EP0608957A1 - Photographic element and process employing a combination of yellow couplers - Google Patents

Photographic element and process employing a combination of yellow couplers Download PDF

Info

Publication number
EP0608957A1
EP0608957A1 EP94200187A EP94200187A EP0608957A1 EP 0608957 A1 EP0608957 A1 EP 0608957A1 EP 94200187 A EP94200187 A EP 94200187A EP 94200187 A EP94200187 A EP 94200187A EP 0608957 A1 EP0608957 A1 EP 0608957A1
Authority
EP
European Patent Office
Prior art keywords
coupler
layer
substituted
group
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94200187A
Other languages
German (de)
French (fr)
Inventor
Richard A. Eastman Kodak Company Carmack
Gary A. Eastman Kodak Company Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP0608957A1 publication Critical patent/EP0608957A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/32Colour coupling substances
    • G03C7/36Couplers containing compounds with active methylene groups
    • G03C7/365Combination of couplers

Definitions

  • This invention relates to the silver halide photographic art and more specifically to a photographic element and process which employ a particular combination of yellow dye-forming couplers.
  • t-alkylacylacetanilide couplers such as pivaloylacetanilides
  • DIR Development Inhibitor Releasing
  • latitude is used to describe the ability of a photographic element to provide an acceptable image across a range of exposure levels. It is believed that these Type I couplers with phenolic coupling-off groups are not effectively balanced for competition with the DIR coupler to form dye. To overcome the limited exposure latitude, additional coupler laydown is required, but this added laydown of coupler dispersion with solvent, gel and coupler results in increased light scattering and optical degradation. This degradation is especially amplified when the scattering takes place in an uppermost color record where the effect of scattering is transferred throughout the element. Alternatively, the silver laydown can be increased to extend the latitude which also leads to increased light scatter and optical degradation in the underlying layers (once again, especially critical in an uppermost layer).
  • yellow dye-forming elements can be comprised of two or more layers of differing exposure sensitivities.
  • the exposure linearity of the combination of these two photographic layers is less than desired with the use of Type I couplers with phenolic coupling-off groups in combination with DIR couplers. Failure of the coupler to compete optimally with the DIR coupler results in the speed of the underlying layer being reduced which in turn results in a curve shape non-linearity. Correction of the resulting non-linearity requires larger emulsions which exhibit inferior granularity.
  • arylacylacetanilide couplers such as benzoylacetanilides
  • heterocyclic coupling-off groups have also been used in photographic elements.
  • Advantages realized with the use of such Type II couplers with heterocyclic coupling-off groups include better reactivity matching with DIR couplers (see U.S. 4,980,267).
  • a superior reactivity match with DIR couplers also leads to lower coupler laydown.
  • improved curve linearity with smaller grain-size emulsions result when two or more layers of differing sensitivity are coated. If the underlying of two or more layers uses such a coupler it competes effectively with DIR couplers and results in optimal photographic speed.
  • Type II couplers leads to problems with continued coupling which causes increases in blue minimum density levels in seasoned, high pH bleaches.
  • use of the Type II couplers in high pH color negative developers can lead to mismatched red, green and blue contrasts. While the red and green photographic elements respond with contrast changes to varying developer pH values, a Type II coupler is essentially insensitive to pH levels. This mismatch results in color degradation because the printer is unable to compensate for three individual records because the contrasts of the three individual records do not vary synchronously.
  • Type I couplers with either heterocyclic coupling-off groups or phenolic coupling-off groups without a solubilizing substituent together with Type II couplers with heterocyclic coupling-off groups are known in color negative films.
  • the following combination has been employed in a product: CP-1 was present at 57 mol % and CP-2 at 43 mol % and the combination was employed in a single blue-sensitive layer.
  • Coupler CP-1 does not contain a solubilizing group as in the invention. The combination of these two couplers did not provide balanced reactivity and therefore linearity, laydown, and color rendition were not optimum.
  • the lower reactivity of the Type I couplers with heterocyclic coupling-off groups results in a situation where reactivity matches with DIR couplers are not optimized, and, thus, laydowns are higher than necessary. In order to provide the needed exposure latitude, additional coupler laydown is required. Additional coupler dispersion with solvent, gel and coupler results in layer thickness increases and subsequent light scattering and optical degradation and the same problems present in the art for the use of a Type I coupler only are realized.
  • a photographic element and process employ a light sensitive photographic silver halide layer sensitized to blue light and having associated therewith a combination of at least two yellow dye-forming couplers each containing an acylacetanilide parent, one of which comprises a phenolic coupling-off group containing a solubilizing substituent, and the other of which is a benzoylacetanilide comprising a heterocyclic coupling-off group.
  • Type I coupler comprising a phenolic coupling-off group containing a solubilizing substituent
  • Type II coupler comprising a heterocyclic coupling-off group
  • the photographic element of the invention comprises at least two yellow image-dye forming couplers which suitably have the respective formulas: wherein X has the formula -OPh(L) n Sol, and wherein R is a substituted or unsubstituted aryl group or a fully substituted carbon atom, each Ph is a phenyl ring, independently substituted or not, Sol is a water solubilizing substituent, L is a divalent group linking the phenyl ring and Sol, n is 0 or 1, and Y is a heterocyclic ring, substituted or not.
  • R groups are phenyl, t-butyl, t-pentyl, t-octyl, and adamantyl with phenyl and t-butyl most suitable.
  • the Ph is a phenyl group which may be optionally substituted. Any substituents may be suitable such as those illustrated in the example couplers.
  • L is a linking group which may or may not be present. Such a group does not necessarily play any major role in the photographic properties but may affect properties such as ballasting.
  • suitable linking groups are: wherein Z represents -O-; -SO2-; -S- ;or -NR b SO2-and each R, R', R a and R b independently represents an alkyl group, substituted or not, and R b may be hydrogen.
  • n, p, and q may be 0 or 1, signifying the presence or absence of the linking group and the presence or absence of the specified linking group components.
  • m may be from 0 to 4.
  • the Sol group is a water solubilizing substituent.
  • Any strongly polar or readily ionizing group or one highly susceptible to hydrogen bonding can have this effect as is well-known.
  • Suitable general examples are: -OH, -NHSO2R, -NHCOR, -NHCOCF3, -NHCOOR, -NR2, -NHCONR2, -CONR2, -CONHSO2R, -SO3H, -CO2R, -(OR) n , -OSO2R, -P(O)0R2, and wherein each R is an independently selected substituent or hydrogen, and n is 0 to 3.
  • Suitable specific solubilizing substituents are: -COOH; -COOCH3; -COOC2H5; -NHSO2CH3; -SO3H; -OH; -SO2NHCH3; -SO2NH2;
  • Type I couplers are: The generic definition of the Type I parent group is broad enough to include all of those parents of the Type II parents. On the other hand, the Type II parent is more narrowly defined. As detailed, the coupling-off groups for the two types are mutually distinct.
  • Type II couplers are as follows:
  • the phenolic coupling-off group in the Type I coupler may, if desired, contain one or more substituents on the phenoxy ring aside from the substituent containing the solubilizing group. These substituents may be any which are useful in the photographic arts as described hereafter.
  • Illustrative examples of the phenolic coupling-off groups useful on the Type I couplers are as follows:
  • the Y group in formula II represent a heterocyclic coupling-off group. Such a group is typically connected through a carbon or nitrogen atom in the heterocycle.
  • Nitrogen is the preferred connecting link and in such case, Y is selected from the group consisting of substituted and unsubstituted imidazole, pyrazole, and heterocyclic compounds represented by the formula: wherein z represents the atoms necessary to complete a heterocyclic ring.
  • the compounds having this formula are typically hydantoin or succinimide compounds.
  • Y may be represented by the formula: wherein W is -O-, -S-, -N(R3)-, or -C(R4)(R5)-; R1 is H, or substituted or unsubstituted alkyl, alkoxy, phenyl, or phenoxy; R2 and R5 are independently H or substituted or unsubstituted alkyl; R3 is substituted or unsubstituted alkyl or phenyl; and R4 is H or substituted or unsubstituted alkyl or alkoxy.
  • W is -NR3; R1 is H, or substituted or unsubstituted alkyl or alkoxy; R2 is H; and R3 is substituted or unsubstituted alkyl.
  • R1 is -OC2H5, R2 is H and R3 is -CH2-phenyl.
  • W is -C(R4)(R5) with R1, R2, R4, and R5 defined as above.
  • Type II heterocyclic coupling-off groups are as follows: Suitable combinations of parent and coupling-off groups for Type I and Type II couplers are as shown in Tables I and II. Table I Type I Coupler Parent/Coupling-off Group Combinations No. Combination No. Combination No.
  • substituent unless otherwise specifically stated, has a broad definition.
  • the substituent may be, for example, halogen, such as chlorine, bromine or fluorine; nitro; hydroxyl; cyano; and -CO2H and its salts; and groups which may be further substituted, such as alkyl, including straight or branched chain alkyl, such as methyl, trifluoromethyl, ethyl, t -butyl, 3-(2,4-di-t-amylphenoxy) propyl, and tetradecyl; alkenyl, such as ethylene, 2-butene; alkoxy, such as methoxy, ethoxy, propoxy, butoxy, 2-methoxyethoxy, sec-butoxy, hexyloxy, 2-ethylhexyloxy, tetradecyloxy 2-(2,4-di- t -pentylphenoxy)ethoxy, and 2-dodecyloxy
  • the particular substituents used may be selected to attain the desired photographic properties for a specific application and can include, for example, hydrophobic groups, solubilizing groups, blocking groups, etc.
  • the above groups and substituents thereof may typically include those having 1 to 30 carbon atoms and usually less than 24 carbon atoms, but greater numbers are possible depending on the particular substituents selected.
  • the substituents may themselves be suitably substituted with any of the above groups.
  • the materials of the invention can be used in any of the ways and in any of the combinations known in the art.
  • the invention materials are incorporated in a silver halide emulsion and the emulsion coated as a layer on a support to form part of a photographic element.
  • they can be incorporated at a location adjacent to the silver halide emulsion layer where, during development, they will be in reactive association with development products such as oxidized color developing agent.
  • the term "associated" signifies that the compound is in the silver halide emulsion layer or in an adjacent location where, during processing, it is capable of reacting with silver halide development products.
  • ballast groups include substituted or unsubstituted alkyl or aryl groups containing 8 to 42 carbon atoms.
  • substituents on such groups include alkyl, aryl, alkoxy, aryloxy, alkylthio, hydroxy, halogen, alkoxycarbonyl, aryloxcarbonyl, carboxy, acyl, acyloxy, amino, anilino, carbonamido, carbamoyl, alkylsulfonyl, arysulfonyl, sulfonamido, and sulfamoyl groups wherein the substituents typically contain 1 to 42 carbon atoms. Such substituents can also be further substituted.
  • the photographic elements can be single color elements or multicolor elements.
  • Multicolor elements contain image dye-forming units sensitive to each of the three primary regions of the spectrum.
  • Each unit can comprise a single emulsion layer or multiple emulsion layers sensitive to a given region of the spectrum.
  • the layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art.
  • the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
  • a typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler.
  • the element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers, and the like.
  • the photographic element can be used in conjunction with an applied magnetic layer as described in Research Disclosure , November 1992, Item 34390 published by Kenneth Mason Publications, Ltd., Dudley Annex, 12a North Street, Emsworth, Hampshire P010 7DQ, ENGLAND.
  • the silver halide emulsions employed in the elements of this invention can be either negative-working or positive-working. Suitable emulsions and their preparation as well as methods of chemical and spectral sensitization are described in Sections I through IV. Color materials and development modifiers are described in Sections VII and XXI. Vehicles are described in Section IX, and various additives such as brighteners, antifoggants, stabilizers, light absorbing and scattering materials, hardeners, coating aids, plasticizers, lubricants and matting agents are described , for example, in Sections V, VI, VIII, X, XI, XII, and XVI. Manufacturing methods are described in Sections XIV and XV, other layers and supports in Sections XIII and XVII, processing methods and agents in Sections XIX and XX, and exposure alternatives in Section XVIII.
  • Photographic elements can be exposed to actinic radiation, typically in the visible region of the spectrum, to form a latent image and can then be processed to form a visible dye image.
  • Processing to form a visible dye image includes the step of contacting the element with a color developing agent to reduce developable silver halide and oxidize the color developing agent. Oxidized color developing agent in turn reacts with the coupler to yield a dye.
  • the processing step described above provides a negative image.
  • the described elements can be processed in the known C-41 color process as described in The British Journal of Photography Annual of 1988, pages 191-198.
  • Preferred color developing agents are p-phenylenediamines such as: 4-amino-N,N-diethylaniline hydrochloride, 4-amino-3-methyl-N,N-diethylaniline hydrochloride, 4-amino-3-methyl-N-ethyl-N-( ⁇ -(methanesulfonamido) ethyl)aniline sesquisulfate hydrate, 4-amino-3-methyl-N-ethyl-N-( ⁇ -hydroxyethyl)aniline sulfate, 4-amino-3- ⁇ -(methanesulfonamido)ethyl-N,N-diethylaniline hydrochloride and 4-amino-N-ethyl-N-(2-methoxyethyl)-m-toluidine di-p-toluene sulfonic acid.
  • Development is usually followed by the conventional steps of bleaching, fixing, or bleach-fixing, to remove silver or silver halide, washing, and drying.
  • a color photographic recording material (Photographic Sample 101) for color negative development was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate.
  • the quantities of silver halide are given in g of silver per m2.
  • the quantities of other materials are given in g per m2.
  • This film was hardened at coating with 2% by weight to total gelatin of hardener H-1.
  • Surfactants, coating aids, oxidized developer scavengers, soluble absorber dyes and stabilizers were added to the various layers of this sample as is commonly practiced in the art.
  • Photographic Sample 102 was prepared like Photographic Sample 101 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-1 was coated at 0.78 g. In Layer 11 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-1 was coated at 0.22 g. Photographic Sample 103 was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate. The quantities of silver halide are given in g of silver per m2. The quantities of other materials are given in g per m2.
  • Photographic Sample 104 was prepared like Photographic Sample 103 except for changes in Layers 10 and 11.
  • yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.94 g.
  • yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.28 g.
  • Photographic Sample 105 was prepared like Photographic Sample 103 except for changes in Layers 10 and 11.
  • yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was added at 0.89 g.
  • yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was coated at 0.26 g.
  • Photographic Sample 106 was prepared like Photographic Sample 103 except for Layers 10 and 11.
  • the blue sensitized silver iodobromide emulsion [4.1 mol % iodide, average grain diameter 0.85, average grain thickness 0.09 microns] was coated at 0.28 g and yellow dye-forming coupler Y-2 was coated at 0.72 g.
  • the yellow dye-forming coupler Y-2 was coated at 0.21 g.
  • Photographic Sample 107 was prepared like Photographic Sample 106 except for changes in Layers 10 and 11.
  • yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.94 g.
  • yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.28 g.
  • Photographic Sample 108 was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate.
  • the quantities of silver halide are given in g of silver per m2.
  • the quantities of other materials are given in g per m2.
  • Photographic Sample 109 was prepared like Photographic Sample 108 except for changes in Layers 10 and 11.
  • yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was added at 0.87 g.
  • yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was coated at 0.27 g.
  • TABLES 1 and 2 show the photographic responses associated with Photographic Samples 101 and 103 relative to three examples of prior art (Photographic Samples 102, 104 and 105). Each formulation is processed through two developers. These developers have been pH adjusted to provide pH values which are high (10.15) or low (9.95) of standard developer aim pH, 10.04. A percentage contrast change is used to reflect the effect on contrast of pH variations from 9.95 to 10.15.
  • the blue layer contrast is invariant. This insensitivity leads to a mismatch with the red and green contrasts, which both increase with increasing developer pH.
  • the blue layer contrast covaries with the other two records.
  • One of the advantages of this covariation is better print quality as the printer algorithms are able to adjust for the covarying contrasts of all 3 records.
  • the contrast mismatch prevents proper printing.
  • Tables 3-5 show blue minimum densities associated with similar formulations, Photographic Samples 101, 106 and 108. Each formulation is shown with two bleaches. These bleaches have been pH adjusted to provide pH values of 4.75, (standard PDTA bleach pH) or 5.25, (standard PDTA/EDTA bleach pH), and bleaches which are 0.75 pH units higher. The unexposed color negative film is then processed through these bleaches, and the resulting blue density is measured.
  • TABLES 6 and 7 show latitude measurements for Photographic Samples 101 and 103 relative to prior art positions (Photographic Samples 102, 104 and 105). Latitude was calculated as the log E exposure range over which the contrast remains above 0.60. A white light exposure through a step-wise gradient tablet followed by standard color negative processing was used.
  • the two formulations show the advantage in exposure latitude for a combination of Type I and Type II couplers relative to Type II alone.
  • TABLE 8 shows linearity measurements for Photographic Sample 101 relative to prior art Sample 102.
  • Non-linearity is measured as the speed separation between the contrasts of the two blue layers of differing sensitivities. The juncture where the less sensitive layer becomes the dominant layer in contrast is determined for each photographic coating. The speed separation between the contrasts of the two blue layers is determined at this point and indicates non-linearity when non-zero values result. Non-linearities cause difficulty for printer algorithms as well as adversely affecting the color reproduction.
  • the two formulations show the advantage in linearity for a combination of Type I and II couplers relative to Type II alone.
  • TABLE 9 shows the photographic responses associated with Photographic Sample 103 of the invention relative to two examples of the prior art (Photographic Samples 104 and 105).
  • Each formulation is given a white light exposure, and the modulated transfer function (MTF) at 2.5 cycles/mm is measured.
  • the measure correlates with light scatter or sharpness.
  • Red element response is employed as the element which is farthest removed from the light source, and, therefore, the layer most affected by light scatter by overlying elements.

Abstract

A photographic element and process employ a light sensitive photographic silver halide layer sensitized to blue light and having associated therewith a combination of at least two yellow dye-forming couplers each containing an acylacetanilide parent, one of which comprises a phenolic coupling-off group containing a solubilizing substituent, and the other of which is a benzoylacetanilide comprising a heterocyclic coupling-off group.

Description

    Field of the Invention
  • This invention relates to the silver halide photographic art and more specifically to a photographic element and process which employ a particular combination of yellow dye-forming couplers.
  • Background of the Invention
  • The use of t-alkylacylacetanilide couplers (Type I), such as pivaloylacetanilides, with phenolic coupling-off groups in photographic elements is well established. However, in combination with a Development Inhibitor Releasing (DIR) coupler, these Type I couplers produce a photographic element with limited exposure latitude.
  • The term latitude is used to describe the ability of a photographic element to provide an acceptable image across a range of exposure levels. It is believed that these Type I couplers with phenolic coupling-off groups are not effectively balanced for competition with the DIR coupler to form dye. To overcome the limited exposure latitude, additional coupler laydown is required, but this added laydown of coupler dispersion with solvent, gel and coupler results in increased light scattering and optical degradation. This degradation is especially amplified when the scattering takes place in an uppermost color record where the effect of scattering is transferred throughout the element. Alternatively, the silver laydown can be increased to extend the latitude which also leads to increased light scatter and optical degradation in the underlying layers (once again, especially critical in an uppermost layer). In addition, yellow dye-forming elements can be comprised of two or more layers of differing exposure sensitivities. The exposure linearity of the combination of these two photographic layers is less than desired with the use of Type I couplers with phenolic coupling-off groups in combination with DIR couplers. Failure of the coupler to compete optimally with the DIR coupler results in the speed of the underlying layer being reduced which in turn results in a curve shape non-linearity. Correction of the resulting non-linearity requires larger emulsions which exhibit inferior granularity.
  • The use of arylacylacetanilide couplers (Type II), such as benzoylacetanilides, with heterocyclic coupling-off groups has also been used in photographic elements. Advantages realized with the use of such Type II couplers with heterocyclic coupling-off groups include better reactivity matching with DIR couplers (see U.S. 4,980,267). A superior reactivity match with DIR couplers also leads to lower coupler laydown. Additionally, improved curve linearity with smaller grain-size emulsions result when two or more layers of differing sensitivity are coated. If the underlying of two or more layers uses such a coupler it competes effectively with DIR couplers and results in optimal photographic speed.
  • However, the use of these Type II couplers leads to problems with continued coupling which causes increases in blue minimum density levels in seasoned, high pH bleaches. In addition, the use of the Type II couplers in high pH color negative developers can lead to mismatched red, green and blue contrasts. While the red and green photographic elements respond with contrast changes to varying developer pH values, a Type II coupler is essentially insensitive to pH levels. This mismatch results in color degradation because the printer is unable to compensate for three individual records because the contrasts of the three individual records do not vary synchronously.
  • Combination of Type I couplers with either heterocyclic coupling-off groups or phenolic coupling-off groups without a solubilizing substituent together with Type II couplers with heterocyclic coupling-off groups are known in color negative films. For example, the following combination has been employed in a product:
    Figure imgb0001

    CP-1 was present at 57 mol % and CP-2 at 43 mol % and the combination was employed in a single blue-sensitive layer. Coupler CP-1 does not contain a solubilizing group as in the invention. The combination of these two couplers did not provide balanced reactivity and therefore linearity, laydown, and color rendition were not optimum.
  • The lower reactivity of the Type I couplers with heterocyclic coupling-off groups results in a situation where reactivity matches with DIR couplers are not optimized, and, thus, laydowns are higher than necessary. In order to provide the needed exposure latitude, additional coupler laydown is required. Additional coupler dispersion with solvent, gel and coupler results in layer thickness increases and subsequent light scattering and optical degradation and the same problems present in the art for the use of a Type I coupler only are realized.
  • It is a problem to be solved to provide a photographic element and process which provides an improved linearity of response in the blue record across the range of exposures while maintaining the desired level of sharpness.
  • Summary of the Invention
  • A photographic element and process employ a light sensitive photographic silver halide layer sensitized to blue light and having associated therewith a combination of at least two yellow dye-forming couplers each containing an acylacetanilide parent, one of which comprises a phenolic coupling-off group containing a solubilizing substituent, and the other of which is a benzoylacetanilide comprising a heterocyclic coupling-off group.
  • By combining the use of a Type I coupler comprising a phenolic coupling-off group containing a solubilizing substituent together with a Type II coupler comprising a heterocyclic coupling-off group, significant benefits are realized in terms of linearity and sharpness while minimizing the limitations that these separate types would normally cause when used alone and such results are generally obtained at lower laydown levels then heretofore achievable.
  • Detailed Description of the Invention
  • The photographic element of the invention comprises at least two yellow image-dye forming couplers which suitably have the respective formulas:
    Figure imgb0002

       wherein X has the formula -OPh(L)nSol, and wherein R is a substituted or unsubstituted aryl group or a fully substituted carbon atom, each Ph is a phenyl ring, independently substituted or not, Sol is a water solubilizing substituent, L is a divalent group linking the phenyl ring and Sol, n is 0 or 1, and Y is a heterocyclic ring, substituted or not.
  • More suitable R groups are phenyl, t-butyl, t-pentyl, t-octyl, and adamantyl with phenyl and t-butyl most suitable.
  • The Ph is a phenyl group which may be optionally substituted. Any substituents may be suitable such as those illustrated in the example couplers.
  • L is a linking group which may or may not be present. Such a group does not necessarily play any major role in the photographic properties but may affect properties such as ballasting. Examples of suitable linking groups are:
    Figure imgb0003

       wherein Z represents -O-; -SO₂-; -S- ;or -NRbSO₂-and each R, R', Ra and Rb independently represents an alkyl group, substituted or not, and Rb may be hydrogen. Further, n, p, and q may be 0 or 1, signifying the presence or absence of the linking group and the presence or absence of the specified linking group components. m may be from 0 to 4.
    The Sol group is a water solubilizing substituent. Any strongly polar or readily ionizing group or one highly susceptible to hydrogen bonding can have this effect as is well-known. Suitable general examples are:
       -OH, -NHSO₂R, -NHCOR, -NHCOCF₃, -NHCOOR, -NR₂, -NHCONR₂, -CONR₂, -CONHSO₂R, -SO₃H, -CO₂R, -(OR)n, -OSO₂R, -P(O)0R₂, and
    Figure imgb0004

       wherein each R is an independently selected substituent or hydrogen, and n is 0 to 3.
  • Examples of suitable specific solubilizing substituents are:
       -COOH; -COOCH₃; -COOC₂H₅; -NHSO₂CH₃; -SO₃H; -OH; -SO₂NHCH₃; -SO₂NH₂;
    Figure imgb0005
  • Illustrative examples of Type I couplers are:
    Figure imgb0006
    Figure imgb0007

       The generic definition of the Type I parent group is broad enough to include all of those parents of the Type II parents. On the other hand, the Type II parent is more narrowly defined. As detailed, the coupling-off groups for the two types are mutually distinct.
  • Illustrative examples of Type II couplers are as follows:
    Figure imgb0008
    Figure imgb0009

       The phenolic coupling-off group in the Type I coupler may, if desired, contain one or more substituents on the phenoxy ring aside from the substituent containing the solubilizing group. These substituents may be any which are useful in the photographic arts as described hereafter. Illustrative examples of the phenolic coupling-off groups useful on the Type I couplers are as follows:
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012

       The Y group in formula II represent a heterocyclic coupling-off group. Such a group is typically connected through a carbon or nitrogen atom in the heterocycle. Nitrogen is the preferred connecting link and in such case, Y is selected from the group consisting of substituted and unsubstituted imidazole, pyrazole, and heterocyclic compounds represented by the formula:
    Figure imgb0013

       wherein z represents the atoms necessary to complete a heterocyclic ring. The compounds having this formula are typically hydantoin or succinimide compounds. In one specific embodiment, Y may be represented by the formula:
    Figure imgb0014

    wherein W is -O-, -S-, -N(R³)-, or -C(R⁴)(R⁵)-; R¹ is H, or substituted or unsubstituted alkyl, alkoxy, phenyl, or phenoxy; R² and R⁵ are independently H or substituted or unsubstituted alkyl; R³ is substituted or unsubstituted alkyl or phenyl; and R⁴ is H or substituted or unsubstituted alkyl or alkoxy.
  • In one more specific embodiment of the above formula, W is -NR³; R¹ is H, or substituted or unsubstituted alkyl or alkoxy; R² is H; and R³ is substituted or unsubstituted alkyl. In particular, R¹ is -OC₂H₅, R² is H and R³ is -CH₂-phenyl. In another specific embodiment, W is -C(R⁴)(R⁵) with R¹, R², R⁴, and R⁵ defined as above.
  • Illustrative examples of the Type II heterocyclic coupling-off groups are as follows:
    Figure imgb0015
    Figure imgb0016

       Suitable combinations of parent and coupling-off groups for Type I and Type II couplers are as shown in Tables I and II. Table I
    Type I Coupler Parent/Coupling-off Group Combinations
    No. Combination No. Combination No. Combination
    1 IK/f 2 IK/a 3 IK/d
    4 IG/f 5 II/a 6 IC/d
    7 IB/e 8 IC/i 9 ID/h
    10 IE/g 11 IF/k 12 IG/b
    13 II/c 14 IG/j 15 IH/l
    16 IA/h 17 IA/d 18 IJ/b
    19 IH/a 20 IJ/i 21 IB/j
    22 ID/e 23 IF/i 24 IE/k
    Table II
    Type II Coupler Parent/Coupling-off Group Combinations
    No. Combination No. Combination No. Combination
    1 IIA/a 2 IIA/i 3 IIA/b
    4 IIB/d 5 IIB/a 6 IIB/e
    7 IIB/b 8 IIC/i 9 IIC/c
    10 IIC/f 11 IIC/a 12 IID/g
    13 IID/i 14 IID/b 15 IIA/c
    16 IIE/a 17 IIE/h 18 IIE/i
    19 IIF/b 20 IIF/c 21 IIG/a
    22 IIG/d 23 IIH/e 24 IIH/b
    25 IIC/j 26 IIA/k 27 IID/l
  • As used herein, the term substituent, unless otherwise specifically stated, has a broad definition. The substituent may be, for example, halogen, such as chlorine, bromine or fluorine; nitro; hydroxyl; cyano; and -CO₂H and its salts; and groups which may be further substituted, such as alkyl, including straight or branched chain alkyl, such as methyl, trifluoromethyl, ethyl, t-butyl, 3-(2,4-di-t-amylphenoxy) propyl, and tetradecyl; alkenyl, such as ethylene, 2-butene; alkoxy, such as methoxy, ethoxy, propoxy, butoxy, 2-methoxyethoxy, sec-butoxy, hexyloxy, 2-ethylhexyloxy, tetradecyloxy 2-(2,4-di-t-pentylphenoxy)ethoxy, and 2-dodecyloxyethoxy; aryl such as phenyl, 4-t-butylphenyl, 2,4,6-trimethylphenyl, naphthyl; aryloxy, such as phenoxy, 2-methylphenoxy, alpha- or beta-naphthyloxy, and 4-tolyloxy; carbonamido, such as acetamido, benzamido, butyramido, tetradecanamido, alpha-(2,4-di-t-pentylphenoxy)acetamido, alpha-(2,4-di-t-pentylphenoxy)butyramido, alpha-(3-pentadecylphenoxy)hexanamido, alpha-(4-hydroxy-3-t-butylphenoxy)tetradecanamido, 2-oxo-pyrrolidin-1-yl, 2-oxo-5-tetradecyl-pyrrolin-1-yl, N-methyltetradecanamido, N-succinimido, N-phthalimido, 2,5-dioxo-1-oxazolidinyl, 3-dodecyl-2,5-dioxo-1-imidazolyl, and N-acetyl-N-dodecylamino, ethoxycarbonylamino, phenoxycarbonylamino, benzyloxycarbonylamino, hexadecyloxycarbonylamino, 2,4-di-t-butylphenoxycarbonylamino, phenylcarbonylamino, 2,5-(di-t-pentylphenyl)carbonylamino, p-dodecylphenylcarbonylamino, p-toluylcarbonylamino, N-methylureido, N,N-dimethylureido, N-methyl-N-dodecylureido, N-hexadecylureido, N, N-dioctadecylureido, N,N-dioctyl-N'-ethylureido, N-phenylureido, N,N-diphenylureido, N-phenyl-N-p-toluylureido, N-(m-hexadecylphenyl)ureido, N,N-(2,5-di-t-pentylphenyl)-N'-ethylureido; and t-butylcarbonamido; sulfonamido, such as methylsulfonamido, benzenesulfonamido, p-toluylsulfonamido, p-dodecylbenzenesulfonamido, N-methyltetradecylsulfonamido, N,N-dipropylsulfamoylamino, and hexadecylsulfonamido; sulfamoyl, such as N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dipropylsulfamoyl, N-hexadecylsulfamoyl, N, N-dimethylsulfamoyl; N-[3-(dodecyloxy)propyl]sulfamoyl, N-[4-(2,4-di-t-pentylphenoxy)butyl]sulfamoyl, N-methyl-N-tetradecylsulfamoyl, and N-dodecylsulfamoyl; carbamoyl, such as N-methylcarbamoyl, N,N-dibutylcarbamoyl, N-octadecylcarbamoyl, N-[4-(2,4-di-t-pentylphenoxy)butyl]carbamoyl, N-methyl-N-tetradecylcarbamoyl, and N,N-dioctylcarbamoyl; acyl, such as acetyl, (2,4-di-t-amylphenoxy)acetyl, phenoxycarbonyl, p-dodecyloxyphenoxycarbonyl methoxycarbonyl, butoxycarbonyl, tetradecyloxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, 3-pentadecyloxycarbonyl, and dodecyloxycarbonyl; sulfonyl, such as methoxysulfonyl, octyloxysulfonyl, tetradecyloxysulfonyl, 2-ethylhexyloxysulfonyl, phenoxysulfonyl, 2,4-di-t-pentylphenoxysulfonyl, methylsulfonyl, octylsulfonyl, 2-ethylhexylsulfonyl, dodecylsulfonyl, hexadecylsulfonyl, phenylsulfonyl, 4-nonylphenylsulfonyl, and p-toluylsulfonyl; sulfonyloxy, such as dodecylsulfonyloxy, and hexadecylsulfonyloxy; sulfinyl, such as methylsulfinyl, octylsulfinyl, 2-ethylhexylsulfinyl, dodecylsulfinyl, hexadecylsulfinyl, phenylsulfinyl, 4-nonylphenylsulfinyl, and p-toluylsulfinyl; thio, such as ethylthio, octylthio, benzylthio, tetradecylthio, 2-(2,4-di-t-pentylphenoxy)ethylthio, phenylthio, 2-butoxy-5-t-octylphenylthio, and p-tolylthio; acyloxy, such as acetyloxy, benzoyloxy, octadecanoyloxy, p-dodecylamidobenzoyloxy, N-phenylcarbamoyloxy, N-ethylcarbamoyloxy, and cyclohexylcarbonyloxy; amine, such as phenylanilino, 2-chloroanilino, diethylamine, dodecylamine; imino, such as 1 (N-phenylimido)ethyl, N-succinimido or 3-benzylhydantoinyl; phosphate, such as dimethylphosphate and ethylbutylphosphate; phosphite, such as diethyl and dihexylphosphite; azo, such as phenylazo and naphthylazo; a heterocyclic group, a heterocyclic oxy group or a heterocyclic thio group, each of which may be substituted and which contain a 3 to 7 membered heterocyclic ring composed of carbon atoms and at least one hetero atom selected from the group consisting of oxygen, nitrogen and sulfur, such as 2-furyl, 2-thienyl, 2-benzimidazolyloxy or 2-benzothiazolyl; ; quaternary ammonium, such as triethylammonium ; and silyloxy, such as trimethylsilyloxy.
  • The particular substituents used may be selected to attain the desired photographic properties for a specific application and can include, for example, hydrophobic groups, solubilizing groups, blocking groups, etc. Generally, the above groups and substituents thereof may typically include those having 1 to 30 carbon atoms and usually less than 24 carbon atoms, but greater numbers are possible depending on the particular substituents selected. Moreover, as indicated, the substituents may themselves be suitably substituted with any of the above groups.
  • The materials of the invention can be used in any of the ways and in any of the combinations known in the art. Typically, the invention materials are incorporated in a silver halide emulsion and the emulsion coated as a layer on a support to form part of a photographic element. Alternatively, they can be incorporated at a location adjacent to the silver halide emulsion layer where, during development, they will be in reactive association with development products such as oxidized color developing agent. Thus, as used herein, the term "associated" signifies that the compound is in the silver halide emulsion layer or in an adjacent location where, during processing, it is capable of reacting with silver halide development products.
  • To control the migration of various components, it may be desirable to include a high molecular weight hydrophobe or "ballast" group in the component molecule. Representative ballast groups include substituted or unsubstituted alkyl or aryl groups containing 8 to 42 carbon atoms. Representative substituents on such groups include alkyl, aryl, alkoxy, aryloxy, alkylthio, hydroxy, halogen, alkoxycarbonyl, aryloxcarbonyl, carboxy, acyl, acyloxy, amino, anilino, carbonamido, carbamoyl, alkylsulfonyl, arysulfonyl, sulfonamido, and sulfamoyl groups wherein the substituents typically contain 1 to 42 carbon atoms. Such substituents can also be further substituted.
  • The photographic elements can be single color elements or multicolor elements. Multicolor elements contain image dye-forming units sensitive to each of the three primary regions of the spectrum. Each unit can comprise a single emulsion layer or multiple emulsion layers sensitive to a given region of the spectrum. The layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art. In an alternative format, the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
  • A typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler. The element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers, and the like.
  • If desired, the photographic element can be used in conjunction with an applied magnetic layer as described in Research Disclosure, November 1992, Item 34390 published by Kenneth Mason Publications, Ltd., Dudley Annex, 12a North Street, Emsworth, Hampshire P010 7DQ, ENGLAND.
  • In the following discussion of suitable materials for use in the emulsions and elements of this invention, reference will be made to Research Disclosure, December 1989, Item 308119, available as described above, which will be identified hereafter by the term "Research Disclosure." The contents of the Research Disclosure, including the patents and publications referenced therein, are incorporated herein by reference, and the Sections hereafter referred to are Sections of the Research Disclosure.
  • The silver halide emulsions employed in the elements of this invention can be either negative-working or positive-working. Suitable emulsions and their preparation as well as methods of chemical and spectral sensitization are described in Sections I through IV. Color materials and development modifiers are described in Sections VII and XXI. Vehicles are described in Section IX, and various additives such as brighteners, antifoggants, stabilizers, light absorbing and scattering materials, hardeners, coating aids, plasticizers, lubricants and matting agents are described , for example, in Sections V, VI, VIII, X, XI, XII, and XVI. Manufacturing methods are described in Sections XIV and XV, other layers and supports in Sections XIII and XVII, processing methods and agents in Sections XIX and XX, and exposure alternatives in Section XVIII.
  • Photographic elements can be exposed to actinic radiation, typically in the visible region of the spectrum, to form a latent image and can then be processed to form a visible dye image. Processing to form a visible dye image includes the step of contacting the element with a color developing agent to reduce developable silver halide and oxidize the color developing agent. Oxidized color developing agent in turn reacts with the coupler to yield a dye.
  • With negative-working silver halide, the processing step described above provides a negative image. The described elements can be processed in the known C-41 color process as described in The British Journal of Photography Annual of 1988, pages 191-198.
  • Preferred color developing agents are p-phenylenediamines such as:
       4-amino-N,N-diethylaniline hydrochloride,
       4-amino-3-methyl-N,N-diethylaniline hydrochloride,
       4-amino-3-methyl-N-ethyl-N-(β-(methanesulfonamido) ethyl)aniline sesquisulfate hydrate,
       4-amino-3-methyl-N-ethyl-N-(β-hydroxyethyl)aniline sulfate,
       4-amino-3-β-(methanesulfonamido)ethyl-N,N-diethylaniline hydrochloride and
       4-amino-N-ethyl-N-(2-methoxyethyl)-m-toluidine di-p-toluene sulfonic acid.
  • Development is usually followed by the conventional steps of bleaching, fixing, or bleach-fixing, to remove silver or silver halide, washing, and drying.
  • Examples
  • The following examples will serve to better describe the invention. The formulas for the component materials are provided following the examples.
  • A color photographic recording material (Photographic Sample 101) for color negative development was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate. The quantities of silver halide are given in g of silver per m². The quantities of other materials are given in g per m².
    • Layer 1 {Antihalation Layer} black colloidal silver sol containing 0.22 g of silver with 2.44 g gelatin.
    • Layer 2 {First (least) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55 microns, average thickness 0.08 microns] at 0.43 g, red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average thickness 0.09 microns] at 0.43 g, cyan dye-forming image coupler C-1 at 0.56 g, cyan dye-forming masking coupler CM-1 at 0.028 g, Bleach Accelerator Releasing (BAR) compound B-1 at 0.039 g with gelatin at 1.83 g.
    • Layer 3 {Second (more) Red-Sensitive Layer} Red sensitive silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.3 microns, average grain thickness 0.12 microns] at 0.72 g, cyan dye-forming image coupler C-1 at 0.23 g, cyan dye-forming masking coupler CM-1 at 0.022 g, DIR compound D-1 at 0.011 g with gelatin at 1.66 g.
    • Layer 4 {Third (most) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.6 microns, average grain thickness 0.13 microns] at 1.11 g, cyan dye-forming image coupler C-1 at 0.13 g, cyan dye-forming masking coupler CM-1 at 0.033 g, DIR compound D-1 at 0.022 g, DIR compound D-2 at 0.050 g with gelatin at 1.36 g.
    • Layer 5 {Interlayer} Yellow dye material YD-1 at 0.11 g and 1.33 g of gelatin.
    • Layer 6 {First (least) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55 microns, average grain thickness 0.08 microns] at 0.59 g, green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average grain thickness 0.09 microns] at 0.34 g, magenta dye-forming image coupler M-1 at 0.24 g, magenta dye-forming masking coupler MM-1 at 0.067 g with gelatin at 1.78 g.
    • Layer 7 {Second (more) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.25 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-1 at 0.089 g, magenta dye-forming masking coupler MM-1 at 0.067 g, DIR compound D-1 at 0.024 g, DIR compound D-3 at 0.006 g with gelatin at 1.48 g.
    • Layer 8 {Third (most) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.16 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-1 at 0.067 g, magenta dye-forming masking coupler MM-1 at 0.056 g, DIR compound D-3 at 0.006 g, DIR compound D-4 at 0.018 g with gelatin at 1.33 g.
    • Layer 9 {Interlayer} Yellow dye material YD-2 at 0.11 g with 1.33 g gelatin.
    • Layer 10 {First (less) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55, average grain thickness 0.08 microns] at 0.22 g, blue sensitized silver iodobromide emulsion [6 mol % iodide, average grain diameter 1.0 microns, average grain thickness 0.26 microns] at 0.58 g, yellow dye-forming image coupler Y-1 at 0.29 g, yellow dye forming image coupler Y-2 at 0.72 g, DIR compound D-5 at 0.067 g, BAR compound B-1 at 0.003 g with gelatin at 2.6 g.
    • Layer 11 {Second (more) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 3.0 microns, average grain thickness 0.14 microns] at 0.23 g, blue sensitized silver iodobromide emulsion [9 mol % iodide, average grain diameter 1.0 microns] at 0.59 g, yellow dye-forming image coupler Y-1 at 0.092 g, yellow dye-forming image coupler Y-2 at 0.23 g, DIR compound D-5 at 0.051 g, BAR compound B-1 at 0.006 g with gelatin at 1.97 g.
    • Layer 12 {Protective Layer} 0.111 g of dye UV-1, 0.111 g of dye UV-2, unsensitized silver bromide Lippmann emulsion at 0.222 g, Cyan dye material CD-1 at 0.007 g with gelatin at 1.11 g.
    • Layer 13 {Protective Layer} Gelatin at 0.92 g.
  • This film was hardened at coating with 2% by weight to total gelatin of hardener H-1. Surfactants, coating aids, oxidized developer scavengers, soluble absorber dyes and stabilizers were added to the various layers of this sample as is commonly practiced in the art.
  • Photographic Sample 102 was prepared like Photographic Sample 101 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-1 was coated at 0.78 g. In Layer 11 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-1 was coated at 0.22 g.
       Photographic Sample 103 was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate. The quantities of silver halide are given in g of silver per m². The quantities of other materials are given in g per m².
    • Layer 1 {Antihalation Layer} black colloidal silver sol containing 0.22 g of silver, Cyan dye material CD-2 at 0.033 g, Magenta dye material MD-1 at 0.022 g, Yellow dye material YD-3 at 0.133 g with 2.44 g gelatin.
    • Layer 2 {First (least) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55 microns, average thickness 0.08 microns] at 0.28 g, red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average thickness 0.09 microns] at 0.33 g, cyan dye-forming image coupler C-1 at 0.56 g, BAR compound B-1 at 0.089 g with gelatin at 1.83 g.
    • Layer 3 {Second (more) Red-Sensitive Layer} Red sensitive silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.3 microns, average grain thickness 0.12 microns] at 0.56 g, cyan dye-forming image coupler C-1 at 0.23 g, cyan dye-forming masking coupler CM-1 at 0.022 g, DIR compound D-2 at 0.050 g, BAR compound B-1 at 0.003 g with gelatin at 1.66 g.
    • Layer 4 {Third (most) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.6 microns, average grain thickness 0.13 microns] at 1.22 g, cyan dye-forming image coupler C-1 at 0.17 g, cyan dye-forming masking coupler CM-1 at 0.050 g, DIR compound D-6 at 0.003 g, DIR compound D-2 at 0.050 g, BAR compound B-1 at 0.002 g with gelatin at 1.36 g.
    • Layer 5 {Interlayer} 1.33 g of gelatin.
    • Layer 6 {First (least) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average grain thickness 0.09 microns] at 0.78 g, magenta dye-forming image coupler M-2 at 0.067 g, magenta dye-forming image coupler M-3 at 0.22 g, BAR compound B-2 at 0.033 g with gelatin at 1.78 g.
    • Layer 7 {Second (more) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.25 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-2 at 0.028 g, magenta dye-forming image coupler M-3 at 0.089 g, BAR compound B-1 at 0.003 g, magenta dye-forming masking coupler MM-1 at 0.089 g, DIR compound D-4 at 0.022 g with gelatin at 1.48 g.
    • Layer 8 {Third (most) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.16 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-2 at 0.030 g, magenta dye-forming image coupler M-3 at 0.096 g, BAR compound B-1 at 0.003 g, magenta dye-forming masking coupler MM-1 at 0.044 g, DIR compound D-3 at 0.008 g, DIR compound D-4 at 0.008 g with gelatin at 1.33 g.
    • Layer 9 {Interlayer} Yellow dye material YD-2 at 0.11 g with 1.33 g gelatin.
    • Layer 10 {First (less) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55, average grain thickness 0.08 microns] at 0.11 g, blue sensitized silver iodobromide emulsion [4.1 mol % iodide, average grain diameter 0.85, average grain thickness 0.09 microns] at 0.26 g, blue sensitized silver iodobromide emulsion [4.1 mol % iodide, average grain diameter 1.32, average grain thickness 0.14 microns] at 0.26 g, yellow dye-forming image coupler Y-1 at 0.22 g, yellow dye forming image coupler Y-2 at 0.69 g, DIR compound D-5 at 0.049 g, BAR compound B-1 at 0.003 g with gelatin at 2.6 g.
    • Layer 11 {Second (more) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 3.0 microns, average grain thickness 0.14 microns] at 0.39 g, blue sensitized silver iodobromide emulsion [9 mol % iodide, average grain diameter 1.0 microns] at 0.39 g, yellow dye-forming image coupler Y-1 at 0.065 g, yellow dye-forming image coupler Y-2 at 0.20 g, DIR compound D-5 at 0.044 g, BAR compound B-1 at 0.006 g with gelatin at 1.97 g.
    • Layer 12 {Protective Layer} 0.111 g of dye UV-1, 0.111 g of dye UV-2, unsensitized silver bromide Lippmann emulsion at 0.222 g, Cyan dye material CD-2 at 0.006 g, Magenta dye material MD-2 at 0.001 g with gelatin at 1.11 g.
    • Layer 13 {Protective Layer} Gelatin at 0.92 g.
       This film was hardened at coating with 2% by weight to total gelatin of hardener H-1. Surfactants, coating aids, oxidized developer scavengers, soluble absorber dyes and stabilizers were added to the various layers of this sample as is commonly practiced in the art.
  • Photographic Sample 104 was prepared like Photographic Sample 103 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.94 g. In Layer 11 yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.28 g.
  • Photographic Sample 105 was prepared like Photographic Sample 103 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was added at 0.89 g. In Layer 11 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was coated at 0.26 g.
  • Photographic Sample 106 was prepared like Photographic Sample 103 except for Layers 10 and 11. In Layer 10, the blue sensitized silver iodobromide emulsion [4.1 mol % iodide, average grain diameter 0.85, average grain thickness 0.09 microns] was coated at 0.28 g and yellow dye-forming coupler Y-2 was coated at 0.72 g. In Layer 11, the yellow dye-forming coupler Y-2 was coated at 0.21 g.
  • Photographic Sample 107 was prepared like Photographic Sample 106 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.94 g. In Layer 11 yellow dye-forming coupler Y-1 was omitted and yellow dye-forming coupler Y-2 was coated at 0.28 g.
  • Photographic Sample 108 was prepared by applying the following layers in the given sequence to a transparent support of cellulose triacetate. The quantities of silver halide are given in g of silver per m². The quantities of other materials are given in g per m².
    • Layer 1 {Antihalation Layer} black colloidal silver sol containing 0.156 g of silver, Cyan dye material CD-2 at 0.033 g, Magenta dye material MD-1 at 0.021 g, Yellow dye material YD-3 at 0.104 g with 2.44 g gelatin.
    • Layer 2 {First (least) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55 microns, average thickness 0.08 microns] at 0.47 g, red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average thickness 0.09 microns] at 0.46 g, cyan dye-forming image coupler C-1 at 0.56 g, cyan dye-forming masking coupler CM-1 at 0.033 g, BAR compound B-1 at 0.039 g with gelatin at 1.83 g.
    • Layer 3 {Second (more) Red-Sensitive Layer} Red sensitive silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.3 microns, average grain thickness 0.12 microns] at 0.72 g, cyan dye-forming image coupler C-1 at 0.26 g, cyan dye-forming maskÿ g coupler CM-1 at 0.022 g, DIR compound D-1 at 0.011 g with gelatin at 1.66 g.
    • Layer 4 {Third (most) Red-Sensitive Layer} Red sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.6 microns, average grain thickness 0.13 microns] at 1.11 g, cyan dye-forming image coupler C-1 at 0.13 g, cyan dye-forming masking coupler CM-1 at 0.033 g, DIR compound D-1 at 0.024 g, DIR compound D-2 at 0.050 g with gelatin at 1.36 g.
    • Layer 5 {Interlayer} Yellow dye material YD-1 at 0.11 g and 1.33 g of gelatin.
    • Layer 6 {First (least) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55 microns, average grain thickness 0.08 microns] at 0.62 g, green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.0 microns, average grain thickness 0.09 microns] at 0.32 g, magenta dye-forming image coupler M-1 at 0.24 g, magenta dye-forming masking coupler MM-1 at 0.067 g with gelatin at 1.78 g.
    • Layer 7 {Second (more) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 1.25 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-1 at 0.091 g, magenta dye-forming masking coupler MM-1 at 0.067 g, DIR compound D-1 at 0.024 g with gelatin at 1.48 g.
    • Layer 8 {Third (most) Green-Sensitive Layer} Green sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 2.16 microns, average grain thickness 0.12 microns] at 1.00 g, magenta dye-forming image coupler M-1 at 0.072 g, magenta dye-forming masking coupler MM-1 at 0.056 g, DIR compound D-3 at 0.008 g, DIR compound D-4 at 0.011 g with gelatin at 1.33 g.
    • Layer 9 {Interlayer} Yellow dye material YD-2 at 0.11 g with 1.33 g gelatin.
    • Layer 10 {First (less) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [1.3 mol % iodide, average grain diameter 0.55, average grain thickness 0.08 microns] at 0.24 g, blue sensitized silver iodobromide emulsion [6 mol % iodide, average grain diameter 1.0 microns, average grain thickness 0.26 microns] at 0.61 g, yellow dye-forming image coupler Y-1 at 0.29 g, yellow dye forming image coupler Y-2 at 0.72 g, cyan dye-forming coupler C-1 at 0.016 g, DIR compound D-5 at 0.067 g, BAR compound B-1 at 0.003 g with gelatin at 2.6 g.
    • Layer 11 {Second (more) Blue-Sensitive Layer} Blue sensitized silver iodobromide emulsion [4 mol % iodide, average grain diameter 3.0 microns, average grain thickness 0.14 microns] at 0.23 g, blue sensitized silver iodobromide emulsion [9 mol % iodide, average grain diameter 1.0 microns] at 0.59 g, yellow dye-forming image coupler Y-1 at 0.090 g, yellow dye-forming image coupler Y-2 at 0.23 g, cyan dye-forming coupler at 0.022 g, DIR compound D-5 at 0.051 g, BAR compound B-1 at 0.006 g with gelatin at 1.97 g.
    • Layer 12 {Protective Layer} 0.111 g of dye UV-1, 0.111 g of dye UV-2, unsensitized silver bromide Lippmann emulsion at 0.222 g with gelatin at 1.11 g.
    • Layer 13 {Protective Layer} Gelatin at 0.92 g.
       This film was hardened at coating with 2% by weight to total gelatin of hardener H-1. Surfactants, coating aids, oxidized developer scavengers, soluble absorber dyes and stabilizers were added to the various layers of this sample as is commonly practiced in the art.
  • Photographic Sample 109 was prepared like Photographic Sample 108 except for changes in Layers 10 and 11. In Layer 10 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was added at 0.87 g. In Layer 11 yellow dye-forming coupler Y-2 was omitted and yellow dye-forming coupler Y-3 was coated at 0.27 g.
  • TABLES 1 and 2 show the photographic responses associated with Photographic Samples 101 and 103 relative to three examples of prior art (Photographic Samples 102, 104 and 105). Each formulation is processed through two developers. These developers have been pH adjusted to provide pH values which are high (10.15) or low (9.95) of standard developer aim pH, 10.04. A percentage contrast change is used to reflect the effect on contrast of pH variations from 9.95 to 10.15. TABLE 1
    Image CouplerLevels (g/sq m) by Layer % Contrast Change (pH =10.15/ pH = 9.95) Photographic Sample Number
    Most Sensitive Y-1/Y-2 Least Sensitive Y-1/Y-2 Red Green Blue
    0.215/0 0.753/0 10.7 5.8 -1.4 102(C)
    0.089/0.226 0.280/0.700 9.3 11.7 14.1 101(Inv)
  • In the first formulation, all Type II parents with Type II heterocyclic coupling-off groups, the blue layer contrast is invariant. This insensitivity leads to a mismatch with the red and green contrasts, which both increase with increasing developer pH. In the second formulation, a combination of a Type I parent and Type I phenolic coupling-off group and a Type II parent and coupling-off group, the blue layer contrast covaries with the other two records. One of the advantages of this covariation is better print quality as the printer algorithms are able to adjust for the covarying contrasts of all 3 records. In the first formulation, the contrast mismatch prevents proper printing. TABLE 2
    Image CouplerLevels (g/sq m) by Layer % Contrast Change (pH = 10.15/ pH = 9.95) Photographic Sample Number
    Most Sensitive Y-1/Y-2 or Y-3 Least Sensitive Y-1/Y-2 or Y-3 Red Green Blue
    0/0.268 0/Y-2 0/0.913 0/Y-2 10.4 24.7 9.5 104(C)
    0.063/0.253 Y-1/Y-3 0.215/0.859 Y-1/Y-3 6.5 22.9 11.7 105(C)
    0.063/0.196 Y-1/Y-2 0.215/0.666 Y-1/Y-2 11.1 29.9 14.7 103(Inv)
  • The three formulations shown in TABLE 2 covary in all 3 color records allowing for better printing relative to a photographic element containing a single Type II yellow image coupler (TABLE 1). This advantage in two of the examples is realized despite the presence of some Type II coupler (Y-1). The use of Type I coupler (Y-3) with a heterocyclic (Type II) coupling off group, however, requires a greater laydown with its accompanying layer thickness increase and light scattering characteristics. The additional laydown is also more expensive and creates added environmental and disposal problems.
  • Tables 3-5 show blue minimum densities associated with similar formulations, Photographic Samples 101, 106 and 108. Each formulation is shown with two bleaches. These bleaches have been pH adjusted to provide pH values of 4.75, (standard PDTA bleach pH) or 5.25, (standard PDTA/EDTA bleach pH), and bleaches which are 0.75 pH units higher. The unexposed color negative film is then processed through these bleaches, and the resulting blue density is measured. TABLE 3
    Image Coupler Levels (g/sq m) by Layer Blue Minimum Density Photographic Sample Number
    Most Sensitive Y-1/Y-2 Least Sensitive Y-1/Y-2 Fresh PDTA Bleach @ pH = 4.75 Fresh PDTA Bleach @ pH = 5.50
    0.215/0 0.753/0 0.970 1.043 102(C)
    0.089/0.226 0.280/0.700 0.957 0.997 101(Inv)
  • In the first formulation, all Type II coupler, the blue layer minimum density increases with pH growth. In the second formulation, Type I coupler with phenolic coupling-off group and Type II coupler with heterocyclic coupling-off group, the blue layer minimum density growth is reduced. TABLE 4
    Image Coupler Levels (g/sq m) by Layer Blue Minimum Density Photographic Sample Number
    Most Sensitive Y-1/Y-2 Least Sensitive Y-1/Y-2 Fresh PDTA/EDTA Bleach @ pH = 5.25 Fresh PDTA/EDTA Bleach @ pH = 6.00
    0/0.268 0/0.913 0.853 0.892 106(C)
    0.063/0.205 0.215/0.698 0.874 0.964 107(Inv)
    TABLE 5
    Image Coupler Levels (g/sq m) by Layer Blue Minimum Density Photographic Sample Number
    Most Sensitive Y-1/Y-2 or Y-3 Least Sensitive Y-1/Y-2 or Y-3 Fresh PDTA/EDTA Bleach @ pH = 5.25 Fresh PDTA/EDTA Bleach @ pH = 6.00
    0.087/0.285 Y-1/Y-3 0.279/0.913 Y-1/Y-3 1.043 1.085 108(C)
    0.087/0.218 Y-1/Y-2 0.279/0.698 Y-1/Y-2 1.059 1.136 109(Inv)
  • The continued coupling of a combination of Type I coupler with a Type I phenolic coupling off group and Type II coupler with a Type II heterocyclic coupling-off group is intermediate between the Y-1 (Table 3) and Y-2 (Table 4) individually. Relative to a combination of a Type I parent with a Type II coupling-off group and a Type II parent with a Type II coupling-off group, this combination gives a slightly higher blue minimum density growth with elevation in bleach pH. However, much lower laydowns are realized with the coupler combination of the invention (TABLE 5).
  • TABLES 6 and 7 show latitude measurements for Photographic Samples 101 and 103 relative to prior art positions (Photographic Samples 102, 104 and 105). Latitude was calculated as the log E exposure range over which the contrast remains above 0.60. A white light exposure through a step-wise gradient tablet followed by standard color negative processing was used. TABLE 6
    Image Coupler Levels (g/sq m) by Layer Blue Layer Latitude Photographic Sample Number
    Most Sensitive Y-1/Y-2 or Y-3 Least Sensitive Y-1/Y-2 or Y-3
    0/0.268 /Y-2 0/0.913 /Y-2 2.46 104(C)
    0.063/0.253 Y-1/Y-3 0.215/0.859 Y-1/Y-3 2.62 105(C)
    0.063/0.196 Y-1/Y-2 0.215/0.666 Y-1/Y-2 2.54 103(Inv)
  • Comparing samples 103 and 104, the table shows the advantage in exposure latitude for a combination of Type I and Type II couplers versus a Type I coupler alone. The use of another comparison coupler combination in the form of a Type I coupler with Type II coupling off group (Y-3) in conjunction with a Type II coupler (Y-1), as in Sample 105, results in improved latitude but requires a much greater laydown with its accompanying layer thickness increase and corresponding unfavorable light scattering characteristics as compared to Sample 103. TABLE 7
    Image Coupler Levels (g/sq m) by Layer Blue Layer Latitude Photographic Sample Number
    Most Sensitive Y-1/Y-2 Least Sensitive Y-1/Y-2
    0.215/0 0.753/0 1.87 102(C)
    0.089/0.226 0.280/0.700 2.06 101(Inv)
  • The two formulations show the advantage in exposure latitude for a combination of Type I and Type II couplers relative to Type II alone.
  • TABLE 8 shows linearity measurements for Photographic Sample 101 relative to prior art Sample 102. Non-linearity is measured as the speed separation between the contrasts of the two blue layers of differing sensitivities. The juncture where the less sensitive layer becomes the dominant layer in contrast is determined for each photographic coating. The speed separation between the contrasts of the two blue layers is determined at this point and indicates non-linearity when non-zero values result. Non-linearities cause difficulty for printer algorithms as well as adversely affecting the color reproduction. TABLE 8
    Image Coupler Levels (g/sq m) by Layer Blue Layer Non-Linearity Photographic Sample Number
    Most Sensitive Y-1/Y-2 Least Sensitive Y-1/Y-2
    0.215/0.000 0.753/0.000 0.03 102(C)
    0.089/0.226 0.280/0.700 0.00 101(Inv)
  • The two formulations show the advantage in linearity for a combination of Type I and II couplers relative to Type II alone.
  • TABLE 9 shows the photographic responses associated with Photographic Sample 103 of the invention relative to two examples of the prior art (Photographic Samples 104 and 105). Each formulation is given a white light exposure, and the modulated transfer function (MTF) at 2.5 cycles/mm is measured. The measure correlates with light scatter or sharpness. Red element response is employed as the element which is farthest removed from the light source, and, therefore, the layer most affected by light scatter by overlying elements. TABLE 9
    Image Coupler Levels (g/sq m) by Layer Blue Layer Non-Linearity Sharpness (MTF) Red Photographic Sample Number
    Most Sensitive 1/Y-2 or Y-3 Least Sensitive Y-1/Y-2 or Y-3
    0/0.268 0/Y-2 0/0.913 0/Y-2 0.03 105 104(C)
    0.063/0.253 Y-1/Y-3 0.215/0.859 Y-1/Y-3 0.00 101 105(C)
    0.063/0.196 Y-1/Y-2 0.215/0.666 Y-1/Y-2 0.00 105 103(Inv)
  • Two of the three formulations shown in TABLE 9 have approximately the same coated coupler laydown and show similar effects on the underlying red sharpness measure. The third formulation, a Type I coupler with a Type II coupling-off group in combination with a Type II coupler, however, requires a greater laydown with its accompanying layer thickness increase and light scattering characteristics. This is evidenced in the lower sharpness values for Photographic Sample 105 relative to the other two samples. Thus, the combination of the invention provides the advantage of improved sharpness without undue increase in coating weight and the disadvantages that such an increase entails.
  • The formulas for the compounds employed in the Examples are as follows:
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024

Claims (10)

  1. A photographic element comprising a light sensitive photographic silver halide layer sensitized to blue light and having associated therewith a combination of at least two yellow dye-forming couplers each containing an acylacetanilide parent, one of which comprises a phenolic coupling-off group containing a solubilizing substituent, and the other of which is a benzoylacetanilide which comprises a heterocyclic coupling-off group.
  2. The element of Claim 1 wherein the couplers have the following formulas, respectively:
    Figure imgb0025
       wherein X has the formula -OPh(L)nSol, and wherein R is a substituted or unsubstituted aryl group or a fully substituted carbon atom, each Ph is a phenyl ring, independently substituted or not, Sol is a water solubilizing substituent, L is a divalent group linking the phenyl ring and Sol, n is 0 or 1, and Y is a heterocyclic ring, substituted or not.
  3. The element of Claim 2 wherein the heterocyclic ring Y is bonded to the rest of the coupler through a nitrogen atom in the heterocyclic ring and wherein R is a fully substituted carbon atom.
  4. The element of any of claims 1-3 wherein at least two blue sensitive layers contain the two yellow dye-forming couplers.
  5. The element of any of claims 2-4 wherein Y is a substituted or unsubstituted imidazole, pyrazole group, or heterocyclic group represented by the formula:
    Figure imgb0026
       wherein z represents the atoms necessary to complete a heterocyclic ring.
  6. The element of Claim 5 wherein Y is represented by the formula:
    Figure imgb0027
    wherein W is -O-, -S-, -N(R³)-, or -C(R⁴)(R⁵)-; R¹ is H, or substituted or unsubstituted alkyl, alkoxy, phenyl, or phenoxy; R² and R⁵ are independently H or substituted or unsubstituted alkyl; R³ is substituted or unsubstituted alkyl or phenyl; and R⁴ is H or substituted or unsubstituted alkyl or alkoxy.
  7. The element of any of claims 2-5 wherein Y has one of the formulae:
    Figure imgb0028
  8. The element of any of claims 5-7 wherein Y is asubstituted or unsubstituted hydantoin, succinimide, imidazole or pyrazole group.
  9. The element of any of claims 2-8 wherein Sol is:
       -OH, -NHSO₂R, -NHCOR, -NHCOCF₃, -NHCOOR, -NR₂, -NHCONR₂, -CONR₂, -CONHSO₂R, -SO₃H, -CO₂R, -(OR)n, -OSO₂R, -P(O)0R₂, and
    Figure imgb0029
       wherein each R is an independently selected substituent or hydrogen and n is 0 to 3.
  10. The element of any of claims 2-9 wherein X is:
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
EP94200187A 1993-01-29 1994-01-27 Photographic element and process employing a combination of yellow couplers Withdrawn EP0608957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1092893A 1993-01-29 1993-01-29
US10928 1993-01-29

Publications (1)

Publication Number Publication Date
EP0608957A1 true EP0608957A1 (en) 1994-08-03

Family

ID=21748074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94200187A Withdrawn EP0608957A1 (en) 1993-01-29 1994-01-27 Photographic element and process employing a combination of yellow couplers

Country Status (2)

Country Link
EP (1) EP0608957A1 (en)
JP (1) JPH06242568A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214832A2 (en) * 1985-09-03 1987-03-18 Konica Corporation Light-sensitive silver halide color photographic material
EP0488310A1 (en) * 1990-11-30 1992-06-03 Konica Corporation Multiple-layered silver halide color photographic light-sensitive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214832A2 (en) * 1985-09-03 1987-03-18 Konica Corporation Light-sensitive silver halide color photographic material
EP0488310A1 (en) * 1990-11-30 1992-06-03 Konica Corporation Multiple-layered silver halide color photographic light-sensitive material

Also Published As

Publication number Publication date
JPH06242568A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
EP0740203B1 (en) Color negative element having improved green record printer compatibility
EP0603964B1 (en) Azopyrazolone masking couplers
US5723263A (en) Color negative element having improved blue record printer compatibility
US5641613A (en) Photographic element containing an azopyrazolone masking coupler exhibiting improved keeping
US5932407A (en) Color photographic element containing oxidized developer-scavenging naphtholic coupler forming wash-out dye
EP0608958B1 (en) Photographic material and process comprising a thiol bleach assist in the low sensitivity layer of a triple coat
US5451492A (en) Photographic elements containing certain acylacetanilide couplers in combination with development inhibitor releasing couplers
EP0666502B1 (en) Photographic element having a blue light sensitive layer containing a particular yellow dye-forming coupler and a magenta image dye-forming coupler
EP0608957A1 (en) Photographic element and process employing a combination of yellow couplers
US5719014A (en) Color negative films containing yellow methine dyes for filtration and density correction
JPH08234386A (en) Photographic element
EP0740199B1 (en) Photographic element containing certain azoaniline dyes
US5725999A (en) Methine yellow density correction dyes for color negative films with magnetic recording layers
EP0772081B1 (en) Density correction dyes for color negative films with magnetic recording layers
US5811228A (en) Density correction dyes for color negative films with magnetic recording layers
US5928851A (en) Photographic couplers which release useful groups anchiomerically and their synthesis
US5800971A (en) Photographic element containing codispersions of yellow methine filter or density correction dyes and reducing agents
US5451493A (en) Photographic element containing a certain sulfonated acylacetanilide coupler in combination with a development inhibitor releasing coupler
EP0777151B1 (en) Photographic element containing yellow dye-forming coupler comprising a dye light stability enhancing ballast and process
US5482821A (en) Photographic element containing an azopyrazolone masking coupler exhibiting improved keeping
US5591569A (en) Photographic element containing an azopyrazolone masking coupler exhibiting improved keeping
EP0813112A1 (en) Photographic elements containing new magenta dye-forming couplers
EP0608956A1 (en) Photographic element and process having improved response to developer variations
JPH08227126A (en) Photographic element containing magenta pigment-formative coupler
JPH08240890A (en) Photographic element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950204