EP0608457A1 - Glass laminate for a fire-resistant glass pane - Google Patents

Glass laminate for a fire-resistant glass pane Download PDF

Info

Publication number
EP0608457A1
EP0608457A1 EP93101350A EP93101350A EP0608457A1 EP 0608457 A1 EP0608457 A1 EP 0608457A1 EP 93101350 A EP93101350 A EP 93101350A EP 93101350 A EP93101350 A EP 93101350A EP 0608457 A1 EP0608457 A1 EP 0608457A1
Authority
EP
European Patent Office
Prior art keywords
layer
pane
sno2
glass
panes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93101350A
Other languages
German (de)
French (fr)
Other versions
EP0608457B1 (en
Inventor
Roland Dr. Leroux
Viktor Lucius
Jürgen Dr. Thürk
Thomas Karschti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8212565&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0608457(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Priority to EP93101350A priority Critical patent/EP0608457B1/en
Priority to DE59307708T priority patent/DE59307708D1/en
Priority to AT93101350T priority patent/ATE160421T1/en
Publication of EP0608457A1 publication Critical patent/EP0608457A1/en
Application granted granted Critical
Publication of EP0608457B1 publication Critical patent/EP0608457B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/165Fireproof windows

Definitions

  • the invention relates to a pane structure for fire protection glazing, consisting of at least two panes arranged at a distance from one another, of which at least one pane is prestressed on the outside.
  • Fire protection glazing made of two panes spaced apart from one another simultaneously fulfills two functions, that of fire protection and that of thermal insulation.
  • the panes generally two, rarely also three, can be connected by gluing or soldering at a relatively close distance of approx. 5 to 15 mm, according to the type of double glazing, so that the space between the panes is gas-tight, they can also be arranged at a greater distance from each other in their own holding frame.
  • Laminated glass panes can also be used as panes, the bond between the panes sometimes being brought about by a gel or the like which foams up in the event of a fire.
  • the panes are almost always provided with a thermal preload.
  • This preload is usually between 60 and 160 N ⁇ mm ⁇ 2 for float glass panes (normal soda-lime glass) and typically 25 to 120 N ⁇ mm ⁇ 2 for panes made of special glass, for example borosilicate glass.
  • prestressing is sometimes dispensed with; wire glass is generally not prestressed.
  • the pane structure of fire protection glazing can be symmetrical or asymmetrical.
  • the fire protection glazing always behaves the same, regardless of which side of the pane the source of the fire is located.
  • the fire protection glazing behaves differently depending on the side on which the source of the fire is located. It must therefore be installed in a directed manner, according to the expected source of fire.
  • fire protection glazing consists of one, two, rarely three, tempered float glass panes, so it is symmetrical. This structure is inexpensive, but does not meet high requirements in the event of a fire.
  • glass panes that are more complex to manufacture, e.g. made of borosilicate glass or glass ceramic or laminated glass panes, which, however, are generally combined with a non-tempered float glass pane for cost reasons, i.e. are constructed asymmetrically.
  • the object of the invention is to find a pane structure for fire protection glazing which has a longer service life in the event of a fire than a conventional structure and which is particularly suitable for improving fire protection glazing from tempered soda-lime glass.
  • the essence of the invention is that at least both panes are biased and each pane is provided on one side with an infrared reflecting layer. This layer is arranged on the side facing the second pane so that it is removed from a damaging external attack by scratches, environmental influences or by window cleaning agents.
  • the infrared reflecting layer can therefore be damaged in the long term if the window is cleaned improperly.Furthermore, the coating on both sides leads to early failure, since infrared radiation that penetrates the reflecting layer (no IR-reflecting layer reflects the IR radiation 100%) through the second Coating on the other side of the pane is largely trapped in the glass and has no possibility of leaving the pane again. The result is rapid heating of the pane with high thermal stresses and early pressure build-up. This also applies in particular to heating the pane by convection, since the pane then has hardly any possibility of achieving a cooling effect by radiation on the side facing away from the fire.
  • the infrared-reflecting layers lie on the inside of the glazing and are thus protected from external attacks. Furthermore, the pane structure of the glazing is symmetrical. In the event of a fire, the IR rays always first hit the uncoated side of a pane. The rays penetrate the glass, then hit the reflective layer and are reflected back. The radiation thus crosses the glass pane twice. This leads to a much faster heating of the pane than in the case of uncoated glass, so that this pane breaks relatively quickly, which is desirable since it prevents pressure build-up between the panes.
  • the pane facing the source of the fire (IR-reflecting layer inside, 2 IR passes as described), breaks very quickly, which is desirable and the second pane, the IR layer of which faces the source of the fire, withstands the fire for a long time.
  • another coated or uncoated pane can be arranged between the two coated panes.
  • the coating can improve the service life of most glazings in the event of a fire, but particularly good results can be achieved with glazing made from tempered borosilicate glass. A significant improvement also occurs with glazing made from tempered float glass.
  • a particularly suitable infrared reflecting layer is a SnO2 layer, which can be doped in a manner known per se with indium ion (ITO layer), antimony ions (ATO layer) or preferably F ions (FTO layer). Doping with Cl ions is also known.
  • This layer can be applied by methods well known to those skilled in the art, e.g. by sputtering, by the sol-gel method by immersion in a dilute tin alkoxylate solution by vapor deposition or particularly inexpensively by pyrolytic powder coating in the course of the manufacture of float glass.
  • Float glass coated with a doped SnO2 layer is commercially produced on a large scale and is available from various manufacturers at a relatively low price.
  • the SnO2 layer is usually doped with fluoride ions in an amount of 0.5 to 2%, based on the SnO2 content.
  • SnO2 layers doped with indium oxide are known under the name ITO (indium tin oxides).
  • the layer thickness of the reflective layer should be such that at least 25%, preferably at least 50%, of the incident radiation is reflected in the wavelength range> 0.8 to approximately 15 ⁇ m.
  • the electrical sheet resistance which is decisive for the quality of the reflection should be at most 200 ⁇ , preferably at most 80 ⁇ /, in particular at most 50 ⁇ .
  • a sheet resistance of 100 ⁇ / corresponds to a reflection of approx. 40%, one of 80 ⁇ / a reflection of approx. 50%, one of 50 ⁇ / a reflection of approx. 60% and one of 40 ⁇ / one 70% reflection.
  • the layer thickness of the SnO2 layer should not exceed 1210 nm, since thicker layers can only be produced with great effort. In general, layers are preferred which normally have a thickness between 150 and 700 nm. However, a lower limit of 10 nm for the layer thickness should not be undercut.
  • another layer with a refractive index between the glass and the SnO2 layer can be made in a manner known per se of the glass and that of the SnO2 layer is arranged. According to the known rules of optics, such a layer suppresses an interference phenomenon.
  • the panes used in fire protection glazing are generally prestressed because they are heated unevenly in the event of a fire and would break prematurely without prestressing.
  • the application of the bias voltage generally takes place after the application of the IR reflecting layer, since the application of the IR reflecting layer often requires a heat treatment which would greatly reduce or remove the bias voltage.
  • the preload is generated according to the Processes known in the art, generally by heating the glass panes in an oven to temperatures up to about 150 ° C. above the transformation temperature (Tg) and then blowing them on with cold air or immersing them in liquid.
  • Tg transformation temperature
  • the known metal films e.g. made of chrome, aluminum, nickel, copper, silver and especially gold are used. However, they are not preferred because they also significantly influence the passage of visible light or are unstable in the event of a fire. However, it is possible to coat such a layer with an inert protective layer, e.g. made of SnO2, SiO2 or TiO2 to prevent or delay a damaging attack on the metal layer in case of fire. It is also conceivable to embed the reflective metal layer in a matrix of inert oxides or nitrides in order to achieve the same protective effect for the metal. Of course, several protective layers made of different materials can also be combined. For optical reasons, layer combinations, e.g. made of metal and (doped) SnO2 or layers of layers of several differently doped SnO2 layers are used.
  • the advantage of the glazing according to the invention is not only a significant improvement in the service life of the glazing in the event of a fire, but also a considerably better thermal insulation.
  • thermal transmittance values 2.2 W / K ⁇ m2 and below can be achieved, which previously required expensive triple glazing.
  • the insulating glazing 1 consists of the glass panes 2 and 3, which are arranged at a distance from each other.
  • a sheet metal profile 5 filled with molecular sieve 4 serves as a spacer.
  • the panes 2 and 3 are held together by a silicone resin adhesive 6 which at the same time acts against the ingress of moisture from the outside.
  • a primary seal (not shown) consisting of butyl rubber is arranged.
  • the panes 2 and 3 are each provided with an infrared reflecting layer 7 and 8 shown in dashed lines on their inside.
  • the insulating glazing 1 is in a made of rectangular steel profiles 9 u. 10 welded or screwed (11) steel frame by means of block 12 and rebate seals 13 and 14 attached.
  • the discs 2 and 3 are thermally hardened and have a preload of 100 N / mm2.
  • the middle infrared reflecting layer consists of fluorine-doped SnO2, has a thickness of 300 nm and a measured sheet resistance of 25 ⁇ /, which corresponds to a reflectance of approx. 80% for IR radiation of a wavelength> 0.8 ⁇ m.
  • a glazing constructed as described with a pane size of 100 x 200 cm was subjected to a fire test in accordance with DIN 4102, part 13 (ISO 3009).
  • the pane facing the fire broke after 4 minutes, after more than 70 minutes the second pane softened, slid out of the frame and thus formed an opening, as a result of which the glazing could no longer fulfill its fire protection function.

Abstract

Fire-protection glazing (1) composed of at least two prestressed panes (2, 3) is described, each pane having on its side facing the second pane an IR-reflective layer (7, 8) composed of doped SnO2 with a sheet resistance of at most 200 OMEGA . The advantage of this glazing is that the life is considerably greater than similar uncoated glazing.

Description

Die Erfindung betrifft einen Scheibenaufbau für eine Brandschutzverglasung, bestehend aus wenigstens zwei im Abstand voneinander angeordneten Scheiben, von denen wenigstens eine außen liegende Scheibe vorgespannt ist.The invention relates to a pane structure for fire protection glazing, consisting of at least two panes arranged at a distance from one another, of which at least one pane is prestressed on the outside.

Brandschutzverglasungen aus zwei voneinander im Abstand angeordneten Scheiben erfüllen gleichzeitig zwei Funktionen, die des Brandschutzes und die der Wärmedämmung. Die Scheiben, im allgemeinen zwei, selten auch drei, können dabei nach Art der Isolierverglasung in verhältnismäßig dichtem Abstand von ca. 5 bis 15 mm mittels geeigneter Metallprofile durch Kleben oder Löten so verbunden sein, daß der Zwischenraum zwischen den Scheiben gasdicht abgeschlossen ist, sie können aber auch in größerem Abstand voneinander in eigenen Halterahmen angeordnet sein. Es können als Scheiben auch Verbundglasscheiben zum Einsatz kommen, wobei mitunter der Verbund zwischen den Scheiben durch ein im Brandfall aufschäumendes Gel oder dergleichen bewirkt wird.Fire protection glazing made of two panes spaced apart from one another simultaneously fulfills two functions, that of fire protection and that of thermal insulation. The panes, generally two, rarely also three, can be connected by gluing or soldering at a relatively close distance of approx. 5 to 15 mm, according to the type of double glazing, so that the space between the panes is gas-tight, they can also be arranged at a greater distance from each other in their own holding frame. Laminated glass panes can also be used as panes, the bond between the panes sometimes being brought about by a gel or the like which foams up in the event of a fire.

Um im Brandfall ein vorzeitiges Zerbrechen der Scheiben infolge thermischer Spannungen zwischen der am schnellsten heiß werdenden Scheibenmitte und den kühleren rahmennahen Scheibenpartien zu vermeiden, sind die Scheiben fast ausnahmslos mit einer thermischen Vorspannung versehen. Diese Vorspannung liegt üblicherweise zwischen 60 und 160 N·mm⁻² bei Floatglasscheiben (normales Kalk-Natron-Glas) und typischerweise 25 bis 120 N·mm⁻² bei Scheiben aus Spezialglas, z.B. Borosilicatglas. Bei Verbundglasscheiben verzichtet man mitunter auf eine Vorspannung, Drahtglas ist generell nicht vorgespannt.In order to avoid premature breakage of the panes as a result of thermal tensions between the fastest heating pane center and the cooler pane parts near the frame, the panes are almost always provided with a thermal preload. This preload is usually between 60 and 160 N · mm⁻² for float glass panes (normal soda-lime glass) and typically 25 to 120 N · mm⁻² for panes made of special glass, for example borosilicate glass. In the case of laminated glass panes, prestressing is sometimes dispensed with; wire glass is generally not prestressed.

Der Scheibenaufbau einer Brandschutzverglasung kann symmetrisch oder asymmetrisch sein. Bei einem symmetrischen Aufbau verhält sich die Brandschutzverglasung immer gleich, egal auf welcher Seite der Scheibe der Brandherd liegt. Bei einem asymmetrischen Aufbau verhält sich die Brandschutzverglasung je nach der Seite, an welcher der Brandherd liegt, unterschiedlich. Sie muß daher gerichtet eingebaut werden, entsprechend dem zu erwartenden Brandherd.The pane structure of fire protection glazing can be symmetrical or asymmetrical. With a symmetrical structure, the fire protection glazing always behaves the same, regardless of which side of the pane the source of the fire is located. With an asymmetrical structure, the fire protection glazing behaves differently depending on the side on which the source of the fire is located. It must therefore be installed in a directed manner, according to the expected source of fire.

Der einfachste Aufbau einer Brandschutzverglasung besteht aus einer, zwei, selten drei, vorgespannten Floatglasscheiben, ist also symmetrisch. Dieser Aufbau ist preiswert, erfüllt aber keine hohen Anforderungen im Brandfall.The simplest construction of fire protection glazing consists of one, two, rarely three, tempered float glass panes, so it is symmetrical. This structure is inexpensive, but does not meet high requirements in the event of a fire.

Bei höheren Anforderungen kommen aufwendiger herzustellende Spezialglasscheiben, z.B. aus Borosilikatglas oder Glaskeramik oder Verbundglasscheiben zur Anwendung, die jedoch aus Kostengründen im allgemeinen mit einer nicht vorgespannten Floatglasscheibe kombiniert werden, d.h. asymmetrisch aufgebaut sind.For higher requirements there are special glass panes that are more complex to manufacture, e.g. made of borosilicate glass or glass ceramic or laminated glass panes, which, however, are generally combined with a non-tempered float glass pane for cost reasons, i.e. are constructed asymmetrically.

Die Aufgabe der Erfindung besteht darin, einen Scheibenaufbau für eine Brandschutzverglasung zu finden, der gegenüber einem herkömmlichen Aufbau eine höhere Standzeit im Brandfall besitzt, der insbesondere geeignet ist zur Verbesserung einer Brandschutzverglasung aus vorgespanntem Kalk-Natron-Glas.The object of the invention is to find a pane structure for fire protection glazing which has a longer service life in the event of a fire than a conventional structure and which is particularly suitable for improving fire protection glazing from tempered soda-lime glass.

Diese Aufgabe wird durch den in Patentanspruch 1 beschriebenen Scheibenaufbau gelöst. Weitere vorteilhafte Ausbildungen sind in den Unteransprüchen beschrieben.This object is achieved by the pane structure described in claim 1. Further advantageous developments are described in the subclaims.

Das Wesen der Erfindung liegt darin, daß wenigstens beide Scheiben vorgespannt sind und jede Scheibe einseitig mit einer Infrarot-reflektierenden Schicht versehen ist. Diese Schicht wird auf der der zweiten Scheibe zugewandten Seite angeordnet, so daß sie einem schädigenden äußeren Angriff durch Kratzer, Umwelteinflüssen oder durch Fensterputzmittel entzogen ist.The essence of the invention is that at least both panes are biased and each pane is provided on one side with an infrared reflecting layer. This layer is arranged on the side facing the second pane so that it is removed from a damaging external attack by scratches, environmental influences or by window cleaning agents.

Scheiben mit einer infrarotreflektierenden Schicht sind an sich bekannt, so ist aus DE-PS 28 20 678 ein Wärmestrahlung reflektierendes Glas bekannt, das als Verglasung zur Reduzierung der Sonneneinstrahlung im Gebäude dient. Es ist ferner aus EP-PS 389 291 ein Glaslaminat aus infrarot reflektierenden Scheiben mit innenliegender Polymerschicht bekannt, das zur Herstellung von Sicherheitsverglasungen im Innenbereich gedacht ist. Laminate als solche sind jedoch teuer und darüber hinaus trägt das Laminat eine infrarot reflektierende Schicht auf beiden Außenseiten. Die infrarot reflektierende Schicht kann daher langfristig bei unsachgemäßem Fensterputzen beschädigt werden, darüberhinaus führt die beidseitige Beschichtung zu frühem Ausfall, da eine Infrarotstrahlung, die die reflektierende Schicht durchdringt (keine IR-reflektierende Schicht reflektiert die IR-Strahlung 100 %-ig) durch die zweite Beschichtung auf der anderen Scheibenaußenseite weitgehend im Glas gefangen ist und keine Möglichkeit hat, die Scheibe wieder zu verlassen. Eine schnelle Aufheizung der Scheibe mit hohen thermischen Spannungen und frühem Druckaufbau ist die Folge. Das gilt insbesondere auch für eine Aufheizung der Scheibe durch Konvektion, da die Scheibe dann kaum noch eine Möglichkeit hat, durch Abstrahlung auf der dem Feuer abgewandten Seite einen Kühleffekt zu erreichen.Panels with an infrared-reflecting layer are known per se, so DE-PS 28 20 678 a heat radiation reflecting glass is known, which serves as glazing to reduce the solar radiation in the building. It is also known from EP-PS 389 291 a glass laminate made of infrared reflecting panes with an internal polymer layer, which is intended for the production of safety glazing in the interior. However, laminates as such are expensive and, moreover, the laminate has an infrared reflecting layer on both outer sides. The infrared reflecting layer can therefore be damaged in the long term if the window is cleaned improperly.Furthermore, the coating on both sides leads to early failure, since infrared radiation that penetrates the reflecting layer (no IR-reflecting layer reflects the IR radiation 100%) through the second Coating on the other side of the pane is largely trapped in the glass and has no possibility of leaving the pane again. The result is rapid heating of the pane with high thermal stresses and early pressure build-up. This also applies in particular to heating the pane by convection, since the pane then has hardly any possibility of achieving a cooling effect by radiation on the side facing away from the fire.

Bei einem erfindungsgemäßen Scheibenaufbau liegen die infrarotreflektierenden Schichten auf den Innenseiten der Verglasung und sind so äußeren Angriffen entzogen. Desweiteren ist der Scheibenaufbau der Verglasung symmetrisch. Im Brandfall treffen die IR-Strahlen stets zunächst auf die nicht beschichtete Seite einer Scheibe. Die Strahlen dringen in das Glas ein, treffen dann auf die reflektierende Schicht und werden wieder zurückgeworfen. Die Strahlung durchquert somit zweimal die Glasscheibe. Das führt zu einer wesentlich schnelleren Aufheizung der Scheibe als bei unbeschichtetem Glas, so daß diese Scheibe verhältnismäßig schnell bricht, was erwünscht ist, da dadurch ein Druckaufbau zwischen den Scheiben vermieden wird.In the case of a pane structure according to the invention, the infrared-reflecting layers lie on the inside of the glazing and are thus protected from external attacks. Furthermore, the pane structure of the glazing is symmetrical. In the event of a fire, the IR rays always first hit the uncoated side of a pane. The rays penetrate the glass, then hit the reflective layer and are reflected back. The radiation thus crosses the glass pane twice. This leads to a much faster heating of the pane than in the case of uncoated glass, so that this pane breaks relatively quickly, which is desirable since it prevents pressure build-up between the panes.

Bei dem symmetrischen Schichtenaufbau ist es gleichgültig, auf welcher Seite der Verglasung der Brand auftritt. Die dem Brandherd zugekehrte Scheibe (IR-reflektierende Schicht innen, 2-maliger IR-Durchgang wie beschrieben), bricht sehr schnell, was erwünscht ist und die zweite Scheibe, deren IR-Schicht dem Brandherd zugewandt ist, widersteht dem Feuer lange Zeit.With the symmetrical layer structure, it does not matter on which side of the glazing the fire occurs. The pane facing the source of the fire (IR-reflecting layer inside, 2 IR passes as described), breaks very quickly, which is desirable and the second pane, the IR layer of which faces the source of the fire, withstands the fire for a long time.

Falls erforderlich, z.B. wegen erhöhter Schall- oder Wärmedämmung, kann zwischen den beiden beschichteten Scheiben noch eine weitere beschichtete oder unbeschichtete Scheibe angeordnet werden.If necessary, e.g. due to increased sound or thermal insulation, another coated or uncoated pane can be arranged between the two coated panes.

Durch die Beschichtung läßt sich die Standzeit der meisten Verglasungen im Brandfall verbessern, besonders gute Ergebnisse erzielt man jedoch bei Verglasungen aus vorgespanntem Borosilicatglas. Eine wesentliche Verbesserung tritt auch bei Verglasungen aus vorgespanntem Floatglas ein.The coating can improve the service life of most glazings in the event of a fire, but particularly good results can be achieved with glazing made from tempered borosilicate glass. A significant improvement also occurs with glazing made from tempered float glass.

Als infrarot-reflektierende Schicht eignet sich besonders eine SnO₂-Schicht, die in an sich bekannter Weise mit Indiumionen- (ITO-Schicht), Antimonionen (ATO-Schicht) oder bevorzugt F-Ionen (FTO-Schicht) dotiert sein kann. Auch die Dotierung mit Cl-Ionen ist bekannt. Das Aufbringen dieser Schicht kann nach den dem Fachmann wohlbekannten Verfahren, z.B. durch Sputtern, nach dem Sol-Gel-Verfahren durch Tauchen in eine verdünnte Zinnalkoxilat-Lösung durch Aufdampfen oder besonders preiswert durch pyrolytische Pulverbeschichtung im Verlauf der Floatglasherstellung erfolgen. Mit einer dotierten SnO₂-Schicht beschichtetes Floatglas wird in großem Umfang kommerziell hergestellt und ist im Handel von verschiedenen Herstellern verhältnismäßig preiswert erhältlich.A particularly suitable infrared reflecting layer is a SnO₂ layer, which can be doped in a manner known per se with indium ion (ITO layer), antimony ions (ATO layer) or preferably F ions (FTO layer). Doping with Cl ions is also known. This layer can be applied by methods well known to those skilled in the art, e.g. by sputtering, by the sol-gel method by immersion in a dilute tin alkoxylate solution by vapor deposition or particularly inexpensively by pyrolytic powder coating in the course of the manufacture of float glass. Float glass coated with a doped SnO₂ layer is commercially produced on a large scale and is available from various manufacturers at a relatively low price.

Zur Verbesserung der Reflexion wird die SnO₂-Schicht üblicherweise mit Fluoridionen in einer Menge von 0,5 bis 2 %, bezogen auf den SnO₂-Anteil, dotiert. Mit Indiumoxid dotierte SnO₂-Schichten sind unter dem Namen ITO (Indium-Tin-Oxide) bekannt.To improve the reflection, the SnO₂ layer is usually doped with fluoride ions in an amount of 0.5 to 2%, based on the SnO₂ content. SnO₂ layers doped with indium oxide are known under the name ITO (indium tin oxides).

Die Schichtdicke der reflektierenden Schicht soll so bemessen werden, daß wenigstens 25 %, bevorzugt wenigstens 50 %, der auftreffenden Strahlung im Wellenlängenbereich > 0,8 bis ca. 15 µm reflektiert wird. Der für die Güte der Reflexion maßgebliche elektrische Schichtwiderstand soll höchstens 200 Ω , bevorzugt höchstens 80 Ω/ , insbesondere höchstens 50 Ω betragen.The layer thickness of the reflective layer should be such that at least 25%, preferably at least 50%, of the incident radiation is reflected in the wavelength range> 0.8 to approximately 15 μm. The electrical sheet resistance which is decisive for the quality of the reflection should be at most 200 Ω, preferably at most 80 Ω /, in particular at most 50 Ω.

In diesen Schichtwiderstand gehen sowohl die spez. Leitfähigkeit als auch die Schichtdicke ein. Ein Schichtwiderstand von 100 Ω/ entspricht einer Reflexion von ca. 40 %, ein solcher von 80 Ω/ einer Reflexion von ca. 50 %, ein solcher von 50 Ω/ einer Reflexion von ca. 60 % und ein solcher von 40 Ω/ einer Reflexion von ca. 70 %.Both the spec. Conductivity as well as the layer thickness. A sheet resistance of 100 Ω / corresponds to a reflection of approx. 40%, one of 80 Ω / a reflection of approx. 50%, one of 50 Ω / a reflection of approx. 60% and one of 40 Ω / one 70% reflection.

Je höher die spezifische Leitfähigkeit (1/Ω·cm) ist, desto dünner kann in der Regel die (dotierte) SnO₂-Schicht sein.The higher the specific conductivity (1 / Ω · cm), the thinner the (doped) SnO₂ layer can usually be.

Um eine IR-Reflexion von ca. 70 % zu erreichen, ist bei einer Schichtdicke von 200 nm eine spez. Leitfähigkeit von ca. 1650, bei einer Schichtdicke von 250 nm eine solche von 1330 und bei einer Schichtdicke von 300 nm eine spez. Leitfähigkeit von ca. 1100 (I/Ω·cm) erforderlich.In order to achieve an IR reflection of approx. 70%, a spec. Conductivity of approx. 1650, with a layer thickness of 250 nm that of 1330 and with a layer thickness of 300 nm a spec. Conductivity of approx. 1100 (I / Ω · cm) required.

Die Schichtdicke der SnO₂-Schicht sollte einen Wert von 1210 nm nicht überschreiten, da sich dickere Schichten nur noch sehr aufwendig herstellen lassen. Im allgemeinen werden Schichten bevorzugt, die normalerweise eine Stärke zwischen 150 und 700 nm besitzen. Eine Untergrenze von 10 nm für die Schichtdicke sollte jedoch nicht unterschritten werden.The layer thickness of the SnO₂ layer should not exceed 1210 nm, since thicker layers can only be produced with great effort. In general, layers are preferred which normally have a thickness between 150 and 700 nm. However, a lower limit of 10 nm for the layer thickness should not be undercut.

Zur Vermeidung von Interferenzerscheinungen zwischen Glas und SnO₂-Schicht, die bei ungleichmäßigen und/oder zu dünnen SnO₂-Schichten auftreten können, kann in an sich bekannter Weise zwischen der Glas- und der SnO₂-Schicht eine weitere Schicht mit einem Brechungsindex, der zwischen dem des Glases und dem der SnO₂-Schicht liegt, angeordnet werden. Eine solche Schicht unterdrückt nach den bekannten Regeln der Optik eine Interferenzerscheinung.To avoid interference phenomena between the glass and SnO₂ layer, which can occur with uneven and / or too thin SnO₂ layers, another layer with a refractive index between the glass and the SnO₂ layer can be made in a manner known per se of the glass and that of the SnO₂ layer is arranged. According to the known rules of optics, such a layer suppresses an interference phenomenon.

Die in Brandschutzverglasungen eingesetzten Scheiben sind im allgemeinen vorgespannt, da sie im Brandfall ungleichmäßig erwärmt werden und ohne Vorspannung vorzeitig in Bruch gehen würden. Das Aufbringen der Vorspannung erfolgt im allgemeinen nach dem Aufbringen der IR-reflektierenden Schicht, da für das Aufbringen der IR-reflektierenden Schicht häufig eine Wärmebehandlung erforderlich ist, die die Vorspannung stark verringern oder entfernen würde. Die Erzeugung der Vorspannung erfolgt nach den im Stand der Technik bekannten Verfahren, im allgemeinen durch Erwärmen der Glasscheiben in einem Ofen auf Temperaturen bis etwa 150°C über die Transformationstemperatur (Tg) und anschließendes Anblasen mit kalter Luft oder Eintauchen in Flüssigkeit. Durch das Erwärmen können sich je nach Glastyp die Reflexionseigenschaften einer SnO₂-Schicht, insbesondere auf Floatglas, leicht verschlechtern. Das kann jedoch im allgemeinen hingenommen bzw. durch eine vorher mit entsprechender Dicke aufgebrachte Schicht kompensiert werden.The panes used in fire protection glazing are generally prestressed because they are heated unevenly in the event of a fire and would break prematurely without prestressing. The application of the bias voltage generally takes place after the application of the IR reflecting layer, since the application of the IR reflecting layer often requires a heat treatment which would greatly reduce or remove the bias voltage. The preload is generated according to the Processes known in the art, generally by heating the glass panes in an oven to temperatures up to about 150 ° C. above the transformation temperature (Tg) and then blowing them on with cold air or immersing them in liquid. By heating, depending on the type of glass, the reflective properties of a SnO₂ layer, especially on float glass, can deteriorate slightly. However, this can generally be accepted or compensated for by a layer previously applied with an appropriate thickness.

Als infrarot reflektierende Schichten können auch die bekannten Metallfilme, z.B. aus Chrom, Aluminium, Nickel, Kupfer, Silber und insbesondere Gold Verwendung finden. Sie werden aber nicht bevorzugt, da sie auch den Durchgang des sichtbaren Lichts erheblich beeinflussen bzw. im Brandfall unstabil sind. Es ist jedoch möglich, eine derartige Schicht mit einer inerten Schutzschicht, z.B. aus SnO₂, SiO₂ oder TiO₂ zu überziehen um im Brandfall einen schädlichen Angriff auf die Metallschicht zu verhindern oder zu verzögern. Es ist auch denkbar, die reflektierende Metallschicht in eine Matrix aus inerten Oxiden oder Nitriden einzubetten, um die gleiche schützende Wirkung für das Metall zu erzielen. Es können selbstverständlich auch mehrere Schutzschichten aus unterschiedlichen Materialien kombiniert werden. Aus optischen Gründen können als IR-reflektierende Schichten auch Schichtenkombinationen, z.B. aus Metall und (dotiertem) SnO₂ oder Schichtenpakete aus mehreren unterschiedlich dotierten SnO₂-Schichten Verwendung finden.The known metal films, e.g. made of chrome, aluminum, nickel, copper, silver and especially gold are used. However, they are not preferred because they also significantly influence the passage of visible light or are unstable in the event of a fire. However, it is possible to coat such a layer with an inert protective layer, e.g. made of SnO₂, SiO₂ or TiO₂ to prevent or delay a damaging attack on the metal layer in case of fire. It is also conceivable to embed the reflective metal layer in a matrix of inert oxides or nitrides in order to achieve the same protective effect for the metal. Of course, several protective layers made of different materials can also be combined. For optical reasons, layer combinations, e.g. made of metal and (doped) SnO₂ or layers of layers of several differently doped SnO₂ layers are used.

Der Vorteil der erfindungsgemäßen Verglasung besteht nicht nur in einer erheblichen Verbesserung der Standzeit der Verglasung im Brandfall, sondern auch in einer erheblich besseren Wärmedämmung. So lassen sich mit einer Verglasung aus zwei beschichteten Scheiben Wärmedurchgangswerte von 2,2 W/K·m² und darunter erzielen, für die bisher aufwendige 3-fach-Verglasungen erforderlich waren.The advantage of the glazing according to the invention is not only a significant improvement in the service life of the glazing in the event of a fire, but also a considerably better thermal insulation. With glazing made of two coated panes, thermal transmittance values of 2.2 W / K · m² and below can be achieved, which previously required expensive triple glazing.

In der nachfolgenden Abbildung wird ein Ausführungsbeispiel beschrieben.An exemplary embodiment is described in the following figure.

Die Isolierverglasung 1, besteht aus den Glasscheiben 2 und 3, die im Abstand voneinander angeordnet sind. Als Abstandshalter dienen ein mit Molekularsieb 4 gefülltes Blechprofil 5. Die Scheiben 2 und 3 werden durch eine Silikonharzklebemasse 6 zusammengehalten, die gleichzeitig gegen Feuchtigkeitseinbruch von außen wirkt. Zwischen den Seitenwänden des Blechprofils 5 und den Scheiben 2 und 3 ist jeweils noch eine nicht dargestellte, aus Butylkautschuk bestehende Primärdichtung angeordnet. Die Scheiben 2 und 3 sind auf ihrer Innenseite jeweils mit einer gestrichelt dargestellten infrarot-reflektierenden Schicht 7 und 8 versehen. Die Isolierverglasung 1 ist in einem aus rechteckigen Stahlprofilen 9 u. 10 zusammengeschweißten bzw. geschraubten (11) Stahlrahmen mittels Klotzung 12 und Falzdichtungen 13 und 14 befestigt.The insulating glazing 1 consists of the glass panes 2 and 3, which are arranged at a distance from each other. A sheet metal profile 5 filled with molecular sieve 4 serves as a spacer. The panes 2 and 3 are held together by a silicone resin adhesive 6 which at the same time acts against the ingress of moisture from the outside. Between the side walls of the sheet metal profile 5 and the disks 2 and 3, a primary seal (not shown) consisting of butyl rubber is arranged. The panes 2 and 3 are each provided with an infrared reflecting layer 7 and 8 shown in dashed lines on their inside. The insulating glazing 1 is in a made of rectangular steel profiles 9 u. 10 welded or screwed (11) steel frame by means of block 12 and rebate seals 13 and 14 attached.

Die Scheiben 2 und 3 sind thermisch gehärtet und haben eine Vorspannung von 100 N/mm².The discs 2 and 3 are thermally hardened and have a preload of 100 N / mm².

Die mittlere infrarot reflektierende Schicht besteht aus Fluor dotiertem SnO₂, hat eine Dicke von 300 nm und einen gemessenen Schichtwiderstand von 25 Ω/ , was einem Reflexionsgrad von ca 80 % für IR-Strahlung einer Wellenlänge > 0,8 µm entspricht.The middle infrared reflecting layer consists of fluorine-doped SnO₂, has a thickness of 300 nm and a measured sheet resistance of 25 Ω /, which corresponds to a reflectance of approx. 80% for IR radiation of a wavelength> 0.8 µm.

Eine wie beschrieben aufgebaute Verglasung mit einer Scheibengröße von 100 x 200 cm wurde einem Brandtest gemäß DIN 4102, Teil 13 (ISO 3009) unterzogen. Die dem Feuer zugewandte Scheibe brach nach 4 min, nach über 70 min erweichte die zweite Scheibe, rutschte aus dem Rahmen und bildete so eine Öffnung, wodurch die Verglasung ihre Brandschutz-Funktion nicht mehr erfüllen konnte.A glazing constructed as described with a pane size of 100 x 200 cm was subjected to a fire test in accordance with DIN 4102, part 13 (ISO 3009). The pane facing the fire broke after 4 minutes, after more than 70 minutes the second pane softened, slid out of the frame and thus formed an opening, as a result of which the glazing could no longer fulfill its fire protection function.

Zum Vergleich wurde eine identische Brandschutz-Verglasung, jedoch ohne IR-reflektierende Schichten dem gleichen Brandtest ausgesetzt. Die dem Feuer zugewandte Scheibe zerbrach nach 5 min, nach weiteren 25 min wurde die Verglasung durch Weichwerden der zweiten Scheibe und Herausrutschen aus dem Rahmen unbrauchbar.For comparison, identical fire protection glazing, but without IR reflecting layers, was exposed to the same fire test. The window facing the fire broke after 5 minutes, after a further 25 minutes the glazing became unusable due to the softening of the second window and slipping out of the frame.

Claims (8)

Scheibenaufbau für eine Brandschutzmehrfachverglasung bestehend aus wenigstens zwei im Abstand voneinander angeordneten Scheiben,
dadurch gekennzeichnet,
daß beide Scheiben vorgespannt sind und jede Scheibe einseitig mit einer infrarotreflektierenden Schicht versehen ist, die auf der der anderen Scheibe zugewandten Seite angeordnet ist, wobei die infrarotreflektierenden Schichten aus dotiertem SnO₂ bestehen und der für die Güte der Reflektion wesentliche elektrische Schichtwiderstand der SnO₂-Schicht höchstens 200 Ω/ beträgt.
Pane structure for fire protection multiple glazing consisting of at least two panes arranged at a distance from one another,
characterized,
that both disks are prestressed and each disk is provided on one side with an infrared reflecting layer which is arranged on the side facing the other pane, the infrared reflecting layers being composed of doped SnO₂ and the electrical sheet resistance of the SnO₂ layer which is essential for the quality of the reflection at most Is 200 Ω /.
Scheibenaufbau nach Anspruch 1,
dadurch gekennzeichnet,
daß das SnO₂ mit Chlor, Fluor, Antimon oder Indium dotiert ist.
Disc structure according to claim 1,
characterized,
that the SnO₂ is doped with chlorine, fluorine, antimony or indium.
Scheibenaufbau nach wenigstens einem der Ansprüche 1 - 2,
dadurch gekennzeichnet,
daß der Schichtwiderstand der SnO₂-Schicht höchstens 80 Ω/ beträgt.
Pane structure according to at least one of claims 1 to 2,
characterized,
that the sheet resistance of the SnO₂ layer is at most 80 Ω /.
Scheibenaufbau nach wenigstens einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die Schichtdicke der SnO₂-Schicht 10 bis 1200 nm beträgt.
Disc structure according to at least one of Claims 1 to 3,
characterized,
that the layer thickness of the SnO₂ layer is 10 to 1200 nm.
Scheibenaufbau nach wenigstens einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß zwischen der SnO₂-Schicht und der Glasscheibe zur Vermeidung von Interferenzerscheinungen in an sich bekannter Weise eine mit ihrem Brechungsindex zwischen dem des Glases und der SnO₂-Schicht liegende Schicht angeordnet ist.
Pane structure according to at least one of claims 1 to 4,
characterized,
that between the SnO₂ layer and the glass pane to avoid interference phenomena in a manner known per se, a layer with its refractive index is located between that of the glass and the SnO₂ layer.
Scheibenaufbau nach wenigstens einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die infrarotreflektierende Schicht so bemessen ist, daß wenigstens 25 % der auftreffenden Wärmestrahlung im Wellenbereich zwischen 0,8 und 15 µm reflektiert wird.
Disc structure according to at least one of claims 1 to 5,
characterized,
that the infrared reflecting layer is dimensioned such that at least 25% of the incident heat radiation is reflected in the wave range between 0.8 and 15 µm.
Scheibenaufbau nach wenigstens einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Scheiben aus Floatglas bestehen und mit einer Vorspannung von wenigstens 25 N·mm⁻² versehen sind.
Disc structure according to at least one of Claims 1 to 6,
characterized,
that the panes are made of float glass and are provided with a preload of at least 25 N · mm⁻².
Scheibenaufbau nach wenigstens einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß zwischen den beiden mit der infrarotreflektierenden Schicht versehenen Scheiben eine weitere Scheibe angeordnet ist, die auf beiden Seiten oder auf einer Seite oder überhaupt nicht mit einer infrarotreflektierenden Schicht überzogen ist.
Disc structure according to at least one of Claims 1 to 7,
characterized,
that between the two panes provided with the infrared reflecting layer there is a further pane which is coated on both sides or on one side or not at all with an infrared reflecting layer.
EP93101350A 1993-01-29 1993-01-29 Glass laminate for a fire-resistant glass pane Revoked EP0608457B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93101350A EP0608457B1 (en) 1993-01-29 1993-01-29 Glass laminate for a fire-resistant glass pane
DE59307708T DE59307708D1 (en) 1993-01-29 1993-01-29 Window structure for fire protection glazing
AT93101350T ATE160421T1 (en) 1993-01-29 1993-01-29 PANEL STRUCTURE FOR FIRE PROTECTION GLAZING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93101350A EP0608457B1 (en) 1993-01-29 1993-01-29 Glass laminate for a fire-resistant glass pane

Publications (2)

Publication Number Publication Date
EP0608457A1 true EP0608457A1 (en) 1994-08-03
EP0608457B1 EP0608457B1 (en) 1997-11-19

Family

ID=8212565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101350A Revoked EP0608457B1 (en) 1993-01-29 1993-01-29 Glass laminate for a fire-resistant glass pane

Country Status (3)

Country Link
EP (1) EP0608457B1 (en)
AT (1) ATE160421T1 (en)
DE (1) DE59307708D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703343A1 (en) * 1994-09-26 1996-03-27 Istituto Giordano S.P.A Fire-resistant glass barrier
WO2000037383A1 (en) * 1998-12-18 2000-06-29 Glaverbel Glazing panel
DE10155273A1 (en) * 2001-11-09 2003-05-28 Guardian Flachglas Gmbh Fire-resistant glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2104838A (en) * 1981-08-28 1983-03-16 Glaverbel Fire-screening panel
DE2820678C2 (en) * 1977-05-17 1988-06-30 Saint-Gobain Industries, Neuilly-Sur-Seine, Fr
EP0389291A1 (en) * 1989-03-23 1990-09-26 Pilkington Plc Glass laminates
DE9014083U1 (en) * 1990-10-06 1992-02-06 V. Kann Rasmussen Industri A/S, Soeborg, Dk
EP0499868A2 (en) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Glass sheeting element with low degree of radar reflection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820678C2 (en) * 1977-05-17 1988-06-30 Saint-Gobain Industries, Neuilly-Sur-Seine, Fr
GB2104838A (en) * 1981-08-28 1983-03-16 Glaverbel Fire-screening panel
EP0389291A1 (en) * 1989-03-23 1990-09-26 Pilkington Plc Glass laminates
DE9014083U1 (en) * 1990-10-06 1992-02-06 V. Kann Rasmussen Industri A/S, Soeborg, Dk
EP0499868A2 (en) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Glass sheeting element with low degree of radar reflection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703343A1 (en) * 1994-09-26 1996-03-27 Istituto Giordano S.P.A Fire-resistant glass barrier
WO2000037383A1 (en) * 1998-12-18 2000-06-29 Glaverbel Glazing panel
EP1752426A2 (en) * 1998-12-18 2007-02-14 Glaverbel Glazing panel
EP1752426A3 (en) * 1998-12-18 2007-03-07 Glaverbel Glazing panel
DE10155273A1 (en) * 2001-11-09 2003-05-28 Guardian Flachglas Gmbh Fire-resistant glass
DE10155273B4 (en) * 2001-11-09 2006-03-23 Guardian Flachglas Gmbh Use of a glazing unit as fire-resistant glass

Also Published As

Publication number Publication date
ATE160421T1 (en) 1997-12-15
DE59307708D1 (en) 1998-01-02
EP0608457B1 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0281894B1 (en) Process for making a tempered and/or curved glass pane with a silver layer, glass pane made by this process and its use
DE19844046C2 (en) Multi-pane insulating glass
DE19852358C1 (en) Low-E coating system with high thermal resistance
EP1248959B1 (en) Uv-reflective interference layer system
DE3211753C2 (en) Highly transparent, neutral-looking and heat-insulating covering for a substrate made of transparent material and use of the covering
EP3613257A1 (en) Pane having heatable tco coating
DE2309288A1 (en) CLEAR PANEL, IN PARTICULAR WINDOW PANEL, MADE OF GLASS OR PLASTIC WITH A HEAT-REFLECTIVE METAL LAYER
DE112018000781T5 (en) COATED ARTICLE WITH REFLECTIVE / N IR LAYER (S) AND COVER LAYER TO IMPROVE THE SOLAR GAIN AND VISIBILITY
EP2928687B1 (en) Fire protection pane and flame retardant glazing
EP0608457B1 (en) Glass laminate for a fire-resistant glass pane
DE10141453A1 (en) Glazing for heating and cooling devices
EP2760665B1 (en) Fire protection element with protective coating, and method for producing the same
DE4417496A1 (en) Window structure for fire protection glazing
DE4006804A1 (en) MULTI-LAYER SYSTEM WITH A HIGH REFLECTION CAPACITY IN THE INFRARED SPECTRAL AREA AND WITH A HIGH TRANSMISSION CAPACITY IN THE VISIBLE AREA
DE10118617B4 (en) Glazing unit for buildings
EP0334991B1 (en) Process for making inorganic glass panes with a high power of transmission in the visible spectrum and a low transmission of solar energy, and panes made by this process
DE4331263A1 (en) Glass pane and glazing unit
EP2093052B1 (en) Glass component comprising at least one glass element from a conventional glass and a functional coating
DE19701135C2 (en) Insulating glass pane with a low k-value
EP1560797B1 (en) Substrate covered with a thermal insulation layer and method for extending said thermal insulation layer
DE10217045B4 (en) Passive house suitable glazing element
DE2757750A1 (en) HEAT REFLECTIVE DISC AND THE METHOD OF MANUFACTURING IT
DE4331082C1 (en) Fire-proof glass pane and method for producing such a glass pane
DE102007042244B4 (en) Semitransparent element and its use
DE202021100462U1 (en) Vehicle window

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI LU SE

17P Request for examination filed

Effective date: 19940813

17Q First examination report despatched

Effective date: 19960418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU SE

REF Corresponds to:

Ref document number: 160421

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59307708

Country of ref document: DE

Date of ref document: 19980102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971217

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CARL-ZEISS-STIFTUNG TRADING AS SCHOTT GLASWERKE

Owner name: SCHOTT GLAS

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CARL-ZEISS-STIFTUNG TRADING AS SCHOTT GLAS

Owner name: SCHOTT GLAS

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VEGLA VEREINIGTE GLASWERKE GMBH

Effective date: 19980814

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991217

Year of fee payment: 8

Ref country code: CH

Payment date: 19991217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991221

Year of fee payment: 8

Ref country code: AT

Payment date: 19991221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19991223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000107

Year of fee payment: 8

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20000826

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20000826