EP0606615B1 - Method and apparatus for on-line quality monitoring in spinning preparatory work - Google Patents

Method and apparatus for on-line quality monitoring in spinning preparatory work Download PDF

Info

Publication number
EP0606615B1
EP0606615B1 EP93120469A EP93120469A EP0606615B1 EP 0606615 B1 EP0606615 B1 EP 0606615B1 EP 93120469 A EP93120469 A EP 93120469A EP 93120469 A EP93120469 A EP 93120469A EP 0606615 B1 EP0606615 B1 EP 0606615B1
Authority
EP
European Patent Office
Prior art keywords
limit value
limit
value
sliver
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93120469A
Other languages
German (de)
French (fr)
Other versions
EP0606615A1 (en
Inventor
Peter Feller
Walter Grüebler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zellweger Luwa AG
Original Assignee
Zellweger Luwa AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zellweger Luwa AG filed Critical Zellweger Luwa AG
Publication of EP0606615A1 publication Critical patent/EP0606615A1/en
Application granted granted Critical
Publication of EP0606615B1 publication Critical patent/EP0606615B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • D01H13/22Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to presence of irregularities in running material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G23/00Feeding fibres to machines; Conveying fibres between machines
    • D01G23/06Arrangements in which a machine or apparatus is regulated in response to changes in the volume or weight of fibres fed, e.g. piano motions

Definitions

  • the present invention relates to a method for on-line quality monitoring in the spinning mill by detecting cross-sectional fluctuations in the strips produced and by deriving quality parameters from the measurement signal obtained, deviations of these quality parameters from selectable limit values being detected and one of the parameters mentioned being formed by the mass non-uniformity.
  • a method of this type is used, for example, in the USTER SLIVERDATA (USTER - registered trademark of Zellweger Uster AG) data system (see Prospelet from Zellweger Uster AG in CH-8610 Uster / Switzerland, Prospelet No. 240 833-16010 / 5.90 / 2000), which is used to monitor quality and production in the spinning mill. In addition to the mass non-uniformity, the band number and periodic and almost periodic mass fluctuations are checked as part of the quality monitoring.
  • the invention is intended to provide a method for on-line monitoring in the spinning mill, which enables the detection of short thick spots.
  • the measurement signals are compared with a first limit value for the deviations from the target weight of the monitored strip, which is formed as a product of the mass non-uniformity and a selectable limit value factor, and that any exceeding of the first limit value is interpreted as a thick point.
  • the method according to the invention enables the reliable detection of thick spots from a certain length and a certain cross section.
  • the length depends on the speed of the tape and the sampling frequency. In a typical embodiment, it is 4 cm. However, this does not mean that thick spots with a smaller length are not recorded; the acquisition is only no longer with 100% certainty.
  • the definition of the first limit value as a function of the mass non-uniformity has the advantage that the thick spots are not defined on the basis of their absolute cross-section but on the basis of the relative cross-sectional increase as a percentage of the nominal strip weight. In this way, exactly those thick spots are detected that cause a recognizable disturbance in the tissue, which is usually shading.
  • the invention further relates to a device for performing the above-mentioned method, with a sensor for scanning the strip cross-section and with an evaluation unit for processing the sensor signals, which has a first channel for determining the mass non-uniformity.
  • the device according to the invention is characterized in that the evaluation unit has a second channel for the analysis of the sensor signals for exceeding a first, adjustable limit value corresponding to an increase in cross-section of the strip, the size of which is also determined by the mass unevenness determined in the first channel.
  • a measuring element 1 shows the structure of a USTER SLIVERDATA system for production and quality monitoring in spinning preparation.
  • a measuring element 1 is arranged per delivery for the detection of cross-sectional fluctuations of the monitored sliver 2. Since the measuring element 1 does not form the subject of the present invention, it is not explained in more detail here; in this context reference is made to US-A-4 864 853, which describes a particularly advantageous measuring element for strip cross-section fluctuations.
  • the measuring signal of the measuring element 1 is connected to a processor 4 via a so-called machine station 3, a common processor 4 being provided for a group of several, up to 16 measuring elements 1.
  • the machine station 3 also has an input for signals from a production sensor (not shown) which are supplied via a line 5 and which is used to record the speed and the running and stopping times. This detection is carried out by monitoring the speed of a shaft rotating in proportion to the production speed, such as delivery cylinders or calenders.
  • the signals from the production sensor also reach the processor 4 via machine station 3, which calculates quality and production data from the measured values recorded on the individual deliveries, these with inputable limit values compares and controls the responsible machine station 3 when a limit value is exceeded, whereupon this triggers a corresponding action.
  • This action is either the activation of a warning lamp 6 in the case of smaller, still tolerable, or the emission of a stop signal which shuts off the machine via a line 7 in the event of major faults.
  • each machine station 1 also has stop connections 8 for the automatic detection of the cause of the standstill by the signals from the machine and a connection for a so-called numerical machine terminal 9.
  • the latter is an input and output station through which various codes can be entered and data can be called up.
  • the processor 4 is connected to a central processing unit 10, the main functions of which consist in periodically polling the processors, processing and storing the measured values and machine signals, controlling the dialog with the users and outputting data to higher-level systems.
  • Video and / or printer terminals (not shown) connected to the central unit 10 serve as dialogue stations.
  • warning limits are entered for each of the quality parameters mentioned, when they are exceeded the warning lamp 6 (FIG. 1) begins to flash on the corresponding delivery.
  • a stop factor greater than one is entered, with which it is determined from which deviation of the size of the warning limit times the stop factor the machine is stopped.
  • the coefficient of variation is averaged over the entire analysis length of the spectrogram.
  • the processor 4 determines the spectrograms of the individual deliveries in succession. This value is updated periodically, with the interval between the individual updates depending on the machine park and, for example, between 15 minutes and several hours.
  • production data are, for example, the number of hopes or can changes, actual efficiency, the quantity produced, theoretically possible production per hour at 100% efficiency, time per hope or change of can, number of machine downtimes, total stop time, measured delivery speed.
  • the machine station 3 processes the measuring signal MS of the measuring element 1 in three channels; In a first channel K1 the variation coefficient of the band number for short fluctuations in CV% is determined, in a second channel K2 the band number deviation from the target value in A% and in a third channel K3 the monitoring for short thick points DS.
  • This calculation of variation coefficient and band number deviation based on the previous configuration of a USTER SLIVERDATA system, in the processor 4 on the one hand and in the machine station 3 on the other hand is for the present one Invention not essential.
  • the two-fold calculation can be avoided by integrating the functions of the processor 4 into the machine station 3.
  • first channel K1 fluctuations in the tape number of approximately 4 cm cutting length are measured within 100 m tape pieces.
  • second channel K2 which, in contrast to channel K1, is a long-term channel, the tape number deviation from the target value is measured, the measuring device 1 (FIG. 1) calibrating to this target value each time the processed articles or materials and the tape number change becomes. The deviations of the tape number from the setpoint are integrated so that the temporal progression of the tape number is calculated and saved in channel K2.
  • the sliver 2 (FIG. 1) is monitored for short thick points DS, which are aperiodic increases in cross-section of a certain size.
  • the thick spots which can occur in large numbers, are caused by band accumulations, defective machine parts, poor maintenance and cleaning and incorrect machine settings. They cause production disruptions, which are very cost-intensive, and they also influence the quality of the end product and the efficiency of all process stages.
  • a thick point is defined as a specific cross-sectional increase compared to the target value, for example as a cross-sectional increase by at least 40%, and a limit value for the deviation from the target strip weight is defined.
  • This determination is made by forming the product from a factor K times the average non-uniformity CV% calculated in channel K1.
  • the factor K in turn depends on how many violations of the limit value per 100 m band should be permitted. K will therefore be greater, the fewer exceedances are permissible.
  • the nominal belt weight is not a static but a dynamic quantity.
  • the mean value of the strip weight over the last 100 m is calculated, thereby determining the operating point of the system. If this operating point, i.e. the mean value mentioned, deviates from the target strip weight, then the limit value is corrected accordingly.
  • a plurality of, for example, eight detection variants is defined, from which the user can select the one that seems most suitable to him. In this way, the user does not have to enter a plurality of numerical values, rather it is sufficient to enter the respective registration variant, for example by means of a number or a letter.
  • Table 1 gives an example of how the data entry variants can be defined: Table 1 EV GN GA Km 1 1 5.0. CV% 100 2nd 1 5.4. CV% 1,000 3rd 1 5.8. CV% 10,000 4th 2nd 4.7. CV% 10,000 5 5 3.7. CV% 10,000 6 10th 3.2. CV% 10,000 7 20th 2.9. CV% 10,000 8th 50 2.3. CV% 10,000
  • the fourth column shows the number of kilometers of tape on which the machine is switched off exactly once or an alarm is triggered due to normal statistical fluctuations in the unevenness.
  • Variants 1 to 3 are switched off after each exceedance, the probability of a switch off being between 100 and 10,000 km band due to the normal statistical fluctuations in the unevenness.
  • a limit value GN for the number of exceedances of 2, 5, 10, 20 or 50 is used; this is the probability of a shutdown due to the normal statistical fluctuations in the unevenness per 10,000 km band.
  • the limit value for thick spots DS is 4.19 g / m in the present case. If this limit value is exceeded over a length of 100 m band, the machine is shut down. An alarm without shutdown is triggered when the limit is a few percent lower.
  • the operating conditions of the system are such that the fiber sliver is scanned 2 420 times per second and the measured values are averaged over belt lengths of 4 cm. In the foreseeable future, this will result in a maximum delivery speed of 1000 m per minute and at least one measurement value per 4 cm belt length at lower delivery speeds. This in turn means that thick spots with a length of 4 cm are recorded with a certainty of 100%. Statistical studies show that even much shorter thick spots with a length of only 1 cm are still detected with a probability of 40%.
  • the existing limit can be individually expanded by entering additional percentages. For example, if the CV in variant 3 is 3.1%, the limit value GA is 18%. An entry of + 6% then results in a new limit of 24%.
  • the input and display of the setting variants EV and the input of additional percentages are carried out with the numerical machine terminal 9 (FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur On-line Qualitätsüberwachung im Spinnereivorwerk durch Erfassung von Querschnittsschwankungen der produzierten Bänder und durch Ableitung von Qualitätsparametern aus dem gewonnenen Messignal, wobei Abweichungen dieser Qualitätsparameter von wählbaren Grenzwerten detektiert werden und einer der genannten Parameter durch die Massenungleichmässigkeit gebildet ist.The present invention relates to a method for on-line quality monitoring in the spinning mill by detecting cross-sectional fluctuations in the strips produced and by deriving quality parameters from the measurement signal obtained, deviations of these quality parameters from selectable limit values being detected and one of the parameters mentioned being formed by the mass non-uniformity.

Ein Verfahren dieser Art wird beispielsweise bei dem Datensystem USTER SLIVERDATA (USTER - eingetragenes Warenzeichen der Zellweger Uster AG) verwendet (vgl. Prospelet des Fa. Zellweger Uster A.G. in CH-8610 Uster/Schweiz, Prospelet-Nr. 240 833-16010/5.90/2000), welches zur Ueberwachung von Qualität und Produktion im Spinnereivorwerk eingesetzt wird. Im Rahmen der Qualitätsüberwachung werden dabei neben der Massenungleichmässigkeit auch die Bandnummer und periodische und nahezu periodische Masseschwankungen kontrolliert.A method of this type is used, for example, in the USTER SLIVERDATA (USTER - registered trademark of Zellweger Uster AG) data system (see Prospelet from Zellweger Uster AG in CH-8610 Uster / Switzerland, Prospelet No. 240 833-16010 / 5.90 / 2000), which is used to monitor quality and production in the spinning mill. In addition to the mass non-uniformity, the band number and periodic and almost periodic mass fluctuations are checked as part of the quality monitoring.

Es ist bekannt, dass die meisten die Qualität des Endprodukts beeinflussenden Fehler durch Bandnummerschwankungen, Bandungleichmässigkeit, periodische Masseschwankungen und Verzugsfehler verursacht sind. Neben dieser gesicherten Erkenntnis darf aufgrund von praktischen Erfahrungen angenommen werden, dass auch kurze Dickstellen Qualitätsprobleme verursachen können. Denn derartige Dickstellen führen zu kostenintensiven Produktionsstörungen und beeinflussen ausserdem die Qualität des Endprodukts und den Nutzeffekt aller Prozessstufen.It is known that most of the defects affecting the quality of the end product are caused by fluctuations in the strip number, strip unevenness, periodic fluctuations in mass and warping errors. In addition to this secure knowledge Based on practical experience, it can be assumed that even short thick spots can cause quality problems. Such thick spots lead to costly production disruptions and also influence the quality of the end product and the efficiency of all process stages.

Bisher konnten kurze Dickstellen, die durch Bandanhäufungen, defekte Maschinenteile, mangelhafte Wartung und Reinigung und fehlerhafte Maschineneinstellungen entstehen, und die oft in grosser Häufigkeit auftreten, nur durch Laborprüfungen erfasst werden. Wenn man bedenkt, dass sich aus der auf einer modernen Hochleistungsstrecke in nur einer Minute produzierten Menge an Band fünfzig und mehr Spulen Garn herstellen lassen, dann wird klar, dass die Laborprüfung gravierende Qualitätseinbussen nicht verhindern kann, sondern dass dies nur durch eine On-line Ueberwachung möglich ist.Until now, short thick spots, which are caused by accumulation of belts, defective machine parts, poor maintenance and cleaning and incorrect machine settings, and which often occur with great frequency, could only be detected by laboratory tests. If you consider that fifty or more bobbins can be produced from the amount of tape produced on a modern high-performance line in just one minute, then it becomes clear that the laboratory test cannot prevent serious quality losses, but only through an online process Monitoring is possible.

Durch die Erfindung soll nun ein Verfahren zur On-line Ueberwachung im Spinnereivorwerk angegeben werden, welches die Detektion von kurzen Dickstellen ermöglicht.The invention is intended to provide a method for on-line monitoring in the spinning mill, which enables the detection of short thick spots.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Messignale mit einem ersten Grenzwert für die Abweichungen vom Sollgewicht des überwachten Bandes verglichen werden, welcher als Produkt aus der Massenungleichmässigkeit und einem wählbaren Grenzwertfaktor gebildet wird, und dass jede Ueberschreitung des ersten Grenzwerts als Dickstelle interpretiert wird.This object is achieved according to the invention in that the measurement signals are compared with a first limit value for the deviations from the target weight of the monitored strip, which is formed as a product of the mass non-uniformity and a selectable limit value factor, and that any exceeding of the first limit value is interpreted as a thick point.

Das erfindungsgemässe Verfahren ermöglicht die sichere Erfassung von Dickstellen ab einer bestimmten Länge und einem bestimmten Querschnitt. Die Länge ist von der Geschwindigkeit des Bandes und von der Abtastfrequenz abhängig. Sie liegt bei einem typischen Ausführungsbeispiel bei 4 cm. Das bedeutet aber nicht, dass Dickstellen mit einer kleineren Länge nicht erfasst würden; die Erfassung erfolgt nur nicht mehr mit 100% Sicherheit. Die Festlegung des ersten Grenzwerts in Abhängigkeit von der Massenungleichmässigkeit hat den Vorteil, dass die Dickstellen nicht anhand ihres absoluten Querschnitts sondern anhand der relativen Querschnittszunahme in Prozenten des Sollbandgewichts definiert sind. Auf diese Weise werden genau jene Dickstellen erfasst, die im Gewebe eine erkennbare Störung, das ist in der Regel eine Schattierung, hervorrufen.The method according to the invention enables the reliable detection of thick spots from a certain length and a certain cross section. The length depends on the speed of the tape and the sampling frequency. In a typical embodiment, it is 4 cm. However, this does not mean that thick spots with a smaller length are not recorded; the acquisition is only no longer with 100% certainty. The definition of the first limit value as a function of the mass non-uniformity has the advantage that the thick spots are not defined on the basis of their absolute cross-section but on the basis of the relative cross-sectional increase as a percentage of the nominal strip weight. In this way, exactly those thick spots are detected that cause a recognizable disturbance in the tissue, which is usually shading.

Früher konnten derartige Dickstellen unter Umständen bei visueller Kontrolle durch das Bedienungspersonal erkannt werden. Heute ist das praktisch nicht mehr möglich. Und zwar nicht nur wegen der gestiegenen Produktionsgeschwindigkeit, sondern auch deswegen, weil die Maschinen zur Produktion von Bändern, das sind Strecken, Karden und Kämmaschinen, vermehrt komplett verschalt werden, wodurch eine visuelle Bandkontrolle nicht mehr möglich ist. Andererseits nimmt die Anzahl der kurzen Dickstellen mit steigender Produktionsgeschwindigkeit tendenziell zu, weil diese hauptsächlich durch Störungen an Maschinenteilen und Absauganlagen und durch unkontrollierte Abnützung von zu wartenden Maschinenelementen verursacht sind. Diese Störungen und Abnützungen nehmen aber mit steigender Produktionsgeschwindigkeit zu.In the past, such thick spots could possibly be recognized by the operating personnel under visual control. Today this is practically no longer possible. And not just because of the increased production speed, but also because the machines for the production of tapes, that is, draw frames, cards and combing machines, are increasingly being completely interconnected, which means that visual tape control is no longer possible. On the other hand, the number of short thick spots tends to increase with increasing production speed because this is mainly due to malfunctions in machine parts and extraction systems and due to uncontrolled wear are caused by machine elements to be maintained. However, these faults and wear and tear increase with increasing production speed.

Die Erfindung betrifft weiter eine Vorrichtung zur Durchführung des genannten Verfahrens, mit einem Sensor zur Abtastung des Bandquerschnitts und mit einer Auswerteeinheit zur Verarbeitung der Sensorsignale, welche einen ersten Kanal für die Bestimmung der Massenungleichmässigkeit aufweist.The invention further relates to a device for performing the above-mentioned method, with a sensor for scanning the strip cross-section and with an evaluation unit for processing the sensor signals, which has a first channel for determining the mass non-uniformity.

Die erfindungsgemässe Vorrichtung ist dadurch gekennzeichnet, dass die Auswerteeinheit einen zweiten Kanal für die Analyse der Sensorsignale auf Ueberschreitungen eines ersten, einer Querschnittszunahme des Bandes entsprechenden, einstellbaren Grenzwertes aufweist, dessen Grösse durch die im ersten Kanal bestimmte Massenungleichmässigkeit mitbestimmt ist.The device according to the invention is characterized in that the evaluation unit has a second channel for the analysis of the sensor signals for exceeding a first, adjustable limit value corresponding to an increase in cross-section of the strip, the size of which is also determined by the mass unevenness determined in the first channel.

Nachstehend wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert; es zeigt:

Fig. 1
eine schematische Darstellung einer Anlage zur On-line Qualitätsüberwachung im Spinnereivorwerk; und
Fig. 2
eine Blockbilddarstellung der Signalverarbeitung.
The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawings; it shows:
Fig. 1
a schematic representation of a system for on-line quality monitoring in the spinning mill; and
Fig. 2
a block diagram representation of the signal processing.

Fig. 1 zeigt den Aufbau einer USTER SLIVERDATA Anlage zur Produktions- und Qualitätsüberwachung in der Spinnereivorbereitung. An der zu überwachenden Maschine zur Herstellung eines Faserbandes, beispielsweise also an einer Karde, Strecke oder Kämmaschine, ist pro Ablieferung ein Messorgan 1 für die Erfassung von Querschnittsschwankungen des überwachten Faserbandes 2 angeordnet. Da das Messorgan 1 nicht Gegenstand der vorliegenden Erfindung bildet, wird es hier nicht näher erläutert; es wird in diesem Zusmamenhang auf die US-A-4 864 853 verwiesen, in der ein besonders vorteilhaftes Messorgan für Bandquerschnitts-Schwankungen beschrieben ist.1 shows the structure of a USTER SLIVERDATA system for production and quality monitoring in spinning preparation. On the machine to be monitored to produce a Sliver, for example on a card, draw frame or combing machine, a measuring element 1 is arranged per delivery for the detection of cross-sectional fluctuations of the monitored sliver 2. Since the measuring element 1 does not form the subject of the present invention, it is not explained in more detail here; in this context reference is made to US-A-4 864 853, which describes a particularly advantageous measuring element for strip cross-section fluctuations.

Das Messignal des Messorgans 1 ist über eine sogenannte Maschinenstation 3 an einen Prozessor 4 angeschlossen, wobei jeweils für eine Gruppe von mehreren, und zwar bis zu 16, Messorganen 1 ein gemeinsamer Prozessor 4 vorgesehen ist. Die Maschinenstation 3 weist neben dem Eingang für die Messignale des Messorgans 1 noch einen Eingang für über eine Leitung 5 zugeführte Signale eines Produktionssensors (nicht dargestellt) auf, der zur Erfassung der Geschwindigkeit und der Lauf- und Stoppzeiten dient. Diese Erfassung erfolgt durch Ueberwachung der Drehzahl einer proportional zur Produktionsgeschwindigkeit drehenden Welle, wie beispielsweise Ablieferungszylinder oder Kalander.The measuring signal of the measuring element 1 is connected to a processor 4 via a so-called machine station 3, a common processor 4 being provided for a group of several, up to 16 measuring elements 1. In addition to the input for the measurement signals of the measuring element 1, the machine station 3 also has an input for signals from a production sensor (not shown) which are supplied via a line 5 and which is used to record the speed and the running and stopping times. This detection is carried out by monitoring the speed of a shaft rotating in proportion to the production speed, such as delivery cylinders or calenders.

Die Signale des Produktionssensors gelangen via Maschinenstation 3 ebenfalls in den Prozessor 4, der aus den an den einzelnen Ablieferungen erfassten Messwerten Qualitäts- und Produktionsdaten errechnet, diese mit eingebbaren Grenzwerten vergleicht und bei Ueberschreitung eines Grenzwertes die zuständige Maschinenstation 3 ansteuert, worauf diese eine entsprechende Aktion auslöst. Diese Aktion ist entweder die Aktivierung einer Warnlampe 6 bei kleineren, noch tolerierbaren, oder die Abgabe eines die Maschine abstellenden Stoppsignals über eine Leitung 7 bei grösseren Störungen.The signals from the production sensor also reach the processor 4 via machine station 3, which calculates quality and production data from the measured values recorded on the individual deliveries, these with inputable limit values compares and controls the responsible machine station 3 when a limit value is exceeded, whereupon this triggers a corresponding action. This action is either the activation of a warning lamp 6 in the case of smaller, still tolerable, or the emission of a stop signal which shuts off the machine via a line 7 in the event of major faults.

Darstellungsgemäss weist jede Maschinenstation 1 noch Stopp-Anschlüsse 8 zur automatischen Erfassung von Stillstandsursache durch die Signale der Maschine und einen Anschluss für ein sogenanntes numerisches Maschinenterminal 9 auf. Letzteres ist eine Ein- und Ausgabestation, über die verschiedene Codes eingegeben und Daten abgerufen werden können.According to the illustration, each machine station 1 also has stop connections 8 for the automatic detection of the cause of the standstill by the signals from the machine and a connection for a so-called numerical machine terminal 9. The latter is an input and output station through which various codes can be entered and data can be called up.

Der Prozessor 4 ist an eine Zentraleinheit 10 angeschlossen, deren wesentliche Funktionen darin bestehen, die Prozessoren periodisch abzufragen, die Messwerte und Maschinensignale zu verarbeiten und zu speichern, den Dialog mit den Benützern zu steuern und an übergeordnete Systeme Daten auszugeben. Als Dialogstationen dienen an die Zentraleinheit 10 angeschlossene Video- und/oder Druckerterminals (nicht dargestellt).The processor 4 is connected to a central processing unit 10, the main functions of which consist in periodically polling the processors, processing and storing the measured values and machine signals, controlling the dialog with the users and outputting data to higher-level systems. Video and / or printer terminals (not shown) connected to the central unit 10 serve as dialogue stations.

Die erwähnten, vom Prozessor 4 errechneten Qualitätsdaten sind die folgenden:

  • Massenungleichmässigkeit (Variationskoeffizient der Bandnummer) in CV%;
  • Spektrogramm der Masseschwankungen zur Anzeige von periodischen und nicht-periodischen Verzugsfehlern;
  • mittlere Bandnummernabweichung vom Sollwert (Gewicht) in A%.
The mentioned quality data calculated by the processor 4 are the following:
  • Mass non-uniformity (coefficient of variation of the band number) in CV%;
  • Spectrogram of the mass fluctuations to indicate periodic and non-periodic delay errors;
  • Average band number deviation from the target value (weight) in A%.

Um das System als Warnsystem einsetzen zu können, werden für jeden der genannten Qualitätsparameter Warngrenzen eingegeben, bei deren Ueberschreiten an der entsprechenden Ablieferung die Warnlampe 6 (Fig. 1) zu blinken beginnt. Zusätzlich zu den Warngrenzen wird noch ein Stoppfaktor grösser als eins eingegeben, mit dem festgelegt wird, ab welcher Abweichung der Grösse Warngrenze mal Stoppfaktor die Maschine gestoppt wird.In order to be able to use the system as a warning system, warning limits are entered for each of the quality parameters mentioned, when they are exceeded the warning lamp 6 (FIG. 1) begins to flash on the corresponding delivery. In addition to the warning limits, a stop factor greater than one is entered, with which it is determined from which deviation of the size of the warning limit times the stop factor the machine is stopped.

Der Variationskoeffizient wird über die gesamte Analysenlänge des Spektrogramms gemittelt. Dafür werden vom Prozessor 4 nacheinander die Spektrogramme der einzelnen Ablieferungen ermittelt. Dieser Wert wird periodisch aktualisiert, wobei der Abstand zwischen den einzelnen Aktualisierungen vom Maschinenpark abhängt und beispielsweise zwischen 15 Minuten und mehreren Stunden liegt.The coefficient of variation is averaged over the entire analysis length of the spectrogram. For this, the processor 4 determines the spectrograms of the individual deliveries in succession. This value is updated periodically, with the interval between the individual updates depending on the machine park and, for example, between 15 minutes and several hours.

Aus dem Spektrogramm sind bekanntlich periodische Fehler und nahezu periodische Fehler, sogenannte Verzugswellen erkennbar; erstere anhand von Kaminen und letztere anhand von Hügeln. Zur Analyse des Spektrogramms wird dieses in Prüfbereiche unterteilt und für jeden Bereich wird durch Filter und Warngrenzen festgelegt, ab welcher Fehlergrösse eines Hügels oder Kamins eine Warnung ausgelöst wird. Die Ueberwachung beruht dabei im wesentlichen auf einem Vergleich der Werte im Prüfbereich oder Prüffenster mit Werten aus das Prüffenster umgebenden sogenannten Basisfenstern. Die Warnung wird dann ausgelöst, wenn das Verhältnis der Werte im Prüffenster zu jenen in den Basisfenstern grösser wird als die Warngrenze.As is known, periodic errors and almost periodic errors, so-called delay waves, can be recognized from the spectrogram; the former using chimneys and the latter using hills. To analyze the spectrogram, it is divided into test areas and for each area, filters and warning limits are used to determine the error size of a hill or chimney a warning is triggered. The monitoring is essentially based on a comparison of the values in the test area or test window with values from so-called base windows surrounding the test window. The warning is triggered when the ratio of the values in the test window to those in the base windows becomes greater than the warning limit.

Zu diesen vom Prozessor 4 errechneten Qualitätsdaten kommt noch eine Reihe von Produktionsdaten, die von der Zentraleinheit 10 berechnet werden. Derartige Produktionsdaten sind beispielsweise Anzahl Doffungen oder Kannenwechsel, Ist-Nutzeffekt, produzierte Menge, theoretisch mögliche Produktion pro Stunde bei 100% Nutzeffekt, Zeit pro Doffung oder Kannenwechsel, Anzahl Maschinenstillstände, gesamte Stopp-Zeit, gemessene Ablieferungsgeschwindigkeit.In addition to the quality data calculated by the processor 4, there is also a series of production data which are calculated by the central unit 10. Such production data are, for example, the number of hopes or can changes, actual efficiency, the quantity produced, theoretically possible production per hour at 100% efficiency, time per hope or change of can, number of machine downtimes, total stop time, measured delivery speed.

Die Maschinenstation 3 verarbeitet gemäss Fig. 2 das Messignal MS des Messorgans 1 in drei Kanälen; in einem ersten Kanal K1 wird der Variationskoeffizient der Bandnummer für kurze Schwankungen in CV% bestimmt, in einem zweiten Kanal K2 die Bandnummerabweichung vom Sollwert in A% und in einem dritten Kanal K3 erfolgt die Ueberwachung auf kurze Dickstellen DS. Diese in der bisherigen Konfiguration einer USTER SLIVERDATA Anlage begründete zweimalige Berechnung von Variationskoeffizient und Bandnummerabweichung im Prozessor 4 einerseits und in der Maschinenstation 3 andererseits ist für die vorliegende Erfindung nicht wesentlich. Ausserdem kann die zweimalige Berechnung durch Integration der Funktionen des Prozessors 4 in die Maschinenstation 3 vermieden werden.2, the machine station 3 processes the measuring signal MS of the measuring element 1 in three channels; In a first channel K1 the variation coefficient of the band number for short fluctuations in CV% is determined, in a second channel K2 the band number deviation from the target value in A% and in a third channel K3 the monitoring for short thick points DS. This calculation of variation coefficient and band number deviation, based on the previous configuration of a USTER SLIVERDATA system, in the processor 4 on the one hand and in the machine station 3 on the other hand is for the present one Invention not essential. In addition, the two-fold calculation can be avoided by integrating the functions of the processor 4 into the machine station 3.

Im ersten Kanal K1 werden Schwankungen der Bandnummer von ca. 4 cm Schnittlänge innerhalb von 100 m-Bandstücken gemessen. Im zweiten Kanal K2, der im Unterschied zum Kanal K1 ein Langzeit-Kanal ist, wird die Bandnummer-Abweichung vom Sollwert gemessen, wobei das Messorgan 1 (Fig. 1) bei jedem Wechsel der verarbeiteten Artikel oder Materialien und der Bandnummer auf diesen Sollwert geeicht wird. Die Abweichungen der Bandnummer vom Sollwert werden integriert, so dass im Kanal K2 der zeitliche Verlauf der Bandnummer errechnet und gespeichert wird.In the first channel K1, fluctuations in the tape number of approximately 4 cm cutting length are measured within 100 m tape pieces. In the second channel K2, which, in contrast to channel K1, is a long-term channel, the tape number deviation from the target value is measured, the measuring device 1 (FIG. 1) calibrating to this target value each time the processed articles or materials and the tape number change becomes. The deviations of the tape number from the setpoint are integrated so that the temporal progression of the tape number is calculated and saved in channel K2.

Im dritten Kanal K3 erfolgt eine Ueberwachung des Faserbandes 2 (Fig. 1) auf kurze Dickstellen DS, das sind aperiodisch auftretende Querschnittszunahmen einer bestimmten Grösse. Die Dickstellen, die in grosser Anzahl auftreten können, entstehen durch Bandanhäufungen, defekte Maschinenteile, mangelhafte Wartung und Reinigung und durch fehlerhafte Maschineneinstellungen. Sie verursachen Produktionsstörungen, die sehr kostenintensiv sind, und sie beeinflussen ausserdem die Qualität des Endprodukts und den Nutzeffekt aller Prozesstufen.In the third channel K3, the sliver 2 (FIG. 1) is monitored for short thick points DS, which are aperiodic increases in cross-section of a certain size. The thick spots, which can occur in large numbers, are caused by band accumulations, defective machine parts, poor maintenance and cleaning and incorrect machine settings. They cause production disruptions, which are very cost-intensive, and they also influence the quality of the end product and the efficiency of all process stages.

Bisher konnten kurze Dickstellen nur durch Laborprüfungen, also off-line, erfasst werden, was aber für die Praxis unzureichend ist. Denn mit einer Bandsortierung pro Schicht werden nur 0,02% des produzierten Materials erfasst, so dass die Aussagekraft von Laborprüfungen nicht sehr repräsentativ ist. Dazu kommt noch, dass sich aus der von einer modernen Hochleistungsstrecke in nur einer Minute produzierten Menge an Band fünfzig und mehr Spulen Garn herstellen lassen.Until now, short thick spots could only be detected by laboratory tests, i.e. off-line, but this was insufficient for practice is. Because a band sorting per shift only records 0.02% of the material produced, so that the informative value of laboratory tests is not very representative. In addition, fifty and more bobbins can be produced from the amount of tape produced by a modern high-performance line in just one minute.

Zur Erfassung der Dickstellen DS wird zuerst einmal eine Dickstelle als bestimmte Querschnittszunahme gegenüber dem Sollwert definiert, beispielsweise als Querschnittszunahme um mindestens 40%, und es wird ein Grenzwert für die Abweichung vom Sollbandgewicht festgelegt. Diese Festlegung erfolgt durch Bildung des Produkts aus einem Faktor K mal der im Kanal K1 berechneten mittleren Ungleichmässigkeit CV%. Der Faktor K wiederum ist davon abhängig, wieviele Ueberschreitungen des Grenzwerts pro 100 m Band zulässig sein sollen. K wird also umso grösser sein, je weniger Ueberschreitungen zulässig sind.To detect the thick points DS, first of all a thick point is defined as a specific cross-sectional increase compared to the target value, for example as a cross-sectional increase by at least 40%, and a limit value for the deviation from the target strip weight is defined. This determination is made by forming the product from a factor K times the average non-uniformity CV% calculated in channel K1. The factor K in turn depends on how many violations of the limit value per 100 m band should be permitted. K will therefore be greater, the fewer exceedances are permissible.

Das Sollbandgewicht ist in diesem Zusammenhang nicht eine statische sondern eine dynamische Grösse. Im Betriebszustand wird jeweils der Mittelwert des Bandgewichts über die letzten 100 m berechnet und dadurch der Arbeitspunkt der Anlage bestimmt. Wenn dieser Arbeitspunkt, also der genannte Mittelwert, vom Sollbandgewicht abweicht, dann wird der Grenzwert entsprechend korrigiert.In this context, the nominal belt weight is not a static but a dynamic quantity. In the operating state, the mean value of the strip weight over the last 100 m is calculated, thereby determining the operating point of the system. If this operating point, i.e. the mean value mentioned, deviates from the target strip weight, then the limit value is corrected accordingly.

Um die Anlage möglichst benutzerfreundlich zu gestalten, wird eine Mehrzahl von beispielsweise acht Erfassungsvarianten festgelegt, aus denen der Benützer die ihm am besten geeignet scheinende auswählen kann. Auf diese Weise braucht der Benutzer nicht eine Mehrzahl von Zahlenwerten einzugeben, sondern es genügt die Eingabe der jeweiligen Erfassungsvariante, beispielsweise mittels einer Ziffer oder eines Buchstabens.In order to make the system as user-friendly as possible, a plurality of, for example, eight detection variants is defined, from which the user can select the one that seems most suitable to him. In this way, the user does not have to enter a plurality of numerical values, rather it is sufficient to enter the respective registration variant, for example by means of a number or a letter.

Die folgende Tabelle 1 gibt ein Beispiel, wie die Erfassungsvarianten festgelegt werden können: Tabelle 1 EV GN GA Km 1 1 5,0 . CV% 100 2 1 5,4 . CV% 1'000 3 1 5,8 . CV% 10'000 4 2 4,7 . CV% 10'000 5 5 3,7 . CV% 10'000 6 10 3,2 . CV% 10'000 7 20 2,9 . CV% 10'000 8 50 2,3 . CV% 10'000 The following Table 1 gives an example of how the data entry variants can be defined: Table 1 EV GN GA Km 1 1 5.0. CV% 100 2nd 1 5.4. CV% 1,000 3rd 1 5.8. CV% 10,000 4th 2nd 4.7. CV% 10,000 5 5 3.7. CV% 10,000 6 10th 3.2. CV% 10,000 7 20th 2.9. CV% 10,000 8th 50 2.3. CV% 10,000

In der ersten Spalte der Tabelle sind insgesamt 8 Erfassungsvarianten EV angegeben, in der zweiten Spalte die zugehörigen Grenzwerte GN für die Anzahl Ueberschreitungen über 100 m Band und in der dritten Spalte die Grenzwerte GA (GA = K mal CV%) für die Abweichung vom Sollbandgewicht (oder vom 100 m-Mittelwert des Bandgewichts). In der vierten Spalte schliesslich ist angegeben, auf wieviel Kilometer Band die Maschine aufgrund von normalen statistischen Schwankungen der Ungleichmässigkeit genau einmal abgestellt oder ein Alarm ausgelöst wird.In the first column of the table, a total of 8 detection variants EV are given, in the second column the corresponding ones Limit values GN for the number of exceedances over 100 m of strip and in the third column the limit values GA (GA = K times CV%) for the deviation from the nominal strip weight (or from the 100 m mean value of the strip weight). Finally, the fourth column shows the number of kilometers of tape on which the machine is switched off exactly once or an alarm is triggered due to normal statistical fluctuations in the unevenness.

Bei den Varianten 1 bis 3 wird nach jeder Ueberschreitung abgestellt, wobei die Wahrscheinlichkeit einer Abstellung durch die normalen statistischen Schwankungen der Ungleichmässigkeit zwischen 100 und 10'000 km Band liegt. Bei den übrigen Varianten wird mit einem Grenzwert GN für die Anzahl Ueberschreitungen von 2, 5, 10, 20 oder 50 gearbeitet; hier liegt die Wahrscheinlichkeit einer Abstellung durch die normalen statistischen Schwankungen der Ungleichmässigkeit pro 10'000 km Band.Variants 1 to 3 are switched off after each exceedance, the probability of a switch off being between 100 and 10,000 km band due to the normal statistical fluctuations in the unevenness. In the other variants, a limit value GN for the number of exceedances of 2, 5, 10, 20 or 50 is used; this is the probability of a shutdown due to the normal statistical fluctuations in the unevenness per 10,000 km band.

Nachfolgend wird ein Beispiel für die Festlegung eines Grenzwerts für Dickstellen DS gegeben:
Annahme: Erfassungsvariante EV: 3; Sollbandgewicht = Nm 0,28 entsprechend 3,57 g/m; CV% = 3.
An example for the definition of a limit value for thick points DS is given below:
Assumption: registration variant EV: 3; Nominal belt weight = Nm 0.28 corresponding to 3.57 g / m; CV% = 3.

Berechnung des Grenzwerts: GA = 5,8 . CV% = 5,8 . 3% = 17,4%. Der absolute Grenzwert ist gleich dem Sollbandgewicht plus dem Grenzwert GA, und das ergibt 3,57 + 0,62 = 4,19 g/m (beim Sollbandgewicht).Calculation of the limit: GA = 5.8. CV% = 5.8. 3% = 17.4%. The absolute limit value is equal to the target tape weight plus the limit value GA, and this gives 3.57 + 0.62 = 4.19 g / m (for the target tape weight).

Der Grenzwert für Dickstellen DS beträgt im vorliegenden Fall also 4,19 g/m. Wird dieser Grenzwert über eine Länge von 100 m Band einmal überschritten, dann wird die Maschine abgestellt. Ein Alarm ohne Abstellung wird bei einem um einige Prozent tieferen Grenzwert ausgelöst.The limit value for thick spots DS is 4.19 g / m in the present case. If this limit value is exceeded over a length of 100 m band, the machine is shut down. An alarm without shutdown is triggered when the limit is a few percent lower.

Die Betriebsbedingungen der Anlage sind derart, dass das Faserband 2 420mal pro Sekunde abgetastet wird, und die Messwerte über Bandlängen von 4 cm gemittelt werden. Das ergibt bei der in absehbarer Zukunft maximalen Ablieferungsgeschwindigkeit von 1000 m pro Minute mindestens einen und bei geringeren Ablieferungsgeschwindigkeiten mehr als einen Messwert pro 4 cm Bandlänge. Das bedeutet wiederum, dass Dickstellen mit einer Länge von 4 cm mit einer Sicherheit von 100% erfasst werden. Statistische Untersuchungen zeigen, dass auch wesentlich kürzere Dickstellen mit einer Länge von nur 1 cm immer noch mit einer Wahrscheinlichkeit von 40% erfasst werden.The operating conditions of the system are such that the fiber sliver is scanned 2 420 times per second and the measured values are averaged over belt lengths of 4 cm. In the foreseeable future, this will result in a maximum delivery speed of 1000 m per minute and at least one measurement value per 4 cm belt length at lower delivery speeds. This in turn means that thick spots with a length of 4 cm are recorded with a certainty of 100%. Statistical studies show that even much shorter thick spots with a length of only 1 cm are still detected with a probability of 40%.

Wenn die einmal gewählte Einstellungsvariante EV zu empfindlich ist, dann kann die bestehende Grenze durch Eingabe von zusätzlichen Prozenten individuell erweitert werden. Ist beispielsweise bei der Variante 3 der CV gleich 3,1%, dann beträgt der Grenzwert GA 18%. Eine Eingabe von +6% ergibt dann eine neue Grenze von 24%. Die Eingaben und Anzeigen der Einstellungsvarianten EV und die Eingabe zusätzlicher Prozente erfolgen mit dem numerischen Maschinenterminal 9 (Fig. 1).If the selected EV setting variant is too sensitive, the existing limit can be individually expanded by entering additional percentages. For example, if the CV in variant 3 is 3.1%, the limit value GA is 18%. An entry of + 6% then results in a new limit of 24%. The input and display of the setting variants EV and the input of additional percentages are carried out with the numerical machine terminal 9 (FIG. 1).

Claims (10)

  1. Method for on-line quality monitoring in the preparatory apparatus of a spinning mill by recording fluctuations in cross-section of the slivers produced and by deriving quality parameters from the measurement signal obtained, deviations of these quality parameters from selectable limit values being detected, and one of the said parameters being formed by mass non-uniformity, characterized in that the measurement signals are compared with a first limit value for the deviations from the desired weight of the monitored sliver (2), which limit value is formed as a product of mass non-uniformity (CV%) and a selectable limit-value factor, and in that each exceeding of the first limit value is interpreted as a thick place (DS).
  2. Method according to Claim 1, characterized in that the respective average value of the sliver weight over a specific length of, for example, 100 metres is determined, and in that, in the event of deviations of the working point from the desired weight, the said average value forms the desired weight.
  3. Method according to Claim 2, characterized in that the exceedings of the first limit value by the measurement signal are compared with a second limit value for the permissible number of exceedings per sliver length, and in that, if the second limit value is exceeded, an alarm is triggered and/or the machine is stopped.
  4. Method according to Claim 3, characterized in that the limit-value factor is selected so that, in dependence on the second limit value, the probability of an alarm and/or a stop as a result of the normal statistical fluctuations in non-uniformity is respectively an alarm or a stop per hundred, thousand or ten thousand kilometres of sliver (2).
  5. Method according to Claim 4, characterized in that various values for the limit-value factor, for the first limit value and for the second limit value are combined to form respective pairs of values forming a recording alternative for the thick places (DS) and these recording alternatives are identified correspondingly, and in that the input of the limit values into the machine takes place by the input of the respective recording alternative.
  6. Method according to Claim 5, characterized in that limit values input into the machine can be broadened individually by the input of additional percentages.
  7. Apparatus for carrying out the method according to Claim 1, with a sensor for sensing the sliver cross-section and an evaluation unit for processing the sensor signals, which has a first channel (K1) for determining the mass non-uniformity and a second channel (K2) which measures sliver-count deviations from the desired value, characterized in that the evaluation unit has a third channel (K3) for analysing the sensor signals in terms of the exceedings of a first adjustable limit value which corresponds to an increase in cross-section of the sliver (2) and the size of which is also determined by the mass non-uniformity determined in the first channel (K1).
  8. Apparatus according to Claim 7, characterized by means for registering the number of exceedings of the first limit value and for comparing this number with a second limit value for the permissible number of exceedings per sliver length, and by means for triggering an alarm (6) and/or for stopping the machine (7) if the second limit value is exceeded.
  9. Apparatus according to Claim 8, characterized in that the said limit values can be input into the machine in the form of table values, the table containing a plurality of associated pairs of values.
  10. Apparatus according to Claim 9, characterized in that the first limit value input into the machine can be broadened individually by the input of additional numbers.
EP93120469A 1993-01-13 1993-12-18 Method and apparatus for on-line quality monitoring in spinning preparatory work Expired - Lifetime EP0606615B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH82/93 1993-01-13
CH8293A CH686446A5 (en) 1993-01-13 1993-01-13 Method and apparatus for on-line Qualitaetsueberwachung in a spinning mill.

Publications (2)

Publication Number Publication Date
EP0606615A1 EP0606615A1 (en) 1994-07-20
EP0606615B1 true EP0606615B1 (en) 1996-08-28

Family

ID=4178855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93120469A Expired - Lifetime EP0606615B1 (en) 1993-01-13 1993-12-18 Method and apparatus for on-line quality monitoring in spinning preparatory work

Country Status (5)

Country Link
US (1) US5426823A (en)
EP (1) EP0606615B1 (en)
CN (1) CN1056204C (en)
CH (1) CH686446A5 (en)
DE (1) DE59303579D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547544A1 (en) * 1995-12-20 1997-06-26 Schlafhorst & Co W Running yarn profile test
DE19615422A1 (en) * 1996-04-19 1997-11-20 Boehringer Ingelheim Kg Two-chamber cartridge for propellant-free MDIs
AU9336698A (en) * 1997-10-21 1999-05-10 Rieter Elitex A.S. A method of yarn spinning by transforming a fibre bundle on a spinning machine and a spinning machine for carrying out the method
US6553826B1 (en) 1999-03-04 2003-04-29 Zellweger Luwa Ag Process and device for monitoring the quality of textile strips
DE10335856A1 (en) * 2003-08-06 2005-03-03 Rieter Ingolstadt Spinnereimaschinenbau Ag Measurement of mass of fibrous band in spinning plant for textiles, by filtering out desired frequency band from sensor signals, for use in processing signals from other sensors
CN106706651A (en) * 2015-11-12 2017-05-24 江南大学 Spinning real-time monitoring system
CZ2016208A3 (en) * 2016-04-12 2017-11-15 Rieter Cz S.R.O. A method of controlling a textile machine comprising a set of adjacent work stations and a textile machine
DE102020109963A1 (en) * 2020-04-09 2021-10-14 TRüTZSCHLER GMBH & CO. KG Plant and method for producing a combed sliver

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917203B2 (en) * 1975-09-06 1984-04-20 株式会社豊田自動織機製作所 Method and device for controlling sliver thickness unevenness in card
DE2543839B1 (en) * 1975-10-01 1976-11-25 Graf & Co Ag DEVICE FOR CREATING A UNIFORM TEXTILE FIBER TAPE
CH668833A5 (en) * 1986-01-16 1989-01-31 Zellweger Uster Ag DEVICE FOR MEASURING AND / OR COMPARISONING THE TAPE THICKNESS OF FIBER TAPES.
US4766647A (en) * 1987-04-10 1988-08-30 Spinlab Partners, Ltd. Apparatus and method for measuring a property of a continuous strand of fibrous materials
DE3803353A1 (en) * 1988-02-05 1989-08-17 Truetzschler & Co DEVICE FOR OBTAINING MEASURING SIZES THAT THE THICKNESS OF FIBER PROPERTIES PREPARED IN SPINNING PREPARATION, e.g. CARDBANDS OR THE LIKE CORRESPOND
US5010494A (en) * 1988-09-09 1991-04-23 North Carolina State University Method and apparatus for detecting mechanical roll imperfections in a roller drafting system
DE3834110A1 (en) * 1988-10-07 1990-04-12 Truetzschler & Co METHOD AND DEVICE FOR DETECTING THE MOVEMENT OF TEXTILE FIBER TAPES, e.g. CARD TAPES
DE58907408D1 (en) * 1988-12-22 1994-05-11 Rieter Ag Maschf Combing machine.
US5248925A (en) * 1989-07-31 1993-09-28 Rieter Machine Works, Ltd. Drafting arrangement with feedback drive groups
EP0412448B1 (en) * 1989-08-11 2000-10-11 Maschinenfabrik Rieter Ag Drafting arrangement with meshed control
CH680931A5 (en) * 1990-03-08 1992-12-15 Loepfe Ag Geb
US5152033A (en) * 1991-07-15 1992-10-06 Myrick-White, Inc. Textile apparatus/method for reducing variations in silver weight
JPH0735602B2 (en) * 1991-07-26 1995-04-19 佳男 新田 Prevention of abnormal fineness

Also Published As

Publication number Publication date
CN1092121A (en) 1994-09-14
US5426823A (en) 1995-06-27
CN1056204C (en) 2000-09-06
DE59303579D1 (en) 1996-10-02
EP0606615A1 (en) 1994-07-20
CH686446A5 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
DE2409882C3 (en) Device for recognizing the incorrect operation of spinning machines
DE3237371C2 (en) Device for the determination of fault locations on a apron drafting system of a spinning machine
DE2649779A1 (en) METHOD OF DETERMINING THE PERIODIC CHARACTERISTICS OF THE YARN IRREGULARITIES CONTAINED IN AN BETWEEN A YARN FORMATION AND A YARN TURNING STAGE OF A YARN MAKING MACHINE AND THE DEVICE FOR THE PROCESSING
EP0685580B1 (en) Method and device for determining causes of faults in yarns, rovings and slivers
DE2750152A1 (en) METHOD AND DEVICE FOR EVALUATING YARN SIGNALS IN RELATION TO THE DETECTION OF PERIODIC CROSS SECTION FLUCTUATIONS
DE3427357C2 (en) Open-end spinning machine with a mobile operating device
EP1006224B1 (en) Method and device for manufacturing condensed yarn
EP1006225B1 (en) Method and device for evaluating the effect of yarn characteristics on the looks of textile surfaces
EP0606615B1 (en) Method and apparatus for on-line quality monitoring in spinning preparatory work
EP0415222B1 (en) Process for setting the threshold of electronic slub catchers
DE4335459C2 (en) Spinning station fault notifier and qualifier
DE102005019760B4 (en) Spinning machine with a drafting system for stretching a fiber structure and corresponding method
DE10059967B4 (en) Method and arrangement for monitoring a thread tenter on a spinning machine
EP3115487B1 (en) Spinning machine and method for operating a spinning frame with a plurality of spinning stations
EP3473756B1 (en) Method and device for operating a ring-spinning frame
DE10026389A1 (en) Monitoring of properties on running yarn, e.g. at open-end spinning, includes identification of faults from shape of parameter trace
DE19649314B4 (en) Procedure for checking the thread profile
EP0678601A2 (en) Controlled draw frame
DE2437485A1 (en) METHOD AND DEVICE FOR MONITORING THE OPERATION OF TEXTILE MACHINES DELIVERING FAEDEN
EP0570836B1 (en) Method and apparatus for the on-line identification of badly set or defective drawframes on ring spinning machines
EP1159472B1 (en) Method for conducting quality control of textile strips
EP4361328A1 (en) Method for operating a carding machine, carding machine and preparation device for spinning
DE102021120188A1 (en) Drafting system of a spinning preparation machine, method for converting a drafting system and method for preventive detection of a machine downtime in such a drafting system
DE4041106A1 (en) Rotating component monitor - in which yarn defect signals are used to identify component fault or wear automatically through an electronic circuit
CH689559A5 (en) Methods or apparatus for monitoring a mill, or a spinning area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZELLWEGER LUWA AG

17P Request for examination filed

Effective date: 19941220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19951211

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

REF Corresponds to:

Ref document number: 59303579

Country of ref document: DE

Date of ref document: 19961002

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061208

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080709

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081211

Year of fee payment: 16

BERE Be: lapsed

Owner name: *USTER TECHNOLOGIES A.G.

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081229

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218