EP0611292A1 - Procede et catheter hemodynamique transvasculaire aux ultra-sons - Google Patents

Procede et catheter hemodynamique transvasculaire aux ultra-sons

Info

Publication number
EP0611292A1
EP0611292A1 EP92925231A EP92925231A EP0611292A1 EP 0611292 A1 EP0611292 A1 EP 0611292A1 EP 92925231 A EP92925231 A EP 92925231A EP 92925231 A EP92925231 A EP 92925231A EP 0611292 A1 EP0611292 A1 EP 0611292A1
Authority
EP
European Patent Office
Prior art keywords
catheter
proximate
catheter body
distal end
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP92925231A
Other languages
German (de)
English (en)
Inventor
James B. Seward
Abdul Jamil Tajik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayo Foundation for Medical Education and Research
Original Assignee
Mayo Foundation for Medical Education and Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/790,580 external-priority patent/US5325860A/en
Application filed by Mayo Foundation for Medical Education and Research filed Critical Mayo Foundation for Medical Education and Research
Priority to EP05006116A priority Critical patent/EP1568324B1/fr
Priority to EP99112058A priority patent/EP0950373B1/fr
Publication of EP0611292A1 publication Critical patent/EP0611292A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22074Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22078Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other for rotating the instrument within a channel, e.g. an optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • A61B2090/3784Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M2025/0096Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres

Definitions

  • the present invention relates to an ultrasonic and interventional catheter and method. More particularly, the present invention relates to such a catheter which provides imaging and hemodynamic capability. Further, the invention relates to such a catheter which provides transvascular and intracardiac imaging.
  • Ultrasound is increasingly utilized as a substitute for cardiac catheterization.
  • the present invention relates to an ultrasonic and interventional catheter.
  • the present invention more particularly relates to an ultrasonic and interventional catheter which provides imaging and hemodynamics, blood pressure and flow, capability. Further, the invention relates to such a catheter which images through the vascular system, i.e., trans ascular and intracardiac.
  • the present invention relates to a catheter apparatus comprising an elongated flexible body having proximal and distal ends with an ultrasonic transducer mounted proximate the distal end of the catheter body to transmit ultrasound and receive resulting echoes so as to provide a field of view within which flow rates can be measured and features imaged.
  • An electrical conductor is disposed within the catheter body for electrically connecting the transducer to control circuitry external of the catheter.
  • a port means is disposed in the catheter body and extends from proximate the proximal end of the catheter body to proximate the distal end of the catheter body for receiving a therapeutic device whereby a therapeutic device can be delivered to proximate the distal end of the catheter for operation within the ultrasonic transducer field of view.
  • a guide wire port means is further disposed in the catheter body and extends from proximate the proximal end of the catheter body to proximate the distal end of the catheter body for receiving a guide wire.
  • the present invention further relates to a medical system comprising a catheter, control circuitry means for controlling operation of an ultrasonic transducer disposed on the catheter and display means for displaying flow rates and features imaged by the ultrasonic transducer.
  • the catheter comprises an elongated flexible body having proximal and distal ends.
  • the ultrasonic transducer is mounted proximate the distal end of the catheter body to transmit ultrasound and receive resultant echoes so as to provide a field of view within which flow rates can be measured and features imaged.
  • An electrical conductor is disposed in the catheter body for electrically connecting the transducer to control circuitry external of the catheter.
  • Port means is further disposed in the catheter body and extends from proximate the proximal end of the catheter body to proximate the distal end of the catheter body for receiving a therapeutic device whereby the therapeutic device can be delivered to proximate the distal end of the catheter for operation within the ultrasonic transducer field of view.
  • a guide wire port means is further disposed in the catheter body and extends from proximate the proximal end of the catheter body to proximate the distal end of the catheter body for receiving a guide wire.
  • the present invention also relates to a method of therapeutic intervention in a living body.
  • the method includes the steps of inserting a catheter into the body, the catheter having a body with proximal and distal ends.
  • a surgical device is inserted into the body through a port disposed in the catheter body and extending from proximate the proximal end of the catheter body to the distal end of the catheter body.
  • An ultrasonic transducer disposed proximate the proximal end of the catheter body is pulsed to transmit ultrasound and receive resultant echoes.
  • the surgical device is operated within a field of view provided by the ultrasonic transducer.
  • the resultant echoes are processed to image the operation of the surgical device.
  • a small (longitudinal), transverse, biplane or multiplane phased array ultrasound transducer is combined with a catheter delivery system.
  • the device incorporates a 5 to 10 MHz phased array transducer with a (8 French conduit) delivery port.
  • the delivery port serves as a means to deliver other catheters (i.e., ablation catheters, etc.), record pressure and sample blood * Within the core of the ultrasound catheter there is also a 0.035 inch port for wire insertion.
  • the completed catheter device typically might require an 18 to 24 French sheath for venous entry.
  • the present invention might have numerous applications. One initial application might be the ablation of right heart conduction tracts. The proposed device would be ideal for ablation of right heart bypass tracts.
  • the tricuspid valve and its annulus could be confidently mapped by direct ultrasound visualization.
  • An electrophysiologic catheter or ablation catheter could be passed through the port contained in the catheter.
  • the catheter could be manipulated to its destination by use of a deflection wire disposed in the guide wire port. Precise mapping and intervention can then be carried out under direct ultrasound visualization.
  • Other applications include ultrasound guided myocardial biopsy, surgical implantation and/or removal of devices under ultrasound control, and transvascular diagnosis of perivascular and organ pathology.
  • the present invention provides an intravascular ultrasound catheter capable of catheter-based intervention while under visual observation. Avoidance of major surgical procedures in conjunction with precision catheter intervention is a substantial improvement over present patient care.
  • Figure 1 is a partial perspective view of an embodiment of a catheter in accordance with the principles of the present invention
  • Figure 2 is a block diagram in part and sectional diagram in part illustrating an embodiment of a system utilizing the catheter shown in Figure 1;
  • Figure 3 is an enlarged cross-sectional view taken proximate the proximal end of the catheter shown in Figure 1;
  • Figure 4A is an illustration illustrating an application of a catheter in accordance with the principles of the present invention;
  • Figure 4B is an illustration of the distal end of the catheter shown in 4A;
  • Figure 5A shows a partial perspective and cross-sectional view of a first alternate embodiment of a catheter in accordance with the principles of the present invention
  • Figure 5B shows a view of the distal end of the embodiment of the catheter shown in Figure 5A;
  • Figure 6A shows a partial perspective and cross-sectional view of a second alternate embodiment of a catheter in accordance with the principles of the present invention
  • Figure 6B shows a view of the distal end of the catheter shown in Figure 6A;
  • Figure 7A shows a partial perspective and cross-sectional view of a variation of the second alternate embodiment of the catheter shown in Figure 6A;
  • Figure 7B shows a view of the distal end of the embodiment of the catheter shown in Figure 7A;
  • Figure 8A shows a partial perspective and cross-sectional view of a third alternate embodiment of a catheter in accordance with the principles of the present invention
  • Figure 8B shows a view of the distal end of the catheter shown in Figure 8A;
  • Figure 8C shows a view of the distal end of the catheter shown in Figure 8A having an alternatively shaped secondary port
  • Figure 9 shows partial perspective and cross- sectional view of a fourth alternate embodiment of a catheter in accordance with the principles of the present invention.
  • Figure 9B shows a view of the distal end of the catheter shown in Figure 9A.
  • catheter 20 includes an elongated flexible or rigid plastic tubular catheter body 22 having a proximal end 24 and a distal end 26.
  • catheter 20 includes proximate its longitudinal distal end 26 a phased array ultrasonic transducer 30 which is used to transmit ultrasound and receive resultant echoes so as to provide a field of view within which flow rates can be measured and features imaged.
  • An electrical conductor 32 is disposed in the catheter body 22 for electrically connecting transducer 30 to control circuitry 34 external of catheter body 22.
  • An access port 40 is disposed in catheter body 22 and extends from proximate the proximal end 24 of catheter body 22 to proximate the distal end 26 of catheter body 22.
  • Access port 40 is configured to receive a therapeutic device, such as a catheter, medication, sensors, etc., so as to enable such items to be delivered via access port 40 to distal end 26 of catheter body 22 for operation within the ultrasonic transducer field of view.
  • a therapeutic device such as a catheter, medication, sensors, etc.
  • a guide wire access port 42 is also disposed within catheter body 22 and extends from proximate proximal end 24 of the catheter body 22 to proximate distal end 26 of catheter body 22 for receiving a guide wire 44.
  • the ultrasonic transducer preferably has a frequency of 5 to 20 megahertz (MHz) and more preferably a frequency of 7 to 10 MHz. Intracardiac imaging in an adult will require image penetration of up to 2 to 10 centimeters (cm) .
  • catheter body 22 preferably has a diameter of 4 to 24 French [one French divided by Pi equals one millimeter (mm)] and, more preferably, a diameter of 6 to 12 French.
  • access port 40 has a diameter of 7 to 8 French and guide wire port 42 has a diameter of .025 to .038 inches.
  • catheter 20 of the present invention can be utilized in a medical system including the appropriate control circuitry 34 for controlling operation of the ultrasonic transducer.
  • control circuitry 34 is electrically interconnected to transceiver circuitry 35 (T/R) for receiving and transmitting signals via a cable 36 to ultrasonic transducer 30.
  • transceiver circuitry 35 is electrically interconnected to Doppler circuitry 37 and an appropriate display device 38 for displaying hemodynamics or blood flow.
  • transceiver circuitry 35 is electrically interconnected to suitable imaging circuitry 39 which is interconnected to a display 41 for displaying images.
  • control circuitry 34 might be designed to cause ultrasonic transducer 30 to vibrate so as to cause an appropriate ultrasound wave to project from proximate the distal end 26 of catheter body 22.
  • the ultrasound wave represented by lines 50 in FIG. 3, will propagate through the blood surrounding distal end 26 and a portion of the body structure. A portion of the ultrasound wave so transmitted will be reflected back from both the moving red blood cells and the like and the body structures to impinge upon transducer 30.
  • An electrical signal is thereby generated and transmitted by the cable 36 to the input of transceiver 35. A signal might then be transmitted to Doppler.
  • circuitry 37 which will include conventional amplifying and filtering circuitry commonly used in Doppler flow metering equipment.
  • Doppler circuitry 37 will analyze the Doppler shift between the transmitted frequency and the receive frequency to thereby derive an output proportional to flow rate. This output may then be conveniently displayed at display 38 which might be a conventional display terminal. Accordingly, the user will be able to obtain a readout of blood flow rates or hemodynamic information.
  • control circuitry 34 will likewise trigger ultrasonic transducer 30 via transceiver 35 to vibrate and produce an ultrasound wave. Once again, a portion of the wave or energy will be reflected back to ultrasonic transducer 30 by the body features. A corresponding signal will then be sent by cable 36 to transceiver circuitry 35. A corresponding signal is then sent to the imaging circuitry 39 which will analyze the incoming signal to provide, at display 41, which also might be a conventional display apparatus, an image of the body features.
  • This imaging can occur while a therapeutic or surgical device is being used at distal end 26 of catheter 20 within the field of view provided by ultrasonic transducer 30. Accordingly, the user will be able to monitor his/her actions and the result thereof.
  • catheter body 22 might include proximate its proximal end 24 a suitable mounting structure 52 to the access port 40.
  • a therapeutic or surgical device structure 53 might be suitably attached to structure 52 by suitable means, e.g., threaded, etc.
  • an elongated cable-like member 54 will extend along access port 40 and slightly beyond distal end 26 of catheter body 22 wherein an operative portion 56 of the surgical tool might be interconnected.
  • ultrasonic transducer 30 might include a piezo electric polymer, such as Polyvinylidenedifloride (PVDF) 60, which is bonded by an epoxy layer 62 to a depression 64 approximate distal end 26.
  • PVDF Polyvinylidenedifloride
  • the operational portion 56 of the therapeutic device is illustrated as generally being capable of operation in the field of view of ultrasonic transducer 30. Accordingly, it is possible for the user to monitor operation of the therapeutic device by use of the ultrasonic transducer. Moreover, it is possible for the user to monitor the features of the body within the field of view before, during and after interventional activity.
  • FIG. 5A shows a partial cross-sectional view of a first alternative embodiment 70 of the catheter apparatus.
  • the catheter apparatus has an elongated flexible or rigid body 72 having a longitudinal axis and a proximal end 74 and a distal end 76. Disposed proximate a second side of body 72 is a port 78 extending through body 72 from proximate proximal end 74 to proximate distal end 76 of body 72. Port 78 is for receiving and delivering to distal end 76 of body 72 a working tool 84.
  • Working tool 84 shown in the Figures is illustrative only, others types of tools now known or later developed may also be delivered to distal end 76 through port 78, Proximate a first side of body 72 is a guide wire port 80 extending through body 72 from proximate proximal end 74 to proximate distal end 76. Shown in guide port 80 is a guide wire 86.
  • Distal end 76 is disposed at an oblique angle to the longitudinal axis of body 72, the first side of body 72 extending further in the direction of the distal end than the second side of body 72.
  • An ultrasonic transducer 82 having a first side and a second side, is disposed at an oblique angle to the longitudinal axis of body 72 approximately corresponding to the oblique angle of distal end 76 of body 72.
  • the first side of ultrasonic transducer 82 is disposed proximate the first side of body 72 and the second side of transducer 82 is disposed proximate the second side of body 72.
  • transducer 82 Extending from transducer 82 to proximate proximal end 74 of body 72 is an electrical conductor 83 connecting transducer 82 to control circuitry external of catheter 70, as described with respect to catheter 20 above. Having transducer 82 disposed on an oblique angle toward port 78 allows for easy visualization of tools, such as tool 84, extending beyond distal end 76 of body 72.
  • FIG. 5B shows a view of distal end 76 of body 72, showing guide wire port means 80, transducer 82, and port means 78.
  • FIG. 6A shows a partial cross-sectional view of a second alternative embodiment of the catheter in accordance with the present invention, generally referred to as 88.
  • catheter 88 has an elongated flexible or rigid body 90 having a proximal end 92 and a distal end 94.
  • catheter 88 also has a port 96 extending through body 90 from proximate proximal end 92 to proximate distal end 94.
  • Port 96 has a distal end 97 proximal distal end 94 of body 90.
  • Distal end 97 of port 96 exits body 90 at an acute angle to a first side of body 90 toward distal end 94.
  • Port 96 is for receiving and delivering to distal end 94 a working tool, such as working tool 84.
  • Catheter 88 also has a guide wire port 98 extending through body 90 from proximate proximal end 92 to proximate distal end 94.
  • Guide wire port 98 is for receiving a guide wire 86.
  • transducer 100 disposed to a first side of body 90 between distal end 94 and distal end 97 of port 96. Extending from transducer 100 to proximate proximal end 92 of body 90 is an electrical conductor 102 disposed in the catheter body 90 for electrically connecting transducer 100 to control circuitry external of the catheter. With transducer 100 disposed to the first side of body 90 and distal end 97 of port 96 exiting body 90 at an acute angle relative to the first side of body 90 toward distal end 94, working tools extending from distal end 97 of port 96 will be within the field of view of transducer 100.
  • FIG. 6B shows a view of distal end 94 of catheter 88, as shown in FIG; 6A.
  • FIG. 7A shows second alternative embodiment 88, as shown in FIG. 6A, except instead of having a guide wire port 98, this variation of the second alternative embodiment 88 has a deflection wire guidance system 106 for manipulating distal end 94.
  • FIG. 7B shows a view of distal end 94 of the catheter shown in FIG. 7A.
  • FIG. 8A shows a third alternative embodiment 110 of the catheter in accordance with the present invention.
  • Third alternative embodiment 110 has a body 112 having a distal end 114 and proximal end 116.
  • a primary port 118 Disposed proximate a first side of body 112 is a primary port 118 extending through body 112 from proximate proximal end 116 to proximate distal end 114.
  • Primary port 118 has a distal end 119 proximate distal end 114 of body 112.
  • a secondary port 120 Oppositely disposed from primary port 118, proximate a second side of body 112 is a secondary port 120 extending through body 112 from proximate proximal end 116 to proximate distal end 114.
  • Secondary port 120 has a distal end 121 proximate distal end 114 of body 112.
  • transducer 122 mounteded proximate distal end 114 of body 112 .
  • proximate proximal end 116 Extending from transducer 122 through body 112 to proximate proximal end 116 is an electrical conductor for electrically connecting the transducer 122 to control circuitry external of the catheter.
  • Transducer 122 is disposed between distal ends of primary and secondary ports 119 and 121, respectively. With working ports 118 and 120 oppositely disposed on either side of transducer 122, it is possible to conduct two simultaneous applications, such as holding an object wit a first tool disposed through one port and operating on the object held by the first tool with a second tool disposed through the other port.
  • a typical working tool 123 and working tool 84 are shown disposed with ports 118 and 120.
  • third alternative embodiment 110 does not include a guide wire port means
  • a guide wire could be used in primary port 118 or secondary port 120 to initially position catheter 110. Then the guide wire could be retracted from port 118 or 120 and a working tool introduced.
  • FIG. 8B shows a view of distal end 114 of catheter 110.
  • FIG. 8C shows a view of a distal end 124 of a catheter 126 substantially like catheter 110 shown in FIG. 8A and FIG. 8B, except that catheter 126 has a primary port 128 having an arc-like shaped cross- section, rather than a circular shaped cross-section.
  • a circular cross-section has been shown in the Figures for the various ports described herein, the size and shape of the ports can be varied without departing from the principals of the present invention.
  • FIG. 9A shows a fourth alternative embodiment
  • Catheter 130 is similar to catheter 70 shown in FIG. 5A and FIG. 5B, except that. a plurality of ports 132 are disposed proximate a second side of flexible body 131, rather than one port 78, as shown in FIG. 5A. With a plurality of ports, it is possible, for example, to use a therapeutic tool through one port while simultaneously suctioning and removing debris through another port; or a therapeutic tool can be used through one port while simultaneously electrophysiologically monitoring, suctioning and/or biopsying through a second port, third or fourth port.
  • the use of the catheter of the present invention is described with respect to the preferred embodiment 20. It is understood that the use of alternative embodiments 70, 88, 110, 126 and 130 is analogous.
  • the user would insert flexible catheter body 22 into the body via the appropriate vascular access to the desired location in the body, such as selected venous locations, heart chamber, etc.
  • a guide wire might be first inserted into place and then the catheter body fed along the guide wire.
  • the user might then insert a surgical device into the body through access port 40 and feed the surgical device to proximate distal end 26 of catheter body 22.
  • the user Prior to, during and after operation of the surgical device, the user might obtain both hemodynamic measurements and images from the ultrasonic transducer field of view. By operation of the surgical device within the field of view of transducer 40, the user can monitor operation of the surgical device at all times.
  • the proposed device optimally uses a 5 to 20 mHz transducer with the most optimally applied frequency of 7 to 10 mHz.
  • the lower frequency used in the UIHC reflects the need to image larger objects such as the cardiac septa, valves, and extravascular anatomy.
  • Intervention One primary function of this catheter system is to guide the logical and safe use of various a) ablation, b) laser, c) cutting, d) occluding, e) etc., catheter-based interventional cardiovascular tools. The invention has the access port through which other technologies (devices) can be passed. Once the interventional tool exits the catheter tip, it can be directed repeatedly and selectively to specific site for controlled intervention.
  • D. Imaging The invention is also an imaging system capable of visualizing intracardiac, intravascular, and extravascular structures. Because the transducer frequencies utilized are usually lower than intravascular systems, the catheter 20 can see multiple cardiac cavities and visualize structures outside the vascular system. The imaging capability is basically two-fold: 1) diagnostic and 2) application.
  • Diagnostic imaging The catheter 20 can effectively perform diagnostic intracardiac and transvascular imaging. This application will more than likely be performed just prior to an interventional application. The intervention then will follow using the same catheter system and its unique delivery capability.
  • diagnostic imaging include 1) accurate visualization and measurement of an intracardiac defect, 2) characterization of valve orifice, 3) localization of a tumor and its connections, 4) etc.
  • Extravascular diagnoses would include 1) visualize pancreatic mass/pathology, 2) retroperitoneal pathology, 3) intracranial imaging. 4) recognition of perivascular pathology, and 5) etc. 2.
  • Application imaging refers to the use of the catheter and its imaging capability to deliver and then apply another technology such as 1) occlusion device for closure of a septal defect, 2) ablation catheters for treatment of bypass tracts, 3) creation of a defect such as that with the blade septostomy catheter or laser-based catheter system, and 4) directing of valvuloplasty, etc.
  • direct imaging of an application such as ablation, the procedure will be able to be performed more safely and repeatedly, and the result can be better assessed.
  • Hemodynamics The catheter 20 is a truly combined ultrasound Doppler and conventional hemodynamic catheter. There are Doppler catheters, and there are catheters capable of imaging and measuring hemodynamic pressure.
  • the catheter 20 is capable of Doppler hemodynamics (continuous and pulsed-wave Doppler) as well as high-fidelity hemodynamic pressure recording while simultaneously imaging the heart and blood vessel.
  • the catheter 20 provides a combination of imaging, hemodynamic, and interventional delivery catheter.
  • intracardiac ultrasound is capable of 1) imaging, 2) delivering a therapeutic device, and 3) obtaining simultaneous hemodynamics which can be used to develop less invasive cardiac surgical techniques.
  • This simultaneous use of one or more devices within the heart or vascular tree opens up the potential to develop less invasive surgical therapies.
  • Examples would include 1) removal of a cardiac tumor by visually grasping the tumor with one device and visually cutting its attachment with a second device, thus allowing less invasive extraction of intracardiac mass lesions, 2) visually placing an electrophysiologic catheter on a bypass tract and then with direct ultrasound visualization ablate the underlying tract with the second device, 3) visually performing laser surgery such as creating an intra-atrial defect, vaporization of obstructing thrombus such as is seen in pseudointimal occlusion of conduits, 4) visually removing a foreign body from the heart or vascular tree, and 5) directing intravascular surgery from within a blood vessel or monitoring concomitant hemodynamic changes.
  • Radio frequency ablation Presently a bypass tract is localized by an electrophysiologic study which systematically maps the atrioventricular valve annulus. Positioning of the ablation catheter is determined by x- ray fluoroscopy and certain electrical measurements which relate the distance of the ablation catheter from a reference catheter. The catheter 20 will allow an operator to map the atrioventricular valve under direct ultrasound visualization. Thus, increased accuracy of catheter placement, precision of the applied therapy, and immediate assessment of outcome would result.
  • the above ablation technique would be particularly applicable for right-sided bypass 5 tracts (in and around the tricuspid valve annulus) . This would be accomplished by placement of the catheter 20 through the superior vena cava above the tricuspid annulus. 10 For left-sided bypass tracts, the catheter
  • mitral annulus 20 could be placed across the atrial septum under direct ultrasound visualization.
  • the mitral annulus could thus be mapped directly and the localized bypass tract precisely 15 ablated under visual ultrasonic and hemodynamic direction. Complications such as valve perforation, multiple imprecise applications of ablation energy, and inadvertent ablation of normal conduction 20 tissue would be substantially reduced.
  • Ultrasound direction of the biopsy device to an intracardiac tumor, avoidance of scar, and selective biopsy of suspect tissue are feasible with the catheter 20 device.
  • One of 30 the more frequently life-threatening complications in the cardiac catheterization laboratory is catheter perforation of the heart. Such complications most commonly accompany cardiac biopsy, electrophysiologic 35 catheter manipulation, and valvuloplasty.
  • Use of an intracardiac ultrasound imaging, hemodynamics, and delivery catheter should substantially increase or improve safety of these procedures.
  • Transvascular diagnoses The catheter 20 will allow visualization of perivascular and extravascular pathology. Transvascular or transorgan imaging and localization of pathology out of the immediate vascular tree will result in a substantial step forward in the diagnosis and possible treatment of difficult to reach pathology.
  • the catheter 20 cannot only diagnose but guide a biopsy needle and therapeutic device to an extravascular lesion in question.
  • the retroperitoneum, mediastinum, and basal cerebrovascular pathology are logical areas of interest.
  • vascular system is a conduit to each organ, and the catheter 20 can be delivered to each organ. Characterization of the underlying parenchyma and possible transvascular biopsy or treatment will ultimately be developed.
  • the catheter 20 opens the potential not only to visualize but to directly intervene with the same catheter system.
  • There are numerous intraoperative catheter-based systems which to date use conventional x-ray to accomplish their goal of placement and application of a specified therapy.
  • the catheter 20 has all the prerequisites of an ideal imaging and interventional instrument and has the ability to 1) image, 2) obtain hemodynamics by multiple means (pressure dynamics and Doppler, 3) function as a diagnostic as well as therapeutic device, and 4) accommodate other unique technologies which would enhance the application of both systems.
  • intravascular, transvascular, and intracardiac devices could be delivered through the port means described above within or about the heart and blood vessels of the body.
  • the catheters described above could also be used in any echogenic tissue, such as liver, parenchyma, bile ducts, ureters, urinary bladder, and intracranial - i.e., any place in the body which is echogenic which would allow passage of a catheter for either diagnostic or therapeutic applications using ultrasound visualization.
  • the catheter 20 is a new and exciting innovation to invasive medicine. There are multiple • other and yet-to-be-determined applications. However, the new concept described opens the potential development of less expensive, more precise, and safe intravascular and transvascular diagnostic and surgical devices.
  • the catheter 20 is very much different from any conventional ultrasound catheter-based system.
  • the catheter 20 incorporates image and hemodynamic capability as well as the ability to deliver other diverse technologies to specified sites within the cardiovascular system (heart and blood vessels).
  • the catheter 20 is seen as an ideal diagnostic and therapeutic tool for future development.
  • the proposed applications foster greater preciseness, adaptability, and safety.
  • Ultrasound permits visualization from within blood-filled spaces as well as through blood-filled spaces into other water- or fluid-filled tissue.
  • the catheter 20 will evolve into the ultimate interventional system.
  • FIG. 4 is an illustration showing one potential use of the ultrasound imaging and hemodynamic catheter (UIHC) .
  • the UIHC is advanced from the superior vena cava to the tricuspid valve annulus. Simultaneously visualized in the annulus, electrophysiologic and ultimately and ablation procedure are performed. The ability to directly visualize and direct therapeutic catheter devices highlights only one of the many applications of the UIHC.

Abstract

Un cathéter (20) comprend un corps (22) avec une extrémité proximale (24) et une extrémité distale (26). Le cathéter (20) comprend en outre un transducteur ultrasonique (30; 60) à proximité de son extrémité distale (26). Un orifice d'accès (40) est ménagé dans le cathéter (20) pour permettre le transfert d'un dispositif thérapeutique ou similaire (54; 56) à l'extrémité distale (26) du corps (22) du cathéter. Un fil métallique de guidage peut être inséré à travers l'orifice (42) d'insertion du fil métallique de guidage.
EP92925231A 1991-11-08 1992-11-06 Procede et catheter hemodynamique transvasculaire aux ultra-sons Ceased EP0611292A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05006116A EP1568324B1 (fr) 1991-11-08 1992-11-06 Cathéter hémodynamique transvasculaire aux ultra-sons
EP99112058A EP0950373B1 (fr) 1991-11-08 1992-11-06 Cathéter hemodynamique transvasculaire à ultrasons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/790,580 US5325860A (en) 1991-11-08 1991-11-08 Ultrasonic and interventional catheter and method
US790580 1991-11-08
PCT/US1992/009835 WO1993008738A1 (fr) 1991-11-08 1992-11-06 Procede et catheter hemodynamique transvasculaire aux ultra-sons

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP99112058A Division EP0950373B1 (fr) 1991-11-08 1992-11-06 Cathéter hemodynamique transvasculaire à ultrasons
EP05006116A Division EP1568324B1 (fr) 1991-11-08 1992-11-06 Cathéter hémodynamique transvasculaire aux ultra-sons

Publications (1)

Publication Number Publication Date
EP0611292A1 true EP0611292A1 (fr) 1994-08-24

Family

ID=25151138

Family Applications (3)

Application Number Title Priority Date Filing Date
EP92925231A Ceased EP0611292A1 (fr) 1991-11-08 1992-11-06 Procede et catheter hemodynamique transvasculaire aux ultra-sons
EP05006116A Expired - Lifetime EP1568324B1 (fr) 1991-11-08 1992-11-06 Cathéter hémodynamique transvasculaire aux ultra-sons
EP99112058A Expired - Lifetime EP0950373B1 (fr) 1991-11-08 1992-11-06 Cathéter hemodynamique transvasculaire à ultrasons

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP05006116A Expired - Lifetime EP1568324B1 (fr) 1991-11-08 1992-11-06 Cathéter hémodynamique transvasculaire aux ultra-sons
EP99112058A Expired - Lifetime EP0950373B1 (fr) 1991-11-08 1992-11-06 Cathéter hemodynamique transvasculaire à ultrasons

Country Status (7)

Country Link
EP (3) EP0611292A1 (fr)
JP (2) JP3740550B2 (fr)
AT (2) ATE457155T1 (fr)
CA (1) CA2121353C (fr)
DE (2) DE69233780D1 (fr)
ES (1) ES2241210T3 (fr)
SG (1) SG50556A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556695B1 (en) * 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
JP4972639B2 (ja) * 2005-05-06 2012-07-11 バソノバ・インコーポレイテッド 血管内デバイスを誘導し及び位置決めするための方法及び装置
US20090118612A1 (en) 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
JP5097429B2 (ja) * 2007-04-04 2012-12-12 Hoya株式会社 セクタスキャン型超音波内視鏡の先端部
EP2170162B1 (fr) 2007-06-26 2017-08-23 Vasonova, Inc. Appareil de guidage et de positionnement d'un dispositif endovasculaire à l'aide de paramètres physiologiques
US9044542B2 (en) 2007-12-21 2015-06-02 Carticept Medical, Inc. Imaging-guided anesthesia injection systems and methods
US8545440B2 (en) 2007-12-21 2013-10-01 Carticept Medical, Inc. Injection system for delivering multiple fluids within the anatomy
EP2231230A4 (fr) 2007-12-21 2013-01-23 Carticept Medical Inc Système d'injection articulaire
WO2010041629A1 (fr) * 2008-10-07 2010-04-15 オリンパスメディカルシステムズ株式会社 Dispositif de détection de flux sanguin
JP2012000194A (ja) * 2010-06-15 2012-01-05 Hitachi Aloka Medical Ltd 医療システム
EP2637568B1 (fr) 2010-11-08 2017-04-12 Vasonova, Inc. Système de navigation endovasculaire
CN103415260B (zh) * 2011-10-27 2015-02-04 奥林巴斯医疗株式会社 超声波观察装置
JP6185048B2 (ja) 2012-05-07 2017-08-23 バソノバ・インコーポレイテッドVasonova, Inc. 上大静脈区域及び大静脈心房接合部の検出のためのシステム及び方法
US11890025B2 (en) * 2013-11-18 2024-02-06 Philips Image Guided Therapy Corporation Guided thrombus dispersal catheter
US10307135B2 (en) * 2013-11-20 2019-06-04 Advanced Access Solutions, Inc. Intravascular ultrasound needle guide
US10405881B2 (en) 2014-02-06 2019-09-10 Nipro Corporation Catheter
EP3285653B1 (fr) * 2015-04-20 2019-12-18 Koninklijke Philips N.V. Cathéter de diagnostique à double lumière
US11006854B2 (en) * 2017-02-24 2021-05-18 Teleflex Medical Incorporated Intravascular sensing devices having flexible tip structure
EP3709921A1 (fr) * 2017-11-13 2020-09-23 Koninklijke Philips N.V. Robot à plusieurs étages pour interventions sur structure anatomique
US11464485B2 (en) 2018-12-27 2022-10-11 Avent, Inc. Transducer-mounted needle assembly with improved electrical connection to power source
US11647980B2 (en) 2018-12-27 2023-05-16 Avent, Inc. Methods for needle identification on an ultrasound display screen by determining a meta-frame rate of the data signals
US20230126296A1 (en) * 2021-10-21 2023-04-27 Massachusetts Institute Of Technology Systems and methods for guided intervention

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938502A (en) * 1972-02-22 1976-02-17 Nicolaas Bom Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves
US4142412A (en) * 1976-05-12 1979-03-06 Sutures Inc. Doppler flow meter and method
US4354502A (en) * 1979-08-28 1982-10-19 The Board Of Regents Of The University Of Washington Intravascular catheter including untrasonic transducer for use in detection and aspiration of air emboli
US4462408A (en) * 1982-05-17 1984-07-31 Advanced Technology Laboratories, Inc. Ultrasonic endoscope having elongated array mounted in manner allowing it to remain flexible
US4582067A (en) * 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4733669A (en) * 1985-05-24 1988-03-29 Cardiometrics, Inc. Blood flow measurement catheter
US4794931A (en) * 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US4802487A (en) * 1987-03-26 1989-02-07 Washington Research Foundation Endoscopically deliverable ultrasound imaging system
US5022399A (en) * 1989-05-10 1991-06-11 Biegeleisen Ken P Venoscope
US5038789A (en) * 1989-09-28 1991-08-13 Frazin Leon J Method and device for doppler-guided retrograde catheterization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9308738A1 *

Also Published As

Publication number Publication date
JP2005319313A (ja) 2005-11-17
EP1568324B1 (fr) 2010-02-10
ATE457155T1 (de) 2010-02-15
JP3972129B2 (ja) 2007-09-05
SG50556A1 (en) 1998-07-20
CA2121353A1 (fr) 1993-05-13
DE69233494D1 (de) 2005-04-28
EP1568324A2 (fr) 2005-08-31
JPH07505791A (ja) 1995-06-29
JP3740550B2 (ja) 2006-02-01
ES2241210T3 (es) 2005-10-16
DE69233494T2 (de) 2006-02-16
EP1568324A3 (fr) 2005-10-26
EP0950373A2 (fr) 1999-10-20
EP0950373A3 (fr) 2000-05-03
EP0950373B1 (fr) 2005-03-23
DE69233780D1 (de) 2010-03-25
CA2121353C (fr) 2004-03-09
ATE291373T1 (de) 2005-04-15

Similar Documents

Publication Publication Date Title
US5713363A (en) Ultrasound catheter and method for imaging and hemodynamic monitoring
US5345940A (en) Transvascular ultrasound hemodynamic and interventional catheter and method
JP3972129B2 (ja) 経血管・超音波・血行動態評価用カテーテル装置
US6039693A (en) Volumetric image ultrasound transducer underfluid catheter system
EP2077760B1 (fr) Cathéters guidés par imagerie
US4911170A (en) High frequency focused ultrasonic transducer for invasive tissue characterization
US9855021B2 (en) Image guided catheters and methods of use
US5699805A (en) Longitudinal multiplane ultrasound transducer underfluid catheter system
US6024703A (en) Ultrasound device for axial ranging
US20050203410A1 (en) Methods and systems for ultrasound imaging of the heart from the pericardium
US6171247B1 (en) Underfluid catheter system and method having a rotatable multiplane transducer
US20020013529A1 (en) Imaging probes and catheters for volumetric intraluminal ultrasound imaging
JP2002522106A (ja) ダイナミックに変更可能な人体の3次元グラフィックモデル
EP2688483B1 (fr) Dispositif d'imagerie ultrasonore en champ lointain et en champ proche
JP2021536282A (ja) 管腔内超音波検査のための撮像面の制御及び表示、並びに関連するデバイス、システム及び方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19960326

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020228

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE