even greater proportional reductions are provided when the first embodiment is formatted for 40 Mb capacity, and the second embodiment is formatted for 120 Mb capacity, and the third embodiment is formatted with a storage capacity of approximately 213Mb, without any change in size or weight.
  • Figs. 1, 14, and 15 illustrate the relationship between the length, width, and height of the disk drive, and thus low profile of the disk drive.
  • the height "H” of the disk drive of the present invention is one inch (1").
  • the sloped profile of base plate 12 and cover 14 provides extra vertical space below base plate 12 at the first end 10a of the disk drive and provides extra vertical space between base plate 12 and cover 14 at the second end 10b of the disk drive 10. If the sloped profile were not provided, the amount of space allocated above and below base plate 12 would be the maximum amount of space provided at the respective first and second ends 10a, 10b of the disk drive 10; accordingly, the overall height of the disk drive would be increased.
  • the cover 14 is sealably attached to base plate 12 to provide a controlled environment between base plate 12 and cover 14.
  • a gasket 16 (Fig. 4) between base plate 12 and cover 14 provides the seal.
  • the ability to provide a controlled environment alleviates the need for a breather filter and allows the disk drive of the present invention to use an internal air filtration system.
  • the seal provided by gasket 16 is stable, during operation of the disk drive, at pressures experienced at altitudes from 200 feet below sea level to 10,000 feet above sea level.
  • the internal components of the disk drive are separated into three interrelated groups: disk 20 and spin motor 22, actuator assembly 24 for positioning heads 26 with respect to disk 20, and header assembly 28 including header 30, bracket 32, reverse flex circuit 34 and coil 36 for pivoting latch arm 38.
  • Actuator assembly 24 includes pivotable actuator arm 40, heads 26 (Fig.
  • Magnet structure 44 supports magnets 46 (Fig. 4) and its components, as described in detail below, are formed of magnetically permeable material to provide returns for the magnetic fields generated by magnets 46.
  • the magnet structure 44 and actuator coil 42 are arranged so that a current in coil 42 passes through the magnetic fields created by magnets 46 to create a force which pivots actuator arm 40.
  • Currents passing in opposite directions of coil 42 create torques in opposite directions and pivot actuator arm 40 to - Im ⁇ position heads 26 at all locations between and including inside and outside diameters 48 and 50 of disk 20.
  • a flex circuit is provided in the region between header 30 and actuator arm 40.
  • Reverse flex circuit 34 curves toward the disk, thereby allowing latch coil 36 to be placed between header 30 and actuator arm 40.
  • a printed circuit assembly (or control means) 52 is attached to the bottom of base plate 12.
  • Header 30 carries all of the electrical signals from the printed circuit assembly 52 to the controlled environment between base plate 12 and cover 14. Header 30 has a minimum number of pins due to the fact that a DC motor requiring only three (3) leads is utilized. Such a motor is described in U.S. Patent No. 4,876,491, entitled METHOD AND APPARATUS FOR BRUSHLESS DC MOTOR SPEED CONTROL, filed July 1, 1986, inventors John P. Squires and Louis J.shrinkle, assigned to the Assignee of the subject application.
  • the structure of the disk drive 10 of the present invention which provides the disk drive with a low overall height will be described with reference to Fig.
  • base plate 12 includes two rails 54a and 54b at first and second sides 12c and 12d of base plate 12. Rails 54a and 54b are constructed so that the mounting surface 12e of the base plate 12 sits at an angle with respect to the plane of the surface on which rails 54a and 54b rest. This angled relationship of base plate 12 and the support surface provides more room below base plate 12 at the first end 12a of the base plate than at the second end 12b of the base plate.
  • disk 20 is the only component located above the first end of the base plate 12a, whereas the actuator assembly 24 is located above the second end of the base plate 12b.
  • Actuator assembly 24 requires more vertical space than disk 20 and the slope of base plate 12 provides more space above the second end of the base plate 12b than above the first end of the base plate 12a in order to accommodate the actuator assembly 24.
  • the portion of cover 14 which meets with base plate 12 has an angle which corresponds to the angle of the base plate, and thus the top of the cover 14 is parallel with the support surface. Therefore, even though the base plate is sloped, the profile of the disk drive 10 is a rectangle as opposed to a parallelogram.
  • Disk 20 lies in a plane which is parallel to the support surface and which forms an angle with the plane of base plate 12. All of the support points on the mounting surface 12e of base plate 12 are designed so that the internal components (e.g., actuator assembly 24) lie in plane parallel to the plane of disk 20 and the plane defined by support points 55 of rails 54a, 54b.
  • actuator assembly 24 The structure and operation of actuator assembly 24 will be explained with reference to Figs. 4-7.
  • the function of the actuator assembly 24 is to position heads 26 with respect to the surfaces of disks 20 by pivoting actuator arm assembly 40. More specifically, to position the heads 26 over individual tracks on disk 20. Heads 26 are supported on actuator arm 40 by flexures 60.
  • a bearing cartridge 62 which is fixed to the base plate 12, is inserted in actuator arm 40 to provide a pivot point.
  • Actuator arm 40 is attached to bearing cartridge 62 by a clip ring 63. Using clip ring 63 instead of epoxy allows the bearing cartridge 62 to be tested prior to assembly and cleaned independently of the actuator arm 40.
  • Actuator coil 42 is provided on actuator arm 40 on the opposite side of the pivot point from heads 26. Actuator arm 40, including all of the components attached thereto, is precisely balanced, i.e., equal amounts of weight are provided on either side of the pivot point so that the positioning of heads 26 is less susceptible to linear shock and vibration.
  • the force utilized to pivot arm assembly 40 is provided by a voice coil assembly.
  • the voice coil assembly includes actuator coil 42 and magnet structure 44.
  • Magnet structure 44 comprises top and bottom plates 64, 66 formed of magnetically permeable material, support posts 68, 70 also formed of magnetically permeable material, and first and second magnets 46a, b attached to the top plate 64.
  • Top and bottom plates 64, 66 in conjunction with support posts 68, 70 function as returns for the magnetic fields provided by first and second magnets 46a, b. It is important that there are no air gaps between support posts 68, 70 and either the top or bottom plate 64, 66; any air gap would create a discontinuity in the return, greatly reducing the strength of the magnetic field.
  • First and second magnets 46a, b have opposite poles attached to top plate 64 (e.g., the south pole of first magnet 46a and the north pole of second magnet 46b are attached to top plate 64) to provide first and second magnetic fields B t , B 2 between respective ones of the first and second magnets 46a, b and bottom plate 66.
  • First and second magnetic fields B ⁇ , B 2 are encompassed in three closed magnetic field loops.
  • the first closed magnetic field loop extends between the first magnet 46a and bottom plate 66 and passes through a return provided by bottom plate 66, first support 68, and top plate 64.
  • the second closed magnetic loop passes from first magnet 46a to bottom plate 66, through bottom plate 66 and between bottom plate 66 and second magnet 46b, and from second magnet 46b to first magnet 46a via top plate 64.
  • the third closed magnetic loop extends between bottom plate 66 and second magnet 46b and passes through a return provided by top plate 64, second support 70, and bottom plate 66.
  • Actuator coil 42 is positioned so that it carries a current in opposite directions in first and second magnetic fields E and B 2 .
  • F 2 pivot actuator arm 40 in opposite directions. Crash stops are provided to limit the pivoting movement of actuator arm 40 so that heads 26 travel only between selected inside and outside diameters 48, 50 of disk 20.
  • An outside diameter crash stop is provided by a sleeve 76 (Fig. 5) fitted on support post 68. When the pivoting motion of actuator arm 40 places heads 26 at the outside diameter 50 of disk 20 a portion of the actuator arm 40 contacts outside diameter crash stop 76, thereby preventing further movement of the heads 26.
  • An inside diameter crash stop is provided by the portion of the latch mechanism (Fig. 7) and is described below.
  • Reverse flex circuit 34 for carrying electrical signals from header 30 to heads 26 and actuator assembly 24 will be described with reference to Figs. 2, 4, 6 and 7. The reverse flex circuit is separated into three portions.
  • a first portion 80 carries current to actuator coil 42.
  • a second portion 82 is a ground plane which separates the current carrying portion 80 from a third data carrying portion 84.
  • the data carrying portion 84 provides signals to heads 26 for recording information on disk 20 and carries signals from the heads ' 26 to the printed circuit assembly 52, via header 30, when reading data from disk 20. Interference with the relatively weak data signals which would otherwise be caused by the larger currents necessary for actuator coil 42 passing through the first portion 80 of the reverse flex circuit 34 is prevented by the provision of ground plane 82.
  • the reverse flex circuit 34 is electrically connected to pins 31a of header 30; however, pins 31a also serve to position the reverse flex circuit 34.
  • bracket 32 supports reverse flex circuit 34 and latch coil 36.
  • Bracket 32 is attached to base plate 12 by a single attachment point 86 and is rotationally positioned by the engagement of reverse flex circuit 34 and pins 31a -- the positioning of latch coil 36 being important to the operation of the latch mechanism as described below.
  • a stiffener 88 is attached to reverse flex circuit 34 in the area where it engages pins 31a and is attached to bracket 32 to provide the rigidity necessary to rotationally position bracket 32, and to facilitate engagement of reverse flex circuit 34 and pins 31a.
  • Reverse flex circuit 34 is parallel to the plane of base plane 12 in the region of header 31 but passes through a bend of approximately 90 degrees so that it forms the loop which extends towards disk 20 and connects header 30 to actuator assembly 24.
  • First portion 80 of reverse flex circuit 34 terminates at the point where reverse flex circuit 34 joins actuator arm 40; however, the second and third portions 82 and 84 wrap around a shoulder 90 of actuator arm 40 which surrounds bearing cartridge 62.
  • Wrapping the second and third portions 82 and 84 of reverse flex circuit 34 around shoulder 90 provides access to current-carrying wires are provided on the side of the flex circuit which faces the base plate in the region where reverse flex circuit 34 engages pins 31a of header 30, and thus on the inside of the curved portion of reverse flex circuit 34 extending from bracket 32 to actuator arm 40.
  • the side of reverse flex circuit 34 on which the current-carrying wires are provided is exposed at the end of reverse flex circuit 34, facilitating the attachment of wires 91 which connect heads 26 to reverse flex circuit 34.
  • wires 91 were to be connected to reverse flex circuit 34 at the point where reverse flex circuit 34 first contacts actuator arm 40, it would be necessary to wrap wires 90 around reverse flex circuit 34 or to provide connections through the reverse flex circuit 34 — both being more complex and less desirable manners of providing electrical connections between wires 91 and reverse flex circuit 34.
  • Any torque exerted on actuator arm 40 by any means other than the voice coil assembly affects the function of actuator assembly 24 in positioning heads 26 with respect to disk 20, particularly the track following any seek functions described in the above-referenced patents entitled DISK DRIVE SOFTWARE SYSTEM ARCHITECTURE and DISK DRIVE SOFTWARE SYSTEM ARCHITECTURE UTILIZING IMBEDDED REAL TIME DIAGNOSTIC MONITOR.
  • the force provided by the voice coil assembly must be controlled to compensate for the force exerted by the reverse flex circuit 34. Accordingly, the radius R (Fig. 7) of the curve in reverse flex circuit 34 is made as large as possible to minimize the torque exerted on actuator arm 40 by reverse flex circuit 34.
  • the radius of the curve in reverse flex circuit 34 is approximately twice as large as the radius in the curve of a conventional flex circuit.
  • the reverse flex circuit 34 moves in an essentially linear manner when actuator arm 40 rotates, whereas a conventional reverse flex circuit must bend throughout its curve. Accordingly, the torque exerted on actuator arm 40 by reverse flex circuit is greatly reduced with respect to the torque exerted by a conventional flex circuit.
  • reverse flex circuit 34 Another advantage provided by reverse flex circuit 34 is the ability to place latch coil 36 in a position where a conventional flex circuit would be located, and thus to integrate latch coil 36 with reverse flex circuit 34 and bracket 32. Separate wires from header 30 to latch coil 36 are not necessary. Further, installing this integrated group of components requires fewer steps than installing individual components .
  • the critical positioning of latch coil 36 is provided by reverse flex circuit 34 and stiffener 88 controlling the pivotal position of bracket 32, as described above. All connections between the sealed environment between base plate 12 and cover 14 and printed circuit assembly 52 are provided by header 30. Pins 31a, which engage reverse flex circuit 34, also engage motor wire connector 92. Pins 31b extend below base plate 12 and engage a rear entry connector (not shown) on printed circuit assembly 52. A rear entry connector is utilized because the integrated and discrete circuit components and the surface wirings are on the side of printed circuit assembly 52 facing away from base plate 12.
  • a latch mechanism for locking the actuator arm 40 in an orientation where heads 26 are positioned at the inside diameter 48 of disk 20, will be described with reference to Figs. 4, 5 and 7.
  • control means 52 causes actuator assembly 24 to pivot the actuator arm 40 to the position where the heads 26 are at the inside diameter of the disk over a non-data area of disk 20 before the rotational speed of the disk 20 is decreased to the point where the heads 26 land on the disk 20.
  • the electromagnetic latch includes latch coil 36, a latch arm 38 which pivots on pivot 94 and has a finger 96 for engaging latch notch 98 in actuator arm 40, and a spring 100 for biasing the latch arm 38 to the locked position.
  • An electromagnet including latch coil 36 and swivel plate 104, is used to pivot latch arm 38 to the unlocked position against the force of spring 100.
  • Latch coil 36 includes a capture plate 106 having an outer wall 108 and a center pole 110.
  • the outer wall 108 and center pole 110 form opposite poles of an electromagnet, and when a current is passed through a coil (not shown) the magnetic field of capture plate 106 attracts swivel plate 104; swivel plate 104 is mounted on the latch arm 38 so that it can swivel in all directions and be flush with the outer wall 108 when the swivel plate 104 is captured by the electromagnet.
  • Center pole 110 of capture plate 106 is stepped so that only a small contact area exists between center pole 110 and swivel plate 104; this small contact area causes the latch coil 36 to release the swivel plate 104 when the current in the coil (not shown) is discontinued.
  • a high DC voltage is applied to the latch coil 36 for a short time to capture the swivel plate 104. Then, the applied voltage is reduced to a small capture maintenance level.
  • this structure is low in power consumption and heat dissipation. Further, despite the low power consumption of the latch coil 36 it is highly reliable in its capture, holding, and release of swivel plate 104.
  • Spring 100 is a linear spring engaging finger 96. To reduce spring travel, thereby providing a constant and larger spring force, spring 100 is terminated outside the pivot point of pivot 94. Finger 96 also serves as the inside diameter crash stop. Finger 96 is well suited for the inside diameter crash stop because it is positioned to engage notch 98 which is at one edge of opening 102 in actuator arm 40. The abutment of finger 96 and the same edge of opening 102 when the latch is unlatched provides the inside diameter crash stop. However, the pivoting movement of latch arm 38 in moving to the latched position reduced the distance between pivot 94 and the edge of opening 102. Therefore, the actuator arm 40 pivots slightly to move the heads beyond the inside diameter 48 to a non- data area.
  • the above-described structure of the disk drive of the present invention provides excellent protection from shock and vibration.
  • the disk drive will withstand nonoperating shocks of 200g's and operating shocks, without nonrecoverable errors, of 5g's.
  • Nonoperating vibration of 2g's in the range of 5-500 Hz is the specified tolerable limit.
  • Operating vibration, without nonrecoverable data, is specified at 0.5g's for the range of 5-500 Hz.
  • the disk 20 has 752 tracks per surface due to the ability of the actuator assembly 24 to operate with a track density of 1150 tracks per inch.
  • the disk drive of the first embodiment has a formatted capacity of 20 MBytes.
  • the actuator assembly 24 provides an average seek time of 28 ms and a tra ⁇ k-to-track seek time of 7 ms.
  • the average seek time is determined by dividing the total time required to seek between all possible ordered pairs of track addresses by the total number of ordered pairs addressed.
  • the assembly of the disk drive 10 of the present invention requires less steps than assembly of conventional disk drives.
  • the spin motor 22 and disk 20 are attached to base plate 12.
  • an integrated actuator group including actuator arm 40, bracket 32, reverse flex circuit 34, and latch coil 36, all previously assembled, is installed.
  • Magnet structure 44 is then placed on one of its attachment points and pivoted into position so that the portion of actuator arm 40 holding actuator coil 42 extends between the top and bottom plates 64, 66 of the magnet structure 44.
  • Latch arm 36 is then placed on its pivot point.
  • the disk 20 is then pack written, and thereafter cover 14 is attached. Finally, printed circuit assembly 52 is attached outside of the clean room.
  • a disk drive 200 in accordance with the second embodiment of the present invention will be described with reference to Figs. 8-12.
  • the construction of disk drive 200 includes a base 212 and a cover 214.
  • Gasket 216 provides a sealed, controlled environment between base 212 and cover 214.
  • First and second disks 220, 221 are supported on base 212 and rotated by spin motor 222.
  • Motor 222 is mounted in a well 223 in base 212, thereby allowing lower disk 221 to be as close as possible to the top surface of base 212.
  • An actuator assembly 224 positions heads 226a-d with respect to disks 220 and 221; heads 226a and 226b read information from and write information to respective, opposed surfaces of disk 220, and heads 226c and 226d read information from and write information to respective, opposed surfaces of disk 221. Tables 1 and 2 below specify certain characteristics of disks 220 and 221 and heads 226a-d.
  • Controller 227 including printed circuit board 228 and circuitry 229 mounted on circuit board 228, provides control signals to spin motor 222 and actuator assembly 224, and provides data signals to and receives data signals from heads 226a-d.
  • Header 230 provides all electrical connections between controller 227 and the environment between base 212 and cover 214. Header 230 comprises conductive pins 231 embedded in a plastic header 232 which is then potted in base 212.
  • a reverse entry connector 237 mounted on the front side 228a of printed circuit board 228 receives pins 231; pins 231 pass through printed circuit board 228 to enter connector 237.
  • Bracket 237 supports a flex circuit 233, including a reverse flex circuit loop 234, and connector 236 which provides electrical interconnections between flex circuit 233 and pins 231.
  • actuator assembly 224 includes pivotable actuator arm 240 and an actuator motor.
  • the actuator motor is a so-called voice coil motor comprising coil 242 (provided on actuator arm
  • top and bottom plates 264 and 264 are identical to top and bottom plates 264 and 270.
  • first and second support posts 268, 270 create returns for the magnetic fields provided by first and second magnets 246a and 246b.
  • the operation of the voice coil motor is described above with respect to the first embodiment.
  • disk drives 200 of the second embodiment of the present invention to include 2 disks, 220 and 221, lying in parallel planes within a one inch height form factor disk drive will be described with reference to Figs. 8-10.
  • the sloped profile of base 12 allowed the use of a fully shrouded power connector 58.
  • power connector 58 was provided at the first end 10a of disk drive 10 where the sloped profile provided more room underneath base 12 and less room between base 12 and the top of cover 14.
  • base 212 has first and second side rails 213a and 213b, and the mounting surface of base 212 is parallel to the plane defined by support points 215a- g.
  • the space below base 212 is the same at both ends of drive 200; in the second embodiment a sloped profile is not utilized.
  • the uniform height of rails 213a and 213b is the same as the height to rails 54a and 54b at the second end 10b of drive 10. Accordingly, the space between base 212 and cover 214 is increased at the end of drive 200 where disks 220 and 221 reside. This increased space between base 212 and cover 214, combined with the placement of motor 222 in well 223, allows two disks 220 and 221 to be provided in substantially parallel planes.
  • Printed circuit board 228 is mounted to base 212 by screws 254a-c, and an insulating sheet 255 is provided between printed circuit board 228 and base 212 to prevent short circuiting of the solder points appearing on the back side 228b of printed circuit board 228 which faces base 212.
  • Printed circuit board 228 has an opening 253, and well 223 protrudes through opening 253. The reduced height of rails 213a and 213b at the end of drive 200 where interface connector 256 and power connector 258 reside required the removal of part of the shrouding from power connector 258. Thus, pins 259 of electrical connector 258 are not protected by shroud 260 in the region between pins 259 and base 212.
  • a third connector 259 used for test purposes, is provided at the opposite end of drive 200 from connectors 256 and 258, as shown is Fig. 11.
  • the latch mechanism includes a magnet assembly 280 provided on second support post 270 and latch arm 282, including latch finger 283, mounted on actuator arm 240.
  • Magnet assembly 280 has a slot 284 and contains the magnetic field provided by a magnet (not shown) so that the magnetic field affects latch finger 283 only when latch finger 283 enters slot 284.
  • a resilient element 285 provided in slot 284 of magnet assembly 288 functions as the inside diameter crash stop.
  • a sleeve 288 provided on first support posts 268, combined with tab 290 on actuator arm 240 function as the outside diameter crash stop.
  • Table 3 specifies certain performance characteristics of disk drive 200.
  • All seek times are determined for nominal d.c. input voltages. Average seek times are determined by dividing the total time required to seek between all possible ordered pair of track addresses by the total number of ordered pairs.
  • Table 4 specifies certain environmental characteristics of disk drive 200. Table 4
  • Table 5 specifies shock and vibration tolerances for disk drive 200. Shock is measured utilizing a sine pulse, having a 11 msec duration, and vibration is measured utilizing a swept sine wave varying at 1 octave per minute.
  • Non-operating vibration 5-62 Hz 0.020" double amplitude
  • a disk drive 300 in accordance with the third embodiment of the present invention will be described with reference to Figs. 13-24.
  • disk drive 300 includes a base 312 and a cover 314, both generally formed of aluminum.
  • Gasket 316 provides a sealed, controlled environment substantially isolated from ambient atmospheric pressures between base 312 and cover 314.
  • First and second disks 320, 321 are supported on base 312 and rotated by spin motor 322.
  • Motor 322 is mounted in a well 323 in base 312, thereby allowing lower disk 321 to be as close as possible to the top surface of base 312.
  • Gasket 316 is formed to have a unique elastomeric and metal structure which provides improved sealing characteristics for disk drive 300 and ease of assembly.
  • gasket 36 includes a metal layer 317 sandwiched between two elastomeric layers 318 ⁇ and 318 2'
  • layer 317 is formed of stainless steel and layers 318 1 and 318 2 are formed of burtyl rubber.
  • the structure of gasket 316 provides easier assembly in the manufacture of drive 300 since the stiffness provided by the metal layer allows easier seating of the gasket structure on the base plate than drives using a purely elastomeric gasket.
  • Gasket 316 further provides a seal for the hermetically sealed, controlled environment between cover 314 and base 312.
  • gasket 316 has a lateral strength superior to that of purely elastomeric gaskets.
  • An actuator assembly 324 positions heads 326a-d with respect to disks 320 and 321; heads 326a and 326b read information from and write information to respective, opposed surfaces of disk 320, and heads 326c and 326d read information from and write information to respective, opposed surfaces of disk 321.
  • Disks 320,321 may comprise plated magnetic disks with an intensity of 1400 Oe. Table 6 below specifies certain characteristics of disks 320 and 321 and heads 326a-d.
  • Heads 326a-326d may comprise thin film, air bearing heads capable of operating at a minimum flying height of 4.3 micro-inch, with a gap width of approximately 7.5 micron, a gap length of approximately 0.4 micron, with a head gram load of approximately 5 grams.
  • Controller 327 including printed circuit board 328 and the circuitry mounted thereon provides control signals to spin motor 322 and actuator assembly 324, and provides data signals to and receives data signals from heads 326a-d, actuator assembly 324 and spindle motor 322.
  • Header 330 provides all electrical connections between controller 327 and the environment between base 312 and cover 314. Header 330 comprises conductive pins 331 embedded in a plastic header 335 which is then potted in base 212.
  • Bracket 332 supports a flex circuit 333, including a reverse flex circuit loop 334, and connector 336 which provides electrical interconnections between flex circuit 333 and pins 331.
  • Controller 327 may incorporate the system described in the above co-pending application entitled MULTIPLE MICRO CONTROLLER HARD DISK ARCHITECTURE.
  • the third embodiment of the present invention provides a substantial increase in storage capacity within the same physical form factor as the drives of the first and second embodiments by incorporating several different factors.
  • the read/write heads used in the present invention while being of the conventional air- bearing design, utilize a so-called 70% slider, wherein the dimensions of the head and slider have been reduced by approximately 30% from the sliders utilized in the first and second embodiments of the disk drive.
  • the head gap width has been reduced to approximately 7.5 micron, with a gap length of 0.4 micron.
  • the aforementioned controller architecture allows for an increase in the storage capacity of the disk drive to up to about 213 MBytes, using 49 user sectors and providing a data rate of 20 MBytes/second.
  • Printed circuit board 328 is mounted to base 312 by mounting screws (not shown) , and an insulating sheet
  • the disk drive of the third embodiment has a structure which is similar to disk drive 200 of the second embodiment 60 enable two (2) disks, 320 and 321, to lie in parallel planes within a one inch height, three and one-half inch form factor disk drive.
  • the sloped profile of base 12 allowed the use of a fully shrouded power connector 58.
  • base 312 has first and second side rails 313a and 313b, and the mounting surface of base 312 is parallel to the plane defined by support points 315a-g.
  • the space below base 312 is the same at both ends of drive 300; thus, in the third embodiment a sloped profile is not utilized.
  • the placement of motor 322 in well 323, allows two disks 320 and 321 to be provided in substantially parallel planes.
  • Printed circuit board 328 may include an interface connector, power connector, and test connecter similar to that utilized the second embodiment of the drive of the present invention.
  • actuator assembly 324 The specific structure, operation, and features of actuator assembly 324 will be explained with reference to Figs. 14-18 and 20.
  • the function of the actuator assembly 324 is to position heads 326 with respect to the surfaces of disks 320, 321 by pivoting actuator arm assembly 340, and more specifically, to position the heads 326 over individual tracks on disks 320, 321. Heads 326 are supported on actuator arm 340 by load beams 360.
  • a bearing cartridge 362 which is fixed to the base plate 312 at mounting region 312a, is inserted in actuator arm 340 to allow arm 340 to rotate about pivot point "A" (Fig. 20).
  • Actuator arm 340 is attached to bearing cartridge 362 by a clip ring 363.
  • Heads 326 may thus be positioned along an arcuate path at any individual data track between innermost data track 295 and outermost data track 296 by the voice coil motor as described below.
  • the force utilized to pivot arm assembly 340 is provided by a so-called voice coil motor comprising coil 324 (provided on actuator arms 340-1, 340-2), first and second magnets 346a, 346b, top plate 364, bottom plate 366, support post 368, and latch body 370.
  • Actuator assembly 324 provides a unique coil and magnet design which improves the efficiency of the actuator by providing a relatively constant amount of torque on arm 340 throughout its rotational movement.
  • Top and bottom plates 364 and 366 in conjunction with first support post 368 and latch body 370 create returns for the magnetic fields provided by first and second magnets 346a and 346b.
  • the general operation of the voice coil motor is described above with respect to the first and second embodiments.
  • First and second magnets 346a, 346b are bipolar, each having a first and second region 346.,, 346 2 with opposite poles attached to top plate 364 (e.g., the south pole of first magnet 346a and the north pole of second magnet 346b are attached to top plate 364) to provide first and second magnetic fields B 1# B 2 between respective ones of the first and second magnets 346a, 346b and bottom plate 366.
  • First and second magnetic fields B 1/ B 2 are encompassed in closed magnetic field loops provided by top plate 364, bottom plate 366, support post 368, and latch body 370.
  • Actuator coil 342 is positioned so that it carries a current in opposite directions in first and second magnetic fields B. and B 2 .
  • the strength of the magnetic field in this region between magnets 346a, 346b is directly related to the torque which the voice coil exerts on the actuator arm 340, and thus the rotational velocity of actuator 340 and the seek times for the drive.
  • Passing a current in opposite directions in actuator coil 342 provides respective forces F., and F 2 (Fig. 17); these forces F 1 and F 2 pivot actuator arm 340 in opposite directions about an axis passing through the center of bearing assembly 362.
  • Actuator arm 340 may be fabricated of magnesium, including all of the components attached thereto, is precisely balanced, i.e., equal amounts of weight are provided on either side of the pivot point so that the positioning of heads 326 is less susceptible to linear shock and vibration.
  • Figs. 21, 22, and 23 show that the torque generated by the voice coil motor in the first (Fig. 21) and second (Figs. 22-23) embodiments of the present invention decreases as actuator arm 340 positions heads 326 at inside diameter track 295 and outside diameter track 296.
  • Fig. 21 is a graph of the torque applied to actuator arm 40 of the disk drive of the first embodiment of the present invention upon acceleration of arm 40 in response to a seek command from controller 28. As shown in Fig. 21, the loss recorded at the inside and outside diameter position of heads 26 is approximately 6% for the drive tested. Experimental results on a number of similar drives a typical loss at the inside and outside diameters of approximately 10%.
  • Figs. 22 and 23 are graphs showing the relationship between the torque applied on acceleration of the actuator arm 240 of the disk drive of the second embodiment of the present invention in relation to the position of heads 226 at the inside and outside diameter tracks of disk 220. As shown therein, the two drives tested show losses at the inside and outside diameters of the disk of approximately 12% and 10%, respectively.
  • coil 324 and magnets 346a, 346b have been designed to provide both a greater effective area of coil 324 in the presence of the magnetic field B t and B 2 , and a greater magnetic field intensity at the peripheral edges of the magnets.
  • Fig. 20 details the relationship between coil 324 and actuator magnet 346b as such, top plate 364 has been removed. It should be generally understood that the following principles, described in conjunction with magnet 346b, apply equally to magnet 346a provided on top plate 364. In order to compensate for torque losses at the inner diameter and outer diameter, the surface area of magnet 346b is appreciably increased with respect to the actuator magnets shown in the first and second embodiments of the present invention. Specifically, magnet 346b includes a greater surface area at the respective ends 347-1 and 347-2 of the magnet, over which coil portions 324 1 and 324 2 are positioned when heads 326 are at inside diameter 295 or outside diameter 296 of disk 320.
  • magnet edge 348 positioned closest the axis of rotation of actuator 340, is extremely pronounced, and results in the formation of regions 349 1 and 349 2 between edges 347- 1 and 347-2 of magnet 346b and the axis of rotation of actuator body 340.
  • the arcuate shape of magnet edge 348 is such that it has a near tangential relationship with respect to edges 324 3 and 324 4 of coil 324, and is
  • Magnet 346b also includes an outer edge 345, comprising first and second edges 345 1 and 345 2 , meeting, at an angle, at the division of regions 346 1 and 346 2 of magnet 346b.
  • outer edge 345 comprising first and second edges 345 1 and 345 2 , meeting, at an angle, at the division of regions 346 1 and 346 2 of magnet 346b.
  • coil 324 has been modified so that more coil area is provided over the major surface of magnet 346. Specifically, in the disk drive of the second embodiment of the present invention, approximately 35% of the coil area is utilized; in the third embodiment, coil area utilization is increased to approximately 43%.
  • the acceleration torque has a greater "linearity" than the acceleration torque shown in Figs. 21-23. That is, the torque profile of the voice coil motor of the third embodiment is nearly linear between the inner diameter and the outer diameter, exhibiting less of an arcuate shape than the profiles depicted in Figs. 21-23. Magnetic flux and torque loss associated with the positioning of the heads at the inner or outer diameters is markedly reduced, resulting in a total loss of torque of about 3% for the drive tested with respect to Fig. 24.
  • the actuator design of the third embodiment of the present invention results in an improvement of approximately 4.7% in access time.
  • the seek time specification for hard disk drives is determined in relation to the drive's minimal expected efficiency. That is, in conventional drives, the lowest actuator torque constant (K t ) for a given drive between the innermost track and the outermost track of the disk is used to generate the expected seek profiles for the drive. As shown in Figure 25, losses occurring primarily at the peripheral edges of actuator magnets create longer seek times. The benefits of the higher torque magnitudes, generated over the central areas of the magnet, is lost.
  • Actuator disk access is generally divided into three segments controlled by the control means: a full acceleration of the actuator toward the track; a controlled deceleration of the actuator to a point within a specified area near the track (typically 1/4 track width); and a positioning loop, for accurately locating the head over the desired track, also known as "settling.”
  • the raw average access time is defined as comprising the acceleration and deceleration of the actuator.
  • the effective improvement in average access time can be shown mathematically as follows .
  • the raw average access time for a drive, such as that shown in Figs. 13-20, is given by
  • $ s the distance, in radians, of travel from start to finish for the actuator (typically 1/3 of a full stroke, .07 rad) ;
  • J the polar inertia of a moving actuator (23.0 x 10 "6 in lbs 2 );
  • R the resistance, in ohms, of the coil (25fi);
  • K t the motor torque constant (typically 0.7 in- lb/amp) ;
  • V the voltage applied to accelerate the actuator (9.5v).
  • V ⁇ the voltage applied to decelerate the actuator (5v).
  • V ⁇ the voltage applied to decelerate the actuator (5v).
  • the total computed access time is 10.09 ms.
  • Crash stops are provided to limit the pivoting movement of actuator arm 340 so that heads 326 travel only between selected inside and outside diameters 295, 296 of disk 320.
  • An outside diameter crash stop is provided by a sleeve 376 (Figs. 16, 17, and 20) fitted on support post 368.
  • An inside diameter crash stop is provided by the portion of the latch mechanism and is described below. A latch mechanism for locking actuator arm 340 will be described with reference to Figs. 14-20.
  • the latch mechanism of the third embodiment of the disk drive of the present invention utilizes the force of the voice coil actuator magnets 346a and 346b to provide the magnetic retentive force for the latching actuator 340.
  • a capture pin 130 formed of magnetically permeable material is provided in latch arm 340-1.
  • Latch support structure 270 is designed so that the magnetic circuit formed by actuator magnets 346a and 346b provides a flux path through structure 270.
  • Voids 398-1 through 398-4 are formed in structure 270 to channel the magnetic flux from magnets 346a and 346b to air gap 399.
  • air gap 399 has a width W of approximately .012 inches.
  • Capture pin 130 is generally "T"-shaped, including portion 131 extending through a bore in actuator latch arm 340-1 and secured thereto by a snap ring (not shown.
  • the magnetic flux provided by magnets 346a and 346b and channeled through support structure 270 exhibits a fringing effect when the flux encounters gap 399.
  • actuator 340 When actuator 340 is directed to position heads 326 over the landing zone at inner diameter 295, capture pin 130 is drawn into abutment with tabs 398a and 398b of structure 270. As pin 130 engages tabs 398a, 398b, the magnetic flux provided by magnets 346a and 346b passes through pin 130, making pin 130 part of the magnetic circuit formed by structure 270 and magnets 346a, 346b.
  • the latching force provided by the this latching mechanism is 50-60 inchgrams.
  • the amount of latching force may be adjusted by providing a shunt 375 (Fig. 16) across gap 399 to provide a flux path in parallel with the flux fringing about gap 399.
  • Actuator assembly 324 can generate sufficient force to release actuator arm 340 from the latched position.
  • the strength of the latching force is sufficient to retain the actuator in a captured position under non-operating shocks of up to 75 G's.
  • Table 8 specifies certain performance characteristics of disk drive 300.
  • Table 9 specifies certain environmental characteristics of disk drive 300.
  • Table 10 specifies shock and vibration tolerances for disk drive 200. Shock is measured utilizing a % sine pulse, having a ll msec duration, and vibration is measured utilizing a swept sine wave varying at 1 octave per minute.

Abstract

Unité de disques de petite dimension possédant un aimant d'organe de commande (346b) conçu pour créer un couple constant sur la totalité de la plage de déplacement du bras de l'organe de commande. De façon spécifique, l'aimant (346b) possède une zone plus importante sur ses côtés (347-1) et (347-2) qu'en son centre, ce qui amplifie le flux magnétique sur lesdites zones, de façon à compenser des pertes éventuelles. La bobine de l'organe de commande (342) peut déplacer le bras de l'organe de commande dans les deux sens.A small disk unit having a control magnet (346b) designed to create constant torque over the entire range of movement of the control arm. Specifically, the magnet (346b) has a larger area on its sides (347-1) and (347-2) than in its center, which amplifies the magnetic flux on said areas, so as to compensate for possible losses. The coil of the controller (342) can move the arm of the controller in either direction.

Description

Small Size Constant Torque Voice Coil Motor
CONTINUATION APPLICATION INFORMATION This Application is a continuation-in-part of co- pending Application Serial No. 07/549,283, which is a continuation-in-part of co-pending Application Serial No. 147,804, filed January 25, 1988, now U.S. Patent No. 4,965,684.
CROSS-REFERENCE TO RELATED APPLICATIONS
1) DISK DRIVE SYSTEM CONTROLLER ARCHITECTURE, inventors John P. Squires, Tom A. Fiers, and Louis J. Shrinkle, Serial No. 057,289, filed June 2, 1987, now U.S. Patent No. 4,979,056;
2) DISK DRIVE SOFTWARE SYSTEM ARCHITECTURE, inventors John P. Squires, Tom A. Fiers, and Louis J. Shrinkle, Serial No. 488,386, filed February 23, 1990, which is a continuation of Serial No. 057,806, filed June 2, 1987, now abandoned;
3) DISK DRIVE SYSTEM CONTROL ARCHITECTURE UTILIZING EMBEDDED REAL-TIME DIAGNOSTIC MONITOR, inventor John P. Squires, Serial No. 423,719, filed October 18, 1989, now U.S. Patent No. 4,979,055, which is a continuation of Serial No. 058,289, filed June 2,
1987, now abandoned;
4) LOW-POWER HARD DISK DRIVE ARCHITECTURE, inventors John P. Squires and Louis J. Shrinkle, filed August 7, 1990, Serial No. 564,693, which is a continuation of Serial No. 152,069, filed February 4,
1988, now abandoned;
5) DISK DRIVE SYSTEM USING MULTIPLE EMBEDDED QUADRATURE SERVO FIELDS, inventors Louis J. Shrinkle and John P. Squires, Serial No. 386,504, filed July 27, 6) MAGNETIC PARKING DEVICE FOR DISK DRIVE, inventor, Frederick Mark Stefansky, Serial No. 643,703, filed January 22, 1991, which is a continuation of Serial No. 269,873, filed November 10, 1988, now abandoned.
7) MULTIPLE MICRO CONTROLLER HARD DISK DRIVE CONTROL ARCHITECTURE, inventors John P. Squires, Charles M. Sander, Stanton M. Keeler, and Donald W. Clay, Serial No. 07/611,141, filed November 9, 1990. Each of these related Applications is assigned to the assignee of the subject Application and hereby incorporated by reference.
BACKGROUND OF THE INVENTION Field of the Invention. The present invention relates to disk drives; more particularly, to hard (or fixed) disk drives. Description of the Related Art.
Developments in personal computers, portable computers and lap top computers have prompted reductions in the size and increases in memory capacity of disk drives. Attempts to provide further reductions in the size and weight, and increases in durability and memory capacity of existing disk drives have been met with limited success. The size (particularly the height) and weight of fixed or hard disk drives and the inability of existing hard disk drives to withstand physical shocks and/or vibrations have been factors which have prevented the incorporation of fixed disks in lap-top and in some cases even larger portable computers. Existing disk drives incorporate a large number of mechanical parts. Each part in a disk drive also represents an increase in the weight of the drive and the space occupied by the drive. A large number of mechanical components makes manufacturing difficult and expensive and increases the possibility and probability of the mechanical failure of the drive. Importantly, the number of mechanical components is related to the ability of the drive to survive physical shocks and ,* vibrations. i Resistance to physical shocks and vibrations is
,. ' 5 critical to protecting the disk or disks, the head or heads, and the various bearings in a disk drive from damage; in particular, it is necessary to prevent damage to the disks which can cause a loss of data, and damage to the heads or the bearings which can end the life of 10 a drive, resulting in a total loss of data. Prior disk drives, however, have limited resistance to physical shocks. Resistance to physical shocks is of paramount importance in portable computers.
In conventional drives mechanical distortion or
15 flexing of the mechanical components of a disk drive which support the heads and disks causes tracking problems by moving the heads, which are mounted at one point on the supporting components, relative to the disk, which is mounted at another point on the
20 supporting components. The heads associated with the top and bottom surfaces of a disk can move relative to the disk to the point where the different heads are in different cylinders -- a cylinder being defined as a vertical segment representing the same track on the top
25 and bottom surfaces of a disk. This problem is known as mechanical off-track and is compounded by increased track densities.
Another problem with prior disk drives is the difficulty in sealing the drive to protect the disks
30 from contaminants. This difficulty arises in part, from the large number of points at which access is provided
~> to the environment in which the disk resides. These f access points are utilized to bring to the interior of
* the disk drive electrical circuits which provide current
35 to the motor which rotates the disk, transmit data signals to and from heads which read and record information on the disks, and in some instances, provide current to a voice coil for positioning the head (or heads) with respect to the disk or disks.
Many of these disadvantages of prior disk drives are attributable to the casing — a three-dimensional casting or so-called "toilet bowl" — in which the disks reside. Such a casing is a large, three dimensional piece of cast metal, usually aluminum, having a round portion where the disks reside — hence the name "toilet bowl." A top plate covers the entire open top of the casing, forming a seal therewith.
The spindle on which the disks rotate is supported by and extends through both the casing and the cover.
The protrusion of the spindle through the casing and the cover provides possible points of entry for contaminants. Further, in disk drives using stepper motors to position the heads with respect to the disk, the stepper motor is located outside of the casing, requiring a seal between the stepper motor and the casing. Acknowledging the existence of points where contaminants can enter the disk drive, manufacturers of conventional disk drives provide a breather filter and design the disk drives so that the rotation of the disks causes the disk drives to exhaust air through leaks in the seals and to intake air only through the breather filter. However, a fairly course filter must be provided in the breather filter for a flow of air to exist, and thus contaminants enter the disk drive through the filter paper. A cast casing is difficult to manufacture with precision, particularly the location of mounting points for elements of the drive supported by the casing. Mounting holes must be drilled after the casing is cast, and the mounting holes must be aligned with the casing and with each other. More importantly, however, a three-dimensional, cast casing flexes due to thermal stresses causing the above-mentioned mechanical off- track problems .
In conventional disk drives which use a voice coil to pivot an actuator arm in order to position the heads with respect to the disk, a flex circuit, having one end attached to the actuator arm and the other end attached to a fixed point in the disk drive, transfers the information signals to and from the heads. The standard orientation of such a flex circuit is a loop extending away from the disk. The distance between the point at which the flex circuit is attached to the actuator and the end of the disk drive is limited, and thus the radius of the arc or curve of the flex circuit is small and the length of the flex circuit itself is limited. Therefore, the entire flex circuit moves when the actuator arm is pivoted and a torque is exerted on the actuator arm by the flex circuit. The torque exerted on the actuator arm must be compensated for, either added to or subtracted from the torque created by the voice coil, when performing a seek operation. This compensation is complicated by the fact that the torque exerted on the actuator by the flex circuit varies with the position of the actuator.
Various types of locking (or latch) devices have been used to lock the arm of a voice coil in a particular position when the disk drive is not operating. The trend in latch devices is to utilize a high power unit which is separately assembled to provide reliability. However, high power latch devices generate a large amount of heat which is not desirable in a disk drive or any other area in a computer. Further, the operation of conventional latch devices can be position dependent. Thus, the orientation of the disk drive and the computer in which the disk drive is installed could effect the reliability of the latch device. Such a positional dependence of reliability is not satisfactory for portable computers.
With the ever increasing storage capacity available on individual magnetic disks, and the ever increasing speed at which microprocessors such as Intel's 80386 and 80486 chips operate, the data access time of the disk drive is critical to overall system performance. In many cases, the speed at which the disk accesses data and provides it to the microprocessor is the main performance bottleneck in the system. One critical factor in disk access time is the "seek time" of a drive, generally defined as the time the actuator takes to access particular data at a particular track location on the magnetic disk. The total access time is generally a function of the efficiency of the actuator motor in moving the read/write heads along the arcuate path between consecutive tracks of the disk, and the data throughput of the control electronics.
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a disk drive having a low height and a low weight.
A further object of the present invention is to provide a multiple platter (disk) , disk drive having a one inch height form factor.
Another object of the present invention is to provide a disk drive which is resistant to damage from physical shocks.
Another object of the present invention is to provide a low height disk drive having an increased data storage capacity.
Another object of the present invention is to provide a disk drive in which any mechanical off tracking of the heads is mechanically minimized and electronically corrected. Another object of the present invention is to provide a disk drive assembly in which a single electrical connector transfers all electrical currents and data signals from the environment in which the disks reside to the exterior of the environment, and in which a header which communicates those electrical signals through the base plate is the only communication between the interior and exterior of the drive.
Another object of the invention is to provide an improved voice coil motor design, and specifically a disk drive having an efficient actuator positioning mechanism.
These and other objects of the present invention are provided by a disk drive, including: a head-disk assembly, having a base having a top and a bottom, storage means, supported on said top of said base, for storing data, solid storage means comprising two disks, interactive means for reading information from and writing information on said disks, actuator means, supported on said base and responsive to control signals, for selectively positioning said interactive means with respect to said disks means, and a cover sealably attached to said base to enclose said disks, said interactive means, and said actuator means; and control means, mounted on said head-disk assembly so that said control means is adjacent to said bottom of said base, for generating control signals to control said actuator means and for providing information signals to and receiving information signals from said interactive means, said head-disk assembly, said control means having an overall maximum height of approximately one inch ( 1" ) .
A specific advantage of the present invention is that the disk drive has a reduced height with respect to conventional disk drives utilizing disks of approximately the same diameter. In particular, the three and one-half inch (3.5") single platter and multiple platter drives of the present invention have an overall height of one inch (1"). Furthermore, the disk drive of the present invention is light in weight — the drives of the present invention weighs slightly more than one pound.
A further advantage of the present invention is that a single electrical connector (header) transfers all electrical signals between the exterior and the interior of the casing, thereby reducing the possibility of the introduction of contaminants into the controlled environment within the casing. Importantly, the disk drive of the present invention does not require a breather filter. A further advantage of the disk drive of the present invention is that it includes a voice coil actuator assembly including means for mounting a plurality of read/write heads with respect to a storage means; and means for positioning said mounting means at a plurality of positions with respect to said disk, wherein said means for positioning has relatively equal efficiency between the inside diameter and the outside diameter of the disk.
BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1-7 illustrate a first embodiment of the disk drive of the present invention. In particular:
Fig. 1 is an isometric view of the first embodiment of a disk drive according to the present invention;
Fig. 2 is an isometric view of the first embodiment of the disk drive of the present invention with the cover removed;
Fig. 3 is a cross-sectional view along line 3-3' of Fig. 2;
Fig. 4 is an exploded view of the first embodiment of the disk drive of the present invention; Fig. 5 is an end view of the first embodiment of the disk drive of the present invention;
Fig. 6 illustrates the actuator assembly; and
Fig. 7 illustrates the latch mechanism. Figs. 8-12 illustrate a second embodiment of the disk drive of the present invention. In particular:
Fig. 8 is an isometric view of the second embodiment of a disk drive according to the present invention with the cover removed; Fig 9 is an exploded isometric view of the second embodiment of the disk drive of the present invention;
Fig. 10 is an exploded, isometric, bottom view of the printed circuit board and the base of the second embodiment of a disk drive according to the present invention;
Fig. 11 is an end view of the second embodiment of a disk drive according to the present invention;
Fig. 12 is an exploded, isometric view of a portion of the actuator and the latch mechanism utilized in the second embodiment of the present invention.
Figs. 13-19 illustrate a third embodiment of the disk drive of the present invention. In particular:
Fig. 13 is an exploded, isometric view of the third embodiment of the disk drive according to the present invention;
Fig. 14 is a plan view of the third embodiment of the disk drive according to the present invention;
Fig. 15 is a view along line 15-15 in Fig. 14;
Fig. 16 is an exploded, partial view of the actuator assembly of the third embodiment of the disk drive of the present invention;
Fig. 17 is a partial plan view of the actuator assembly of the third embodiment of the present invention; Fig. 18 is a cross-sectional view along line 18-18 in Fig. 17; Fig. 19 is an enlarged, cross-sectional view of the gasket and cover assembly along line 19-19 in Fig. 13.
Fig. 20 is a plan view of the actuator assembly of the third embodiment of the present invention with the top plate and top magnet removed, detailing the relationship between the actuator coil and actuator magnet construction used therein.
Fig. 21 is a graph representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the first embodiment of the disk drive of the present invention over the full stroke of the actuator's movement from the inner diameter to the outer diameter of the disk.
Figs. 22-23 are graphs representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the second embodiment of the disk drive of the present invention over the full stroke of the actuator's movement.
Fig. 24 is a graph representing the relative magnitude of the torque exerted on an actuator arm by the voice coil motor of the third embodiment of the disk drive of the present invention over the full stroke of the actuato 's movement.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Disk drives according to the present invention will be described with reference to Figs. 1-24. The disk drives described herein include, for example, one or two hard disks with a magnetic coating and utilize Winchester technology; however, the disk drive of the present invention may utilize various numbers of disks and other types of disks, for example, optical disks, and other read/write technologies, for example, lasers. The diameter of the disks utilized in the disk drive of the present invention have a diameter on the order of 3.75 inches, or so-called "3% inch" disks; the disk drive of the present invention can be implemented with disks of other diameters whether larger or smaller than 3.75 inches.
A disk drive in accordance with either the first, second, or third embodiments of the present invention has the following outline dimensions: Height 1.0" (2.54 cm); Length 5.75" (14.61 cm); and Width 4.0" (10.16 cm). The total weight is slightly over one (1) pound; for the first embodiment, 1.3 lbs (0.59 kg) for the second embodiment, and 1.16 lbs for the third embodiment. Thus, the disk drive of the present invention is one-half (%) of the size of a one-half (%) height 5-1/4" inch disk drive. Importantly, the disk drive of the present invention weighs approximately 1/3 to 1/2 of the weight of standard 3%" disk drives of 20 Mb capacity. Even greater proportional reductions are provided when the first embodiment is formatted for 40 Mb capacity, and the second embodiment is formatted for 120 Mb capacity, and the third embodiment is formatted with a storage capacity of approximately 213Mb, without any change in size or weight.
Although not to scale, Figs. 1, 14, and 15 illustrate the relationship between the length, width, and height of the disk drive, and thus low profile of the disk drive. In particular, the height "H" of the disk drive of the present invention is one inch (1"). First Embodiment and Common Features
One feature of the first embodiment which provides the low height of the drive is the sloped profile of base plate 12 and cover 14. The sloped profile provides extra vertical space below base plate 12 at the first end 10a of the disk drive and provides extra vertical space between base plate 12 and cover 14 at the second end 10b of the disk drive 10. If the sloped profile were not provided, the amount of space allocated above and below base plate 12 would be the maximum amount of space provided at the respective first and second ends 10a, 10b of the disk drive 10; accordingly, the overall height of the disk drive would be increased. The cover 14 is sealably attached to base plate 12 to provide a controlled environment between base plate 12 and cover 14. A gasket 16 (Fig. 4) between base plate 12 and cover 14 provides the seal. The ability to provide a controlled environment alleviates the need for a breather filter and allows the disk drive of the present invention to use an internal air filtration system. The seal provided by gasket 16 is stable, during operation of the disk drive, at pressures experienced at altitudes from 200 feet below sea level to 10,000 feet above sea level. As shown in Fig. 2 the internal components of the disk drive are separated into three interrelated groups: disk 20 and spin motor 22, actuator assembly 24 for positioning heads 26 with respect to disk 20, and header assembly 28 including header 30, bracket 32, reverse flex circuit 34 and coil 36 for pivoting latch arm 38. Actuator assembly 24 includes pivotable actuator arm 40, heads 26 (Fig. 4) mounted at a first end of actuator arm 40, an actuator coil 42 mounted at a second end of actuator arm 40 on the opposite side of the pivot point from the first end of the actuator arm, and a magnet structure 44. Magnet structure 44 supports magnets 46 (Fig. 4) and its components, as described in detail below, are formed of magnetically permeable material to provide returns for the magnetic fields generated by magnets 46. The magnet structure 44 and actuator coil 42 are arranged so that a current in coil 42 passes through the magnetic fields created by magnets 46 to create a force which pivots actuator arm 40. Currents passing in opposite directions of coil 42 create torques in opposite directions and pivot actuator arm 40 to - Im ¬ position heads 26 at all locations between and including inside and outside diameters 48 and 50 of disk 20.
In a conventional disk drive utilizing a voice coil, a flex circuit is provided in the region between header 30 and actuator arm 40. Reverse flex circuit 34 curves toward the disk, thereby allowing latch coil 36 to be placed between header 30 and actuator arm 40.
A printed circuit assembly (or control means) 52 is attached to the bottom of base plate 12. Header 30 carries all of the electrical signals from the printed circuit assembly 52 to the controlled environment between base plate 12 and cover 14. Header 30 has a minimum number of pins due to the fact that a DC motor requiring only three (3) leads is utilized. Such a motor is described in U.S. Patent No. 4,876,491, entitled METHOD AND APPARATUS FOR BRUSHLESS DC MOTOR SPEED CONTROL, filed July 1, 1986, inventors John P. Squires and Louis J. Shrinkle, assigned to the Assignee of the subject application. The structure of the disk drive 10 of the present invention which provides the disk drive with a low overall height will be described with reference to Fig. 3, which is a cross-sectional view along line 3-3' in Fig. 2, and Fig. 5. As shown in Fig. 5, base plate 12 includes two rails 54a and 54b at first and second sides 12c and 12d of base plate 12. Rails 54a and 54b are constructed so that the mounting surface 12e of the base plate 12 sits at an angle with respect to the plane of the surface on which rails 54a and 54b rest. This angled relationship of base plate 12 and the support surface provides more room below base plate 12 at the first end 12a of the base plate than at the second end 12b of the base plate. Only a small amount of space is necessary for printed circuit assembly 52, including the components mounted thereon; however, it is necessary to provide a connector 56 and a power plug 58 on printed circuit assembly at the first end 12a of base plate 12, both of which require more space than the printed circuit assembly 52. The slope of base plate 12 provides the necessary vertical space for connector 56 and power plug 58 beneath the first end of the base plate 12a. Connector 56 provides an interface between the printed circuit assembly 52 and a host computer (not shown) and power plug 58 provides an interface between printed circuit assembly 52 and an external power source (not shown) .
Conversely, disk 20 is the only component located above the first end of the base plate 12a, whereas the actuator assembly 24 is located above the second end of the base plate 12b. Actuator assembly 24 requires more vertical space than disk 20 and the slope of base plate 12 provides more space above the second end of the base plate 12b than above the first end of the base plate 12a in order to accommodate the actuator assembly 24. As shown in Fig. 1 the portion of cover 14 which meets with base plate 12 has an angle which corresponds to the angle of the base plate, and thus the top of the cover 14 is parallel with the support surface. Therefore, even though the base plate is sloped, the profile of the disk drive 10 is a rectangle as opposed to a parallelogram.
Disk 20 lies in a plane which is parallel to the support surface and which forms an angle with the plane of base plate 12. All of the support points on the mounting surface 12e of base plate 12 are designed so that the internal components (e.g., actuator assembly 24) lie in plane parallel to the plane of disk 20 and the plane defined by support points 55 of rails 54a, 54b.
The structure and operation of actuator assembly 24 will be explained with reference to Figs. 4-7. The function of the actuator assembly 24 is to position heads 26 with respect to the surfaces of disks 20 by pivoting actuator arm assembly 40. More specifically, to position the heads 26 over individual tracks on disk 20. Heads 26 are supported on actuator arm 40 by flexures 60. A bearing cartridge 62, which is fixed to the base plate 12, is inserted in actuator arm 40 to provide a pivot point. Actuator arm 40 is attached to bearing cartridge 62 by a clip ring 63. Using clip ring 63 instead of epoxy allows the bearing cartridge 62 to be tested prior to assembly and cleaned independently of the actuator arm 40. Actuator coil 42 is provided on actuator arm 40 on the opposite side of the pivot point from heads 26. Actuator arm 40, including all of the components attached thereto, is precisely balanced, i.e., equal amounts of weight are provided on either side of the pivot point so that the positioning of heads 26 is less susceptible to linear shock and vibration.
The force utilized to pivot arm assembly 40 is provided by a voice coil assembly. The voice coil assembly includes actuator coil 42 and magnet structure 44. Magnet structure 44 comprises top and bottom plates 64, 66 formed of magnetically permeable material, support posts 68, 70 also formed of magnetically permeable material, and first and second magnets 46a, b attached to the top plate 64. Top and bottom plates 64, 66 in conjunction with support posts 68, 70 function as returns for the magnetic fields provided by first and second magnets 46a, b. It is important that there are no air gaps between support posts 68, 70 and either the top or bottom plate 64, 66; any air gap would create a discontinuity in the return, greatly reducing the strength of the magnetic field.
First and second magnets 46a, b have opposite poles attached to top plate 64 (e.g., the south pole of first magnet 46a and the north pole of second magnet 46b are attached to top plate 64) to provide first and second magnetic fields Bt, B2 between respective ones of the first and second magnets 46a, b and bottom plate 66. First and second magnetic fields B^, B2 are encompassed in three closed magnetic field loops. The first closed magnetic field loop extends between the first magnet 46a and bottom plate 66 and passes through a return provided by bottom plate 66, first support 68, and top plate 64. The second closed magnetic loop passes from first magnet 46a to bottom plate 66, through bottom plate 66 and between bottom plate 66 and second magnet 46b, and from second magnet 46b to first magnet 46a via top plate 64. The third closed magnetic loop extends between bottom plate 66 and second magnet 46b and passes through a return provided by top plate 64, second support 70, and bottom plate 66. By containing the magnetic fields B and B2, in returns, the magnetic field intensity of each field is increased in the region between the respective first and second magnets 46a, b and bottom plate 66; the strength of the magnetic field in this region is directly related to the torque which the voice coil exerts on the actuator arm 40, and thus the rotational velocity of actuator 40 and the seek times for the drive.
Actuator coil 42 is positioned so that it carries a current in opposite directions in first and second magnetic fields E and B2.
The force on a current carrying wire in a magnetic field is proportional to the magnetic field intensity, and is expressed by the equation F = idϊ x B, where F is the force, i is the current, ϊ is the length of the wire, and B is the magnetic field. Passing a current in opposite directions in actuator coil 42 provides respective forces F^ and F2 (Fig. 2); these forces F1 and
F2 pivot actuator arm 40 in opposite directions. Crash stops are provided to limit the pivoting movement of actuator arm 40 so that heads 26 travel only between selected inside and outside diameters 48, 50 of disk 20. An outside diameter crash stop is provided by a sleeve 76 (Fig. 5) fitted on support post 68. When the pivoting motion of actuator arm 40 places heads 26 at the outside diameter 50 of disk 20 a portion of the actuator arm 40 contacts outside diameter crash stop 76, thereby preventing further movement of the heads 26. An inside diameter crash stop is provided by the portion of the latch mechanism (Fig. 7) and is described below. Reverse flex circuit 34 for carrying electrical signals from header 30 to heads 26 and actuator assembly 24 will be described with reference to Figs. 2, 4, 6 and 7. The reverse flex circuit is separated into three portions. A first portion 80 carries current to actuator coil 42. A second portion 82 is a ground plane which separates the current carrying portion 80 from a third data carrying portion 84. The data carrying portion 84 provides signals to heads 26 for recording information on disk 20 and carries signals from the heads' 26 to the printed circuit assembly 52, via header 30, when reading data from disk 20. Interference with the relatively weak data signals which would otherwise be caused by the larger currents necessary for actuator coil 42 passing through the first portion 80 of the reverse flex circuit 34 is prevented by the provision of ground plane 82.
The reverse flex circuit 34 is electrically connected to pins 31a of header 30; however, pins 31a also serve to position the reverse flex circuit 34. In particular, bracket 32 supports reverse flex circuit 34 and latch coil 36. Bracket 32 is attached to base plate 12 by a single attachment point 86 and is rotationally positioned by the engagement of reverse flex circuit 34 and pins 31a -- the positioning of latch coil 36 being important to the operation of the latch mechanism as described below. A stiffener 88 is attached to reverse flex circuit 34 in the area where it engages pins 31a and is attached to bracket 32 to provide the rigidity necessary to rotationally position bracket 32, and to facilitate engagement of reverse flex circuit 34 and pins 31a. Reverse flex circuit 34 is parallel to the plane of base plane 12 in the region of header 31 but passes through a bend of approximately 90 degrees so that it forms the loop which extends towards disk 20 and connects header 30 to actuator assembly 24. First portion 80 of reverse flex circuit 34 terminates at the point where reverse flex circuit 34 joins actuator arm 40; however, the second and third portions 82 and 84 wrap around a shoulder 90 of actuator arm 40 which surrounds bearing cartridge 62. Wrapping the second and third portions 82 and 84 of reverse flex circuit 34 around shoulder 90 provides access to current-carrying wires are provided on the side of the flex circuit which faces the base plate in the region where reverse flex circuit 34 engages pins 31a of header 30, and thus on the inside of the curved portion of reverse flex circuit 34 extending from bracket 32 to actuator arm 40. As the first and second portions 82 and 84 wrap around shoulder 90, the side of reverse flex circuit 34 on which the current-carrying wires are provided is exposed at the end of reverse flex circuit 34, facilitating the attachment of wires 91 which connect heads 26 to reverse flex circuit 34. If wires 91 were to be connected to reverse flex circuit 34 at the point where reverse flex circuit 34 first contacts actuator arm 40, it would be necessary to wrap wires 90 around reverse flex circuit 34 or to provide connections through the reverse flex circuit 34 — both being more complex and less desirable manners of providing electrical connections between wires 91 and reverse flex circuit 34. Any torque exerted on actuator arm 40 by any means other than the voice coil assembly affects the function of actuator assembly 24 in positioning heads 26 with respect to disk 20, particularly the track following any seek functions described in the above-referenced patents entitled DISK DRIVE SOFTWARE SYSTEM ARCHITECTURE and DISK DRIVE SOFTWARE SYSTEM ARCHITECTURE UTILIZING IMBEDDED REAL TIME DIAGNOSTIC MONITOR. The force provided by the voice coil assembly must be controlled to compensate for the force exerted by the reverse flex circuit 34. Accordingly, the radius R (Fig. 7) of the curve in reverse flex circuit 34 is made as large as possible to minimize the torque exerted on actuator arm 40 by reverse flex circuit 34. Indeed, the radius of the curve in reverse flex circuit 34 is approximately twice as large as the radius in the curve of a conventional flex circuit. In addition, the reverse flex circuit 34 moves in an essentially linear manner when actuator arm 40 rotates, whereas a conventional reverse flex circuit must bend throughout its curve. Accordingly, the torque exerted on actuator arm 40 by reverse flex circuit is greatly reduced with respect to the torque exerted by a conventional flex circuit.
Another advantage provided by reverse flex circuit 34 is the ability to place latch coil 36 in a position where a conventional flex circuit would be located, and thus to integrate latch coil 36 with reverse flex circuit 34 and bracket 32. Separate wires from header 30 to latch coil 36 are not necessary. Further, installing this integrated group of components requires fewer steps than installing individual components . In addition, the critical positioning of latch coil 36 is provided by reverse flex circuit 34 and stiffener 88 controlling the pivotal position of bracket 32, as described above. All connections between the sealed environment between base plate 12 and cover 14 and printed circuit assembly 52 are provided by header 30. Pins 31a, which engage reverse flex circuit 34, also engage motor wire connector 92. Pins 31b extend below base plate 12 and engage a rear entry connector (not shown) on printed circuit assembly 52. A rear entry connector is utilized because the integrated and discrete circuit components and the surface wirings are on the side of printed circuit assembly 52 facing away from base plate 12.
A latch mechanism for locking the actuator arm 40 in an orientation where heads 26 are positioned at the inside diameter 48 of disk 20, will be described with reference to Figs. 4, 5 and 7. During power-down of the disk drive 10 control means 52 causes actuator assembly 24 to pivot the actuator arm 40 to the position where the heads 26 are at the inside diameter of the disk over a non-data area of disk 20 before the rotational speed of the disk 20 is decreased to the point where the heads 26 land on the disk 20. Thus, the heads 26 land only on the non-data area at the inside diameter of the disk 20. The electromagnetic latch includes latch coil 36, a latch arm 38 which pivots on pivot 94 and has a finger 96 for engaging latch notch 98 in actuator arm 40, and a spring 100 for biasing the latch arm 38 to the locked position. An electromagnet, including latch coil 36 and swivel plate 104, is used to pivot latch arm 38 to the unlocked position against the force of spring 100. Latch coil 36 includes a capture plate 106 having an outer wall 108 and a center pole 110. The outer wall 108 and center pole 110 form opposite poles of an electromagnet, and when a current is passed through a coil (not shown) the magnetic field of capture plate 106 attracts swivel plate 104; swivel plate 104 is mounted on the latch arm 38 so that it can swivel in all directions and be flush with the outer wall 108 when the swivel plate 104 is captured by the electromagnet. Contact between the entire outer wall 108 and swivel plate 104 is necessary to provide reliability in the capture and retention of the swivel plate 104. Center pole 110 of capture plate 106 is stepped so that only a small contact area exists between center pole 110 and swivel plate 104; this small contact area causes the latch coil 36 to release the swivel plate 104 when the current in the coil (not shown) is discontinued. A high DC voltage is applied to the latch coil 36 for a short time to capture the swivel plate 104. Then, the applied voltage is reduced to a small capture maintenance level. Thus, this structure is low in power consumption and heat dissipation. Further, despite the low power consumption of the latch coil 36 it is highly reliable in its capture, holding, and release of swivel plate 104.
Spring 100 is a linear spring engaging finger 96. To reduce spring travel, thereby providing a constant and larger spring force, spring 100 is terminated outside the pivot point of pivot 94. Finger 96 also serves as the inside diameter crash stop. Finger 96 is well suited for the inside diameter crash stop because it is positioned to engage notch 98 which is at one edge of opening 102 in actuator arm 40. The abutment of finger 96 and the same edge of opening 102 when the latch is unlatched provides the inside diameter crash stop. However, the pivoting movement of latch arm 38 in moving to the latched position reduced the distance between pivot 94 and the edge of opening 102. Therefore, the actuator arm 40 pivots slightly to move the heads beyond the inside diameter 48 to a non- data area.
The above-described structure of the disk drive of the present invention provides excellent protection from shock and vibration. In particular, the disk drive will withstand nonoperating shocks of 200g's and operating shocks, without nonrecoverable errors, of 5g's. Nonoperating vibration of 2g's in the range of 5-500 Hz is the specified tolerable limit. Operating vibration, without nonrecoverable data, is specified at 0.5g's for the range of 5-500 Hz. The disk 20 has 752 tracks per surface due to the ability of the actuator assembly 24 to operate with a track density of 1150 tracks per inch. Thus, utilizing 26 blocks per track and 512 bytes per block, the disk drive of the first embodiment has a formatted capacity of 20 MBytes. The actuator assembly 24 provides an average seek time of 28 ms and a traσk-to-track seek time of 7 ms. The average seek time is determined by dividing the total time required to seek between all possible ordered pairs of track addresses by the total number of ordered pairs addressed.
The assembly of the disk drive 10 of the present invention requires less steps than assembly of conventional disk drives. The spin motor 22 and disk 20 are attached to base plate 12. Then, an integrated actuator group, including actuator arm 40, bracket 32, reverse flex circuit 34, and latch coil 36, all previously assembled, is installed. Magnet structure 44 is then placed on one of its attachment points and pivoted into position so that the portion of actuator arm 40 holding actuator coil 42 extends between the top and bottom plates 64, 66 of the magnet structure 44. Latch arm 36 is then placed on its pivot point. The disk 20 is then pack written, and thereafter cover 14 is attached. Finally, printed circuit assembly 52 is attached outside of the clean room. Second Embodiment
A disk drive 200 in accordance with the second embodiment of the present invention will be described with reference to Figs. 8-12. As shown in Figs 8-10, the construction of disk drive 200 includes a base 212 and a cover 214. Gasket 216 provides a sealed, controlled environment between base 212 and cover 214. First and second disks 220, 221 are supported on base 212 and rotated by spin motor 222. Motor 222 is mounted in a well 223 in base 212, thereby allowing lower disk 221 to be as close as possible to the top surface of base 212.
An actuator assembly 224 positions heads 226a-d with respect to disks 220 and 221; heads 226a and 226b read information from and write information to respective, opposed surfaces of disk 220, and heads 226c and 226d read information from and write information to respective, opposed surfaces of disk 221. Tables 1 and 2 below specify certain characteristics of disks 220 and 221 and heads 226a-d.
T bl 1
Number of Disks Number of Data Surfaces Number of Data Cylinder (Tracks per surface) Sectors per Track
Bytes per Sector Data Bytes per Sector Data Capacity per Data Surface (formatted) Total Data Capacity (formatted) 120 Mbytes
Disk Diameter
Data Track Band Width
Track Density Bit Density (max)
Controller 227, including printed circuit board 228 and circuitry 229 mounted on circuit board 228, provides control signals to spin motor 222 and actuator assembly 224, and provides data signals to and receives data signals from heads 226a-d. Header 230 provides all electrical connections between controller 227 and the environment between base 212 and cover 214. Header 230 comprises conductive pins 231 embedded in a plastic header 232 which is then potted in base 212. A reverse entry connector 237 mounted on the front side 228a of printed circuit board 228 receives pins 231; pins 231 pass through printed circuit board 228 to enter connector 237. Bracket 237 supports a flex circuit 233, including a reverse flex circuit loop 234, and connector 236 which provides electrical interconnections between flex circuit 233 and pins 231.
With reference to Fig. 12, actuator assembly 224 includes pivotable actuator arm 240 and an actuator motor. The actuator motor is a so-called voice coil motor comprising coil 242 (provided on actuator arm
240), first and second magnets 246a, 246b, top plate
264, bottom plate 266, first support post 268, and second support post 270. Top and bottom plates 264 and
266, in conjunction with first and second support posts 268, 270 create returns for the magnetic fields provided by first and second magnets 246a and 246b. The operation of the voice coil motor is described above with respect to the first embodiment.
The structure which enables disk drives 200 of the second embodiment of the present invention to include 2 disks, 220 and 221, lying in parallel planes within a one inch height form factor disk drive will be described with reference to Figs. 8-10. In the first embodiment of the present invention the sloped profile of base 12 allowed the use of a fully shrouded power connector 58. In particular, power connector 58 was provided at the first end 10a of disk drive 10 where the sloped profile provided more room underneath base 12 and less room between base 12 and the top of cover 14. In the second embodiment, base 212 has first and second side rails 213a and 213b, and the mounting surface of base 212 is parallel to the plane defined by support points 215a- g. The space below base 212 is the same at both ends of drive 200; in the second embodiment a sloped profile is not utilized. In comparison with the first embodiment, the uniform height of rails 213a and 213b is the same as the height to rails 54a and 54b at the second end 10b of drive 10. Accordingly, the space between base 212 and cover 214 is increased at the end of drive 200 where disks 220 and 221 reside. This increased space between base 212 and cover 214, combined with the placement of motor 222 in well 223, allows two disks 220 and 221 to be provided in substantially parallel planes.
Printed circuit board 228 is mounted to base 212 by screws 254a-c, and an insulating sheet 255 is provided between printed circuit board 228 and base 212 to prevent short circuiting of the solder points appearing on the back side 228b of printed circuit board 228 which faces base 212. Printed circuit board 228 has an opening 253, and well 223 protrudes through opening 253. The reduced height of rails 213a and 213b at the end of drive 200 where interface connector 256 and power connector 258 reside required the removal of part of the shrouding from power connector 258. Thus, pins 259 of electrical connector 258 are not protected by shroud 260 in the region between pins 259 and base 212. However, because the connector which attaches to pins 259 is itself insulated, there is no danger of shorting pins 259 to base 212. A third connector 259, used for test purposes, is provided at the opposite end of drive 200 from connectors 256 and 258, as shown is Fig. 11.
A latch mechanism for locking actuator arm 240 will be described with reference to Figs. 11 and 12. The latch mechanism includes a magnet assembly 280 provided on second support post 270 and latch arm 282, including latch finger 283, mounted on actuator arm 240. Magnet assembly 280 has a slot 284 and contains the magnetic field provided by a magnet (not shown) so that the magnetic field affects latch finger 283 only when latch finger 283 enters slot 284.
A resilient element 285 provided in slot 284 of magnet assembly 288 functions as the inside diameter crash stop. A sleeve 288 provided on first support posts 268, combined with tab 290 on actuator arm 240 function as the outside diameter crash stop.
Table 3 specifies certain performance characteristics of disk drive 200.
Table 3
Seek Times
Track to Track 8 msec Average sub-19 msec
Maximum 35 msec
Average Latency 8.8 msec
Rotation Speed (±.1%) 3399RPM
Controller Overhead 1 msec Data Transfer Rate
To/From Media 1.5 MByte/sec
Data Transfer Rate
To/From Buffer 4.0 MByte/sec
Interleave 1-to-l Buffer size 64K byte
All seek times are determined for nominal d.c. input voltages. Average seek times are determined by dividing the total time required to seek between all possible ordered pair of track addresses by the total number of ordered pairs.
Table 4 specifies certain environmental characteristics of disk drive 200. Table 4
Temperature Operating 5 ° to 55' Non-operating -40*C to 60°C
Thermal Gradient 20'C per hour maximum
Humidity
Operating 8% to 80% non-condensing Non-operating 8% to 80% non-condensing Maximum Wet Bulb 26*C Altitude (relative to sea level)
Operating -200 to 10,000 feet
Non-operating (max.) 40,000 feet
Table 5 specifies shock and vibration tolerances for disk drive 200. Shock is measured utilizing a sine pulse, having a 11 msec duration, and vibration is measured utilizing a swept sine wave varying at 1 octave per minute.
Table 5
Non-operating shock 75 G's
Non-operating vibration 5-62 Hz 0.020" (double amplitude) 63-500 Hz 4 G's (peak)
Operating shock 5 G's
(without non-recoverable errors)
Operating vibration 5-27 HZ .025" (double amplitude) 28-500 HZ .5 G's (peak) (without non-recoverable errors)
Third Embodiment
A disk drive 300 in accordance with the third embodiment of the present invention will be described with reference to Figs. 13-24.
As shown in Figs. 13-20, the construction of disk drive 300 includes a base 312 and a cover 314, both generally formed of aluminum. Gasket 316 provides a sealed, controlled environment substantially isolated from ambient atmospheric pressures between base 312 and cover 314. As will be discussed in further detail below, a unique, elastomeric and metal gasket provides improved sealing of the disk drive in accordance with the third embodiment. First and second disks 320, 321 are supported on base 312 and rotated by spin motor 322. Motor 322 is mounted in a well 323 in base 312, thereby allowing lower disk 321 to be as close as possible to the top surface of base 312. Gasket 316 is formed to have a unique elastomeric and metal structure which provides improved sealing characteristics for disk drive 300 and ease of assembly. Generally, hermetically sealed disk drives utilize gaskets formed entirely of an elastomeric material. As shown in Figs. 13 and 19, gasket 36 includes a metal layer 317 sandwiched between two elastomeric layers 318^ and 3182' In one embodiment, layer 317 is formed of stainless steel and layers 3181 and 3182 are formed of burtyl rubber. The structure of gasket 316 provides easier assembly in the manufacture of drive 300 since the stiffness provided by the metal layer allows easier seating of the gasket structure on the base plate than drives using a purely elastomeric gasket. Gasket 316 further provides a seal for the hermetically sealed, controlled environment between cover 314 and base 312. In this regard, gasket 316 has a lateral strength superior to that of purely elastomeric gaskets. The additional stiffness, yielded through use of a high modulus material, such as burtyl rubber, in conjunction with the stainless steel sandwiched layer, improves the drive's resistance to a phenomenon known as "blow out," which can cause a conventional elastomeric gasket of a hermetically sealed drive to deform with changes in external pressure relative to the pressure within hermetically sealed environment. An actuator assembly 324 positions heads 326a-d with respect to disks 320 and 321; heads 326a and 326b read information from and write information to respective, opposed surfaces of disk 320, and heads 326c and 326d read information from and write information to respective, opposed surfaces of disk 321. Disks 320,321 may comprise plated magnetic disks with an intensity of 1400 Oe. Table 6 below specifies certain characteristics of disks 320 and 321 and heads 326a-d. Heads 326a-326d may comprise thin film, air bearing heads capable of operating at a minimum flying height of 4.3 micro-inch, with a gap width of approximately 7.5 micron, a gap length of approximately 0.4 micron, with a head gram load of approximately 5 grams.
Table 6
Number of Disks Number of Data Surfaces Number of Data Cylinder (Tracks per surface Sectors per Track
Bytes per Sector Data Bytes per Sector Data Capacity per Data Surface (formatted) Total Data Capacity (fo Disk Diameter
Data Track Band Width Track Density Bit Density (max)
Controller 327, including printed circuit board 328 and the circuitry mounted thereon provides control signals to spin motor 322 and actuator assembly 324, and provides data signals to and receives data signals from heads 326a-d, actuator assembly 324 and spindle motor 322. Header 330 provides all electrical connections between controller 327 and the environment between base 312 and cover 314. Header 330 comprises conductive pins 331 embedded in a plastic header 335 which is then potted in base 212. Bracket 332 supports a flex circuit 333, including a reverse flex circuit loop 334, and connector 336 which provides electrical interconnections between flex circuit 333 and pins 331. Controller 327 may incorporate the system described in the above co-pending application entitled MULTIPLE MICRO CONTROLLER HARD DISK ARCHITECTURE. The third embodiment of the present invention provides a substantial increase in storage capacity within the same physical form factor as the drives of the first and second embodiments by incorporating several different factors. Specifically, the read/write heads used in the present invention, while being of the conventional air- bearing design, utilize a so-called 70% slider, wherein the dimensions of the head and slider have been reduced by approximately 30% from the sliders utilized in the first and second embodiments of the disk drive. In addition, the head gap width has been reduced to approximately 7.5 micron, with a gap length of 0.4 micron. In addition, with an increase in the intensity of the storage media to a 1400 Oe plated disk, and an increase in track density to 2496 tracks per inch, the aforementioned controller architecture allows for an increase in the storage capacity of the disk drive to up to about 213 MBytes, using 49 user sectors and providing a data rate of 20 MBytes/second.
Printed circuit board 328 is mounted to base 312 by mounting screws (not shown) , and an insulating sheet
(not shown, similar to sheet 255) may be provided between printed circuit board 328 and base 312 to prevent short circuiting of the solder points appearing on the back side 328b of printed circuit board 328 which faces base 312. Printed circuit board 328 has an opening 353, and well 323 protrudes through opening 353. The disk drive of the third embodiment has a structure which is similar to disk drive 200 of the second embodiment 60 enable two (2) disks, 320 and 321, to lie in parallel planes within a one inch height, three and one-half inch form factor disk drive. In the first embodiment of the present invention the sloped profile of base 12 allowed the use of a fully shrouded power connector 58. In the third embodiment, as in the first embodiment, base 312 has first and second side rails 313a and 313b, and the mounting surface of base 312 is parallel to the plane defined by support points 315a-g. The space below base 312 is the same at both ends of drive 300; thus, in the third embodiment a sloped profile is not utilized. As with the second embodiment of the disk drive of the present invention, the placement of motor 322 in well 323, allows two disks 320 and 321 to be provided in substantially parallel planes.
Printed circuit board 328 may include an interface connector, power connector, and test connecter similar to that utilized the second embodiment of the drive of the present invention.
The specific structure, operation, and features of actuator assembly 324 will be explained with reference to Figs. 14-18 and 20. The function of the actuator assembly 324 is to position heads 326 with respect to the surfaces of disks 320, 321 by pivoting actuator arm assembly 340, and more specifically, to position the heads 326 over individual tracks on disks 320, 321. Heads 326 are supported on actuator arm 340 by load beams 360. A bearing cartridge 362, which is fixed to the base plate 312 at mounting region 312a, is inserted in actuator arm 340 to allow arm 340 to rotate about pivot point "A" (Fig. 20). Actuator arm 340 is attached to bearing cartridge 362 by a clip ring 363. As noted above, using clip ring 363 instead of epoxy allows the bearing cartridge 362 to be tested prior to assembly and cleaned independently of the actuator arm 340. Heads 326 may thus be positioned along an arcuate path at any individual data track between innermost data track 295 and outermost data track 296 by the voice coil motor as described below. The force utilized to pivot arm assembly 340 is provided by a so-called voice coil motor comprising coil 324 (provided on actuator arms 340-1, 340-2), first and second magnets 346a, 346b, top plate 364, bottom plate 366, support post 368, and latch body 370. Actuator assembly 324 provides a unique coil and magnet design which improves the efficiency of the actuator by providing a relatively constant amount of torque on arm 340 throughout its rotational movement. Top and bottom plates 364 and 366, in conjunction with first support post 368 and latch body 370 create returns for the magnetic fields provided by first and second magnets 346a and 346b. (The general operation of the voice coil motor is described above with respect to the first and second embodiments.) It is important that there are no air gaps between support posts 368, latch body 370 and either the top or bottom plate 364, 366; any air gap would create a discontinuity in the return, greatly reducing the strength of the magnetic field.
First and second magnets 346a, 346b are bipolar, each having a first and second region 346.,, 3462 with opposite poles attached to top plate 364 (e.g., the south pole of first magnet 346a and the north pole of second magnet 346b are attached to top plate 364) to provide first and second magnetic fields B1# B2 between respective ones of the first and second magnets 346a, 346b and bottom plate 366. First and second magnetic fields B1/ B2 are encompassed in closed magnetic field loops provided by top plate 364, bottom plate 366, support post 368, and latch body 370. Actuator coil 342 is positioned so that it carries a current in opposite directions in first and second magnetic fields B. and B2. The strength of the magnetic field in this region between magnets 346a, 346b is directly related to the torque which the voice coil exerts on the actuator arm 340, and thus the rotational velocity of actuator 340 and the seek times for the drive.
The force on a current carrying wire in a magnetic field is proportional to the magnetic field intensity, and is expressed by the equation F = idϊ x B, where F is the force, i is the current, ϊ is the length of the wire, and B is the magnetic field. Passing a current in opposite directions in actuator coil 342 provides respective forces F., and F2 (Fig. 17); these forces F1 and F2 pivot actuator arm 340 in opposite directions about an axis passing through the center of bearing assembly 362.
Actuator arm 340 may be fabricated of magnesium, including all of the components attached thereto, is precisely balanced, i.e., equal amounts of weight are provided on either side of the pivot point so that the positioning of heads 326 is less susceptible to linear shock and vibration.
Testing of the voice coil motors of conventional disk drives has shown that the magnetic field strength at the peripheral portions of actuator magnets is less than the magnetic field strength at the central portion of actuator magnet. Presumably, this is because the direction of magnetic flux between plates 364,366 near the central portion of magnets 346a, 346b is essentially vertical, as shown in Fig. 16 by magnetic field vectors B1 and B2. As one moves outward from the line of division between regions 3461 and 3462 toward the periphery of the magnet (sides 347-1 and 347-2), the direction of the magnetic flux tends to become non- perpendicular with respect to the surface of magnets 346a, 346b. This has the effect of reducing the torque exerted by the voice coil motor on the actuator arm 340 when the arm is moving toward the innermost track 295 or outermost track 296. Figs. 21, 22, and 23 show that the torque generated by the voice coil motor in the first (Fig. 21) and second (Figs. 22-23) embodiments of the present invention decreases as actuator arm 340 positions heads 326 at inside diameter track 295 and outside diameter track 296. Fig. 21 is a graph of the torque applied to actuator arm 40 of the disk drive of the first embodiment of the present invention upon acceleration of arm 40 in response to a seek command from controller 28. As shown in Fig. 21, the loss recorded at the inside and outside diameter position of heads 26 is approximately 6% for the drive tested. Experimental results on a number of similar drives a typical loss at the inside and outside diameters of approximately 10%.
Figs. 22 and 23 are graphs showing the relationship between the torque applied on acceleration of the actuator arm 240 of the disk drive of the second embodiment of the present invention in relation to the position of heads 226 at the inside and outside diameter tracks of disk 220. As shown therein, the two drives tested show losses at the inside and outside diameters of the disk of approximately 12% and 10%, respectively. To provide a greater efficiency for the actuator of the third embodiment of the present invention, coil 324 and magnets 346a, 346b have been designed to provide both a greater effective area of coil 324 in the presence of the magnetic field Bt and B2, and a greater magnetic field intensity at the peripheral edges of the magnets.
Fig. 20 details the relationship between coil 324 and actuator magnet 346b as such, top plate 364 has been removed. It should be generally understood that the following principles, described in conjunction with magnet 346b, apply equally to magnet 346a provided on top plate 364. In order to compensate for torque losses at the inner diameter and outer diameter, the surface area of magnet 346b is appreciably increased with respect to the actuator magnets shown in the first and second embodiments of the present invention. Specifically, magnet 346b includes a greater surface area at the respective ends 347-1 and 347-2 of the magnet, over which coil portions 3241 and 3242 are positioned when heads 326 are at inside diameter 295 or outside diameter 296 of disk 320. The curvature of magnet edge 348, positioned closest the axis of rotation of actuator 340, is extremely pronounced, and results in the formation of regions 3491 and 3492 between edges 347- 1 and 347-2 of magnet 346b and the axis of rotation of actuator body 340. The arcuate shape of magnet edge 348 is such that it has a near tangential relationship with respect to edges 3243 and 3244 of coil 324, and is
defined to have a constant radius "X" with respect to
"B", adjacent magnet 346b. In one configuration, radius "X" is approximately .387 inch. Magnet 346b also includes an outer edge 345, comprising first and second edges 3451 and 3452, meeting, at an angle, at the division of regions 3461 and 3462 of magnet 346b. As will be noted from an examination of Fig. 12, only the linear, uncurved portions of coil 242 overlie magnets 246a and 246b in the second embodiment. In the third embodiment of the present invention, coil 324 has been modified so that more coil area is provided over the major surface of magnet 346. Specifically, in the disk drive of the second embodiment of the present invention, approximately 35% of the coil area is utilized; in the third embodiment, coil area utilization is increased to approximately 43%. Thus, a greater amount of coil area is provided in magnetic fields Bn and B2, therefore providing greater efficiency in the voice coil motor of the third embodiment of the present invention and greater torque on actuator arm 340. Specifically, it is estimated that, due to both the improvement in the shape of magnets 346a, 346b and the shape of coil 342, having a small curved area close to actuator pivot point "A", the usable area of the coil is increased in this embodiment to approximately 43%. Further, because of the increased field strength provided by the greater surface area of magnet 346b near magnet ends 347-1 and 347-2, the drop off associated with the acceleration torque in the first and second embodiments of the present invention is reduced. As shown in Fig. 24, the acceleration torque has a greater "linearity" than the acceleration torque shown in Figs. 21-23. That is, the torque profile of the voice coil motor of the third embodiment is nearly linear between the inner diameter and the outer diameter, exhibiting less of an arcuate shape than the profiles depicted in Figs. 21-23. Magnetic flux and torque loss associated with the positioning of the heads at the inner or outer diameters is markedly reduced, resulting in a total loss of torque of about 3% for the drive tested with respect to Fig. 24.
The actuator design of the third embodiment of the present invention results in an improvement of approximately 4.7% in access time.
Generally, the seek time specification for hard disk drives is determined in relation to the drive's minimal expected efficiency. That is, in conventional drives, the lowest actuator torque constant (Kt) for a given drive between the innermost track and the outermost track of the disk is used to generate the expected seek profiles for the drive. As shown in Figure 25, losses occurring primarily at the peripheral edges of actuator magnets create longer seek times. The benefits of the higher torque magnitudes, generated over the central areas of the magnet, is lost. Actuator disk access is generally divided into three segments controlled by the control means: a full acceleration of the actuator toward the track; a controlled deceleration of the actuator to a point within a specified area near the track (typically 1/4 track width); and a positioning loop, for accurately locating the head over the desired track, also known as "settling." The raw average access time is defined as comprising the acceleration and deceleration of the actuator. The effective improvement in average access time can be shown mathematically as follows . The raw average access time for a drive, such as that shown in Figs. 13-20, is given by
where
$s = the distance, in radians, of travel from start to finish for the actuator (typically 1/3 of a full stroke, .07 rad) ;
J = the polar inertia of a moving actuator (23.0 x 10"6 in lbs2);
R = the resistance, in ohms, of the coil (25fi); Kt = the motor torque constant (typically 0.7 in- lb/amp) ;
V = the voltage applied to accelerate the actuator (9.5v); and
V^ = the voltage applied to decelerate the actuator (5v). For purposes of clarity, the above equation neglects the effects of coil inductance, back EMF and assumes a controlled deceleration.
Given the above values, the total computed access time is 10.09 ms. By improving the torque constant, e.g., the "linearity" of the magnetic field over the full stroke of the actuator arm, an improvement in access time for the drive will follow, as shown in the following analysis.
By holding all variables except Kt constant, the torque equation is simplified to
If, then, the torque constant Kt is increased by a factor of 10% so that
Thus, for every 10% improvement in the torque constant, a 4.7% improvement in access time, T, can be seen. Hence, by increasing the total minimum torque constant by increasing surface area of the voice coil magnet and the area of the coil in the field generated by the voice coil magnets, the average seek times for the drive can likewise be decreased.
Crash stops are provided to limit the pivoting movement of actuator arm 340 so that heads 326 travel only between selected inside and outside diameters 295, 296 of disk 320. An outside diameter crash stop is provided by a sleeve 376 (Figs. 16, 17, and 20) fitted on support post 368. When the pivoting motion of actuator arm 340 places heads 326 at the outside diameter 296 of disk 320 portion 242 of actuator arm 340-2 contacts outside diameter crash stop 376, thereby preventing further movement of the heads 326. An inside diameter crash stop is provided by the portion of the latch mechanism and is described below. A latch mechanism for locking actuator arm 340 will be described with reference to Figs. 14-20.
The latch mechanism of the third embodiment of the disk drive of the present invention utilizes the force of the voice coil actuator magnets 346a and 346b to provide the magnetic retentive force for the latching actuator 340.
As can be seen in Figs. 14-20, a capture pin 130 formed of magnetically permeable material is provided in latch arm 340-1. Latch support structure 270 is designed so that the magnetic circuit formed by actuator magnets 346a and 346b provides a flux path through structure 270. Voids 398-1 through 398-4 are formed in structure 270 to channel the magnetic flux from magnets 346a and 346b to air gap 399. Specifically, air gap 399 has a width W of approximately .012 inches. Capture pin 130 is generally "T"-shaped, including portion 131 extending through a bore in actuator latch arm 340-1 and secured thereto by a snap ring (not shown. ) The magnetic flux provided by magnets 346a and 346b and channeled through support structure 270 exhibits a fringing effect when the flux encounters gap 399. When actuator 340 is directed to position heads 326 over the landing zone at inner diameter 295, capture pin 130 is drawn into abutment with tabs 398a and 398b of structure 270. As pin 130 engages tabs 398a, 398b, the magnetic flux provided by magnets 346a and 346b passes through pin 130, making pin 130 part of the magnetic circuit formed by structure 270 and magnets 346a, 346b.
The latching force provided by the this latching mechanism is 50-60 inchgrams. The amount of latching force may be adjusted by providing a shunt 375 (Fig. 16) across gap 399 to provide a flux path in parallel with the flux fringing about gap 399. Generally, there is no need for an additional latch magnet to provide the requisite magnetic latching and releasing forces for the actuator. Actuator assembly 324 can generate sufficient force to release actuator arm 340 from the latched position. The strength of the latching force is sufficient to retain the actuator in a captured position under non-operating shocks of up to 75 G's. Table 8 specifies certain performance characteristics of disk drive 300.
Table 8
Seek Times Track to Track 3 msec
Average 12 msec
Maximum 25 msec
Rotation Speed (±.1%) 4491RPM
Data Transfer Rate To/From Media 20 MByte/sec
Interleave 1-to-l
Table 9 specifies certain environmental characteristics of disk drive 300. Table 9
Temperature Operating 5βC to 55°C Non-operating -40'C to 60°C
Thermal Gradient 20 'C per hour maximum
Humidity
Operating 8% to 80% non-condensing Non-operating 8% to 80% non-condensing Maximum Wet Bulb 26*C Altitude (relative to sea level)
Operating -200 to 10,000 feet
Non-operating (max.) 40,000 feet
Table 10 specifies shock and vibration tolerances for disk drive 200. Shock is measured utilizing a % sine pulse, having a ll msec duration, and vibration is measured utilizing a swept sine wave varying at 1 octave per minute.
Table 10
Non-operating shock 75 G's
Non-operating vibration 63-500 Hz 4 G's (peak)
Operating shock 5 G's
(without non-recoverable errors)
Operating vibration 28-500 HZ .5 G's (peak) (without non-recoverable errors)
The many features and advantages of the disk drive of the present invention will be apparent to those skilled in the art from the Description of the Preferred Embodiments. For example, those skilled in the art will appreciate that the structure of the disk drive of the present invention as described herein can be scaled for use with disk drives having disks with smaller and larger than 3% inches. Thus, the following claims are intended to cover all modifications and equivalents falling within the scope of the invention.

Claims

CLAIMS What is claimed is:
1. A low height disk drive, comprising: a head-disk assembly, including a base having a top and a bottom, a first end and a second end, said base defining a length and a width of said head disk assembly, two disks, supported on said top of said base and lying in substantially parallel planes, said disks having a storage capacity of approximately 200 MBytes, interactive means for reading information from and writing information on said disks, and actuator means, supported on said base and responsive to control signals, for selectively positioning said interactive means with respect to said disks, and a cover sealably attached to said base, said base and cover enclosing said disks, said interactive means, and said actuator means; and control means, mounted on said head-disk assembly so that said control means is adjacent to said bottom of said base and so that said control means is substantially contained within said length and width of said base, for generating control signals to control said actuator means and for providing information signals to and receiving information signals from said interactive means, said head-disk assembly and said control means having complementary configurations to provide said disk drive with an overall maximum height of approximately one inch (1 n) .
2. A low height disk drive according to claim 1, further comprising: a spin motor for rotating said disks; a well provided in said base, said spin motor being mounted in said well; wherein said control means comprises a printed circuit board having an opening, and said well extends into said opening in said printed circuit board.
3. A low height disk drive according to claim 1, further comprising a header provided in said base, wherein said control means comprises a printed circuit board having a top and a bottom, circuit components mounted on the top of said circuit board, and a rear entry connector mounted on top of said circuit board for engaging said header so that the bottom of said circuit board faces said base.
4. A low height disk drive according to claim 1, wherein said head-disk assembly has a length of approximately five and three-quarters inches (5 3/4") and a width of approximately four inches (4").
5. A low height disk drive, comprising: a housing defining the maximum height, length and width of said disk drive, said housing having a height of approximately one inch ( 1" ) , a length of approximately five and three-quarters inches (5 3/4") and a width of approximately four inches (4"), said housing including a base and a cover, sealably attached to said base; and a head-disk assembly, including first and second disks for storing at least 200 MBytes of data, first means, mounted on said base, for supporting and rotating said first and second disks, second means for reading information from and writing information on said first and second disks, and third means, supported on said base and responsive to control signals, for selectively positioning said second means with respect to . said storage means, and fourth means for generating control signals to control said third means and for providing information signals to and receiving information signals from said second means; wherein said cover is sealably attached to said base to enclose said first and second disks, said second means, and said third means.
6. A low height disk drive according to claim 5, wherein: said first and second disks define first and second parallel planes; and said housing has a height no greater than one inch (1") along an axis perpendicular to said first and second parallel planes.
7. A disk drive responsive to a host computer, comprising: a base, said base having a top, a bottom, a well, and first and second side rails extending from the bottom of said base plate; first and second disks having a capacity for storing at least 213 MBytes of data; a motor, mounted in said well, for supporting and rotating said disks; interactive means for reading information from and writing information on said disks; actuator means, supported at the first end of said top of said base plate and responsive to control signals, for selectively positioning said interactive means with respect to said disks; a header provided in said base and having pins extending perpendicular to the bottom of said base plate, said pins being electrically interconnected with said interactive means; control means, confined between said first and second side rails, for generating control signals, and for providing information signals to and receiving information signals from said interactive means via said header, said control means comprising a connector for receiving said pins; and a cover sealably attached to said top of said base to provide a controlled environment between said cover and said base for said disks, said interactive means, and said actuator means, said base said cover, and said control means having an overall, maximum height of one inch (1") or less.
8. A disk drive according to claim 7, wherein: said control means comprises a printed circuit board having circuitry provided thereon and an opening; said printed circuit board has a first surface facing said base plate and a second surface; said connector comprises a rear entry connector mounted on said second surface of said printed circuit board; and said well protrudes through said opening in said printed circuit board.
9. A disk drive according to claim 8, wherein said base plate and said cover have an overall, maximum height no greater than one inch ( 1" ) .
10. A low height disk drive responsive to a host computer, comprising: a head-disk assembly, comprising: a base, two disks, each having a plurality of tracks for storing information, said disks lying in parallel planes, each said disk including an inner diameter and an outer diameter, a motor mounted on said base for rotating said disks, at least two heads for reading information from and writing information on respective ones of said disk, an actuator, supported on said base and responsive to control signals, for selectively positioning said heads with respect to said disks, said actuator having a relatively constant torque when positioning said heads between the inside and outside diameters of the disk, and a cover sealably attached to said base plate means to enclose said disk, said head, and said actuator, said base and said cover having an maximum, overall height of one inch (1") or less along an axis perpendicular to the planes of the disks; and control circuitry, confined within the height of said base and cover, for generating control signals, and for providing information signals to and receiving information signals from said head.
11. A low height disk drive according to claim 10, wherein; said base has a well; said motor is mounted in said well; said control circuiting comprises a printed circuit board having an opening therein; and said printed circuit board being mounted to said base so that said well protrudes through said opening in said printed circuit board protrudes through said opening in said printed circuit board.
12. A low height disk drive, comprising: a base having a top and a bottom, said base including side rails extending from said bottom of said base, said base defining the maximum length and width of said disk drive; one or more disks for storing data; a spin motor, mounted on said top of said base, for supporting and rotating said one or more disks; interactive means for reading information from and writing information on said one or more disks; actuator means, supported on said base and responsive to control signals, for selectively positioning said interactive means with respect to said one or more disks; a cover sealably attached to said base, said base and cover enclosing said one or more disks, said spin motor, said interactive means, and said actuator means, said base and cover defining the overall maximum height of said disk drive, said overall maximum height being approximately one inch ( 1" ) ; and control means, mounted adjacent to said bottom of said base, for generating control signals to control said actuator means and for providing information signals to and receiving information signals from said interactive means, said control means having a length substantially the same as the length of said base and a width less than the distance between said side rails.
13. A low height disk drive according to claim 12, wherein said base and cover enclose said one or more disks, said spin motor, said interactive means, and said actuator means in an environment sealed from ambient atmospheric pressures.
14. A low height disk drive according to claim 13, wherein said base has a length of approximately five and three-quarters inches (5-3/4") and a width of approximately four inches (4").
15. A voice coil actuator assembly for a disk drive, said drive including at least one magnetic disk, comprising: an arm assembly having a first end and a second end, said first end holding at least one read/write head, and said assembly rotating about an axis to position said at least one head with respect to the disk at a plurality of positions over an arcuate path; a magnet for providing a magnetic field, said magnet having a generally arcuate shape first major surface, said magnetic field having direction and magnitude; a coil, provided on said second end of said arm assembly and positioned in the presence of said magnetic field such that a current passing through said coil generates a second magnetic field to position said actuator arm assembly with respect to said disk; wherein the torque on said actuator provided by said coil is approximately constant over the arcuate path of the actuator.
16. The voice coil assembly of claim 15 wherein said magnet includes at least a first major surface defined by a first and second sides and a first and second ends, said surface being positioned adjacent said coil, and wherein said magnet provides a relatively constant amount of magnetic flux over said surface.
17. The voice coil assembly of claim 16 wherein the area of said surface between said first and second sides is greater at locations on said surface adjacent said first and second ends.
18. The voice coil assembly of claim 17 wherein said magnet is bipolar, and said coil has a shape such that a first portion of said coil carrying a current in a first direction overlies a portion of said magnet having a first polarity, and a second portion of said magnet carrying current in a second direction overlies a portion of said magnet having a second polarity, wherein the shape of said coil is arranged such that the wire comprising the coil is substantially perpendicular to the first side of said magnet.
19. A disk drive including: a base plate, having a length and a width defining the maximum length and width of said disk drive; cover sealably attached to said base with a gasket disposed thereinbetween, said cover and base plate defining a maximum height of said disk drive when engaged with said base plate; a spindle motor mounted on said base plate; two magnetic disks mounted on said spindle motor; a plurality of read/write heads; an actuator having said plurality of read/write heads mounted thereon to position said heads with respect to said disks, said actuator having a first and second sub-arms having a coil mounted thereon, said actuator further including first and second magnets positioned such that a current in said coil, in the presence of the magnetic fields provided by said magnets, moves said actuator to position said heads, wherein each said magnet includes a first and a second major surface, a first side and a second side, said second side having an arcuate shape and being positioned closer to said actuator than said first side, and first and second ends, such that the curvature of the second, arcuate side is substantially constant whereby the surface area of said first and second major surfaces is greater towards said first and second ends of said magnet.
20. The disk drive of claim 19 wherein said each said actuator magnet provides a relatively constant amount of magnetic flux over the first and second major surfaces of the magnet between the first and second sides.
21. The disk drive of claim 19 wherein said actuator positions said heads between an inside diameter of each disk and an outside diameter of each disk, and said magnets and said coil provide a relatively constant amount of torque on said actuator.
22. A voice coil motor for an actuator in a disk drive, the actuator including an actuator arm having at least one read/write head positioned thereon, the arm pivoting about a rotational axis to position the head, comprising: a coil positioned on the end of the actuator arm; at least one magnet, said magnet having a first and second major surfaces, an outer edge with respect to the rotational axis of the actuator, an inner arcuate edge with respect to the rotational axis of the actuator, first and second ends between said inner and outer arcuate edges, respectively, wherein the curvature of the inner arcuate edge is relatively constant such that the surface area of said first and second major surfaces is greater towards said first and second ends of said magnet.
23. An actuator motor for rotating an actuator assembly about an axis to position at least one read/write head with respect to a disk, comprising: a magnet assembly including at least one magnet having a major surface and providing a magnetic field with respect to said surface; and a coil mounted on said actuator assembly and positioned in said magnetic field such that a current in said coil creates a force to rotate said assembly about said axis; said motor providing a relatively constant magnitude torque on said actuator throughout the total range of motion of said actuator assembly when the current is applied to the coil.
24. An actuator, comprising: means for mounting a plurality of read/write heads with respect to.a storage disk; and means for positioning said means for mounting to provide said heads at a plurality of positions with respect to said disk between an inner diameter of the disk and an outer diameter of the disk, wherein said means for positioning provides a relatively constant force of motion with respect to each of said positions.
25. The actuator of claim 24 wherein said means for mounting comprises an actuator arm rotatably positioned about a pivot point, having a first end for mounting said plurality of read/write heads, and a second end; and the torque provided by said means for positioning is relatively constant between the inner and outer diameter of the disk.
26. The actuator of claim 25 wherein said means for positioning comprises a coil mounted on the second end of the actuator arm, and at least one magnet positioned such that a current in said coil, in the presence of the magnetic field generated by the magnet, creates the torque on the actuator arm.
27. The actuator of claim 26 wherein the percentage of usable coil area in relation to the magnet is greater than about 40%.
EP92925370A 1991-11-22 1992-11-20 Small size constant torque voice coil motor. Withdrawn EP0613579A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97202839A EP0828241A1 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79657691A 1991-11-22 1991-11-22
US796576 1991-11-22
PCT/US1992/010063 WO1993010531A1 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP97202839A Division EP0828241A1 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor

Publications (2)

Publication Number Publication Date
EP0613579A1 true EP0613579A1 (en) 1994-09-07
EP0613579A4 EP0613579A4 (en) 1995-07-26

Family

ID=25168531

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97202839A Withdrawn EP0828241A1 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor
EP92925370A Withdrawn EP0613579A4 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97202839A Withdrawn EP0828241A1 (en) 1991-11-22 1992-11-20 Small size constant torque voice coil motor

Country Status (4)

Country Link
EP (2) EP0828241A1 (en)
JP (3) JP3436757B2 (en)
KR (1) KR100274667B1 (en)
WO (1) WO1993010531A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672289B1 (en) * 1992-09-23 2000-07-12 Seagate Technology, Inc. Low height two and one-half inch form factor disk drive
US5623759A (en) * 1994-11-09 1997-04-29 Maxtor Corporation Method of attaching a voice coil to an actuator arm
US6505083B1 (en) * 1999-05-07 2003-01-07 Seagate Technology Llc Apparatus for assembling a disc storage system including a modular input/output board
KR20070037419A (en) 2005-09-30 2007-04-04 티디케이가부시기가이샤 Hard disk drive and wireless data terminal using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965684A (en) * 1988-01-25 1990-10-23 Conner Peripherals, Inc. Low height disk drive
JPH02299454A (en) * 1989-05-12 1990-12-11 Fuji Elelctrochem Co Ltd Voice coil motor
WO1992001283A1 (en) * 1990-07-06 1992-01-23 Conner Peripherals, Inc. Low height disk drive

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331991A (en) * 1980-07-02 1982-05-25 Storage Technology Corporation Head actuator for magnetic disk drive
US4725904A (en) * 1981-10-05 1988-02-16 Tandon Corporation Magnetic disk memory apparatus with improved contamination control
US4639863A (en) * 1985-06-04 1987-01-27 Plus Development Corporation Modular unitary disk file subsystem
US4712146A (en) * 1985-06-04 1987-12-08 Plus Development Corporation Thin and compact micro-Winchester head and disk assembly
US4682255A (en) * 1986-02-14 1987-07-21 Hewlett-Packard Company Actuator arm bearing preload arrangement for a rotary disc drive
US4890174A (en) * 1986-04-23 1989-12-26 Rodime Plc Rotary voice coil micro-hard disk drive system
DE3789391T2 (en) * 1986-06-04 1994-06-23 Fujitsu Ltd Magnet disc device.
JPH0424552Y2 (en) * 1986-07-18 1992-06-10
US4979062A (en) * 1987-05-29 1990-12-18 Conner Peripherals, Inc. Disk drive architecture
US4933785A (en) * 1988-03-01 1990-06-12 Prairietek Corporation Disk drive apparatus using dynamic loading/unloading
JP2759137B2 (en) * 1988-11-10 1998-05-28 シーゲイト テクノロジー インコーポレーテッド Magnetic holding device for disk drive
JP2557971B2 (en) * 1989-02-14 1996-11-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Data storage device and method for positioning head on landing portion of disk
JP3379956B2 (en) * 1989-07-31 2003-02-24 シーゲイト テクノロジー エルエルシー Disk drive with enhanced structural rigidity
US5134608A (en) * 1990-06-01 1992-07-28 Hewlett-Packard Company Disk drive crash stop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965684A (en) * 1988-01-25 1990-10-23 Conner Peripherals, Inc. Low height disk drive
JPH02299454A (en) * 1989-05-12 1990-12-11 Fuji Elelctrochem Co Ltd Voice coil motor
WO1992001283A1 (en) * 1990-07-06 1992-01-23 Conner Peripherals, Inc. Low height disk drive

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15 no. 82 (E-1038) ,26 February 1991 & JP-A-02 299454 (FUJI ELECTROCHEM CO.) 11 December 1990, *
See also references of WO9310531A1 *

Also Published As

Publication number Publication date
KR100274667B1 (en) 2000-12-15
EP0613579A4 (en) 1995-07-26
JP2002208253A (en) 2002-07-26
JP3436757B2 (en) 2003-08-18
EP0828241A1 (en) 1998-03-11
WO1993010531A1 (en) 1993-05-27
JPH07501414A (en) 1995-02-09
JP2002208237A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US6594117B2 (en) Disc drive magnetic latch mechanism
US5847896A (en) Disk drive including sloped base and cover
US4979062A (en) Disk drive architecture
US5029026A (en) Disk drive architecture
US5025335A (en) Architecture for 21/2 inch diameter single disk drive
US5808830A (en) Architecture for 2-1/2 inch diameter single disk drive
US6226143B1 (en) Disk drive having support posts aligned with storage disk and actuator mounting points to reduce mechanical off-tracking
US5216662A (en) Latch mechanism for disk drives
US6320723B1 (en) Protective cover for a disc drive printed circuit board wherein the cover and a circuit board component are thermally connected
EP0556287B1 (en) High performance disk drive architecture
US5041934A (en) Actuator for disk drive
EP0614564A1 (en) Microminiature hard disk drive
EP0672289A1 (en) Low height two and one-half inch form factor disk drive
EP0538260B1 (en) Low height disk drive
EP0484658A1 (en) Compact disk drive
EP0613579A1 (en) Small size constant torque voice coil motor
US5621582A (en) Disk drive including a baseplate well for the spin motor
EP0363419B1 (en) Latch mechanism for disk drives
JPS63146286A (en) Microhardware disc driver
EP0530217A4 (en) Thin line micro hard disk architecture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19961018

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEAGATE TECHNOLOGY, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19971210