EP0605645A1 - Method and installation for the combustion of a gas mixture. - Google Patents
Method and installation for the combustion of a gas mixture.Info
- Publication number
- EP0605645A1 EP0605645A1 EP92921500A EP92921500A EP0605645A1 EP 0605645 A1 EP0605645 A1 EP 0605645A1 EP 92921500 A EP92921500 A EP 92921500A EP 92921500 A EP92921500 A EP 92921500A EP 0605645 A1 EP0605645 A1 EP 0605645A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner plate
- plate
- gas
- flow resistance
- regions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 37
- 238000009434 installation Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 78
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims description 2
- 239000008246 gaseous mixture Substances 0.000 abstract 2
- 239000001257 hydrogen Substances 0.000 abstract 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
- F23D14/58—Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/72—Safety devices, e.g. operative in case of failure of gas supply
- F23D14/74—Preventing flame lift-off
Definitions
- the invention relates to a method and installation for the combustion of a combustible gas mixture containing a hydrocarbon or hydrogen gas, sufficient air for a complete combustion of the hydrocarbon or hydrogen gas, and an essentially non-combustible ballast gas, which gas mixture is supplied under pressure to a pressure space which is at least partially bounded by a burner plate with an inlet side in the pressure space and an outlet side lying opposite the inlet side for the gas mixture flowing through essentially in a direction at right angles to the plane of the burner plate.
- a first principle is that heat is drawn from the flame by a surface which is placed in or near the flames, and which thereby begins to glow and transfers the heat drawn from the flame by means of radiation to an element to be heated, for example a heat exchanger.
- an element to be heated for example a heat exchanger.
- Only a limited output per unit surface area can be obtained in this way, and therefore a compact burner cannot be achieved.
- the stability of the combustion is a problem during output modulation.
- the burner plate is used in an installation comprising a pressure space to which the combustible gas mixture is supplied through a feed duct, and a combustion space in which the gas mixture is burned, both spaces being at least partially bounded by the burner plate, and compression means for generating a pressure in the pressure space which is higher than the pressure in the combustion space, the burner plate having an inlet side in the pressure space and an outlet side in the combustion space for the gas mixture flowing through essentially in a direction at right angles to the plane of the burner plate, and ignition means which are fitted at the outlet side of the burner plate in the combustion space.
- regions with a significantly lower gas velocity than elsewhere in the flames are found between the flames and near the edges of the foot of the flames.
- regions with low flow velocity remain intact up to a great distance from the burner plate and ensure a stable ignition along the edge of the flame. Such regions are absent in a burner in which the flames do fuse together, so that in such a burner other stabilisation means, e.g. glowing areas or separate glowing elements, are needed.
- the regions with a large number of channels for the gas throughput have a low, but not negligible flow resistance. This flow resistance causes a pressure drop in the gas flow, with the result that pressure fluctuations over the burner plate, which occur particu ⁇ larly in closed appliances, during combustion have less effect on the gas flow velocity and gas distribution through the burner plate, and flame resonances are thus suppressed.
- An installation according to the invention therefore permits a stable combustion, and the output can be modulated over a large range.
- the burner plate has a low surface temperature.
- the burner plate can therefore have a long service life, and no strict standards as regards mechanical properties need to be met.
- the ballast gas can be air, leading to an air factor of the combustible gas mixture of more than one, or part of the gas mixture after combustion thereof can be added to the combustible gas mixture to serve as a ballast gas.
- the combustion space of the installation is connected to the feed duct for the combustible gas mixture.
- Another suitable ballast gas is water, and for special burner applications other ballast gases may be used. It will be clear that a ballast gas may in itself be a mixture of different gases.
- the narrow channels in the burner plate are labyrinth-shaped in the regions with a low flow resistance, i.e. the axis of a channel in general does not form a straight line, and channels can be interconnected. These regions can be formed by a porous material, such as ceramic material.
- the narrow channels in the burner plate are straight and run parallel to each other in a direction at right angles to the plane of the burner plate. In this way it is possible to make the channels by cutting with a laser beam or water jet or the like.
- a hydraulic diameter of the channels which is smaller than 0.4 mm, and is preferably smaller than 0.2 mm, is envisaged.
- the burner plate is preferably designed in such a way that the smallest cross-section of each region with a low flow resistance between the inlet and outlet side, viewed in the plane of the burner plate, is at least about 5 mm 2 , and the sum of these smallest cross-sections of all regions with low flow resistance is at most 70% of the burner plate surface area at the outlet side.
- the regions in the burner plate with a low flow resistance advantageously have an essentially round cross-section, viewed in the plane of the burner plate, with the result that flames with a natural shape can develop.
- the plate consists of a base plate of an essentially gastight material, which base plate is provided with holes of which the edges determine the boundaries of the regions with a low flow resistance, and also consists of a gas- permeable structure extending over at least the cross- section of the holes.
- the gas-permeable structure can be made in the form of an essentially flat plate covering the abovementioned base plate.
- the burner plate can be assembled in a particularly simple way from two plates.
- Another possible embodiment comprises a gas- permeable plate which is locally densified in order to form the regions with a high flow resistance there. This again makes it possible to produce a thin burner plate, and in addition the plate forms one self-supporting entity.
- the gas-permeable plate can be densified locally in a simple way by impregnating it with a filling material.
- the densification can also be obtained by compressing the plate at the places where regions with a high flow resistance have to be formed.
- the structure of the gas-permeable plate in this embodiment can be a foam structure, so that a simple manufacturing process is possible.
- the gas-permeable plate can also be two foam structures with different degrees of gas permeability.
- the regions with a low flow resistance can advantageously be made of metal fibres or aluminium oxide fibres, on account of the resistance of these materials to the prevailing tempera ⁇ tures.
- Metal fibres can also be impregnated, which is advantageous, inter alia, in the abovementioned embodi ⁇ ment, in which the burner is one plate densified locally by impregnation.
- Aluminium oxide fibres can be applied in an excellent way by spraying onto a carrier, which makes them very suitable for use in combination with a base plate according to an earlier described embodiment.
- FIG. 1 shows a schematic view of an embodiment of an installation according to the invention
- Fig. 2 shows a partially cut-away perspective view of a first embodiment of a burner plate for use in an installation according to the invention
- Fig. 3 shows a partially cut-away perspective view of a second embodiment of a burner plate for use in an installation according to the invention
- Fig. 5 shows a cross-section of a fourth embodi ⁇ ment of a burner plate for use in an installation according to the invention.
- Fig. 6 shows a cross-section of a fifth embodi- ent of a burner plate for use in an installation according to the invention.
- Fig. 1 shows a boiler 21, comprising an air inlet duct 22 and a gas inlet duct 23, which open out in a mixing chamber 24 for mixing the air and gas supplied to it.
- the mixing chamber 24 is connected to a feed duct 25, in which a fan 26 which can pressurize the combustible gas/air mixture is situated.
- the feed duct 25 ends in pressure space 27, which is bounded by a burner plate 6.
- a combined igniter and temperature sensor 28 is situated in a combustion space 29.
- a heat exchanger 30 Adjacent to this combustion space 29 is a heat exchanger 30, through which the hot combustion gases coming from separate flames can flow and transfer heat to another medium also flowing through the heat exchanger 30, following which the combustion gases can flow away through a discharge duct 31.
- This boiler 21 can be used, for example, as a central heating boiler, and can then be fired by natural gas. To lower the flame temperature in the burner, excess air may be supplied to the mixing chamber 24, or a part of the exhaust gases may be recirculated by means of a recircula ion duct 32 shown in dashed lines connecting the discharge duct 31 to the feed duct 25. In this way essentially non-combustible ballast gas is added to the combustible gas mixture in feed duct 25.
- the recirculation duct 32 may comprise a control valve 33 for setting the flow in the duct 32.
- a mixing chamber 24 strictly speaking is unnecessary, since the fan 26 can perform the same function.
- a fan may be situated in the discharge duct 31 for generating the same gas flows in the boiler 21.
- the recirculation duct 32 may, instead of being connected to the feed duct 25, be connected to the mixing chamber 24, the air inlet duct 22 or the gas inlet duct 23.
- Fig. 2 shows a rectangular burner plate l with an inlet side 2 and an outlet side 3 for a gas mixture which can flow in the direction indicated by arrow A through the regions formed by narrow parallel, straight channels with a low flow resistance 4.
- the reference number 5 indicates the regions with a high flow resistance.
- the burner plate can be a metal plate in which the channels are made by laser cutting.
- Fig. 3 shows a rectangular burner plate 6, again provided with an inlet side 7 and an outlet side 8, through which a gas mixture can flow in the direction indicated by an arrow B.
- This burner plate is composed of a metal plate 9, which is perforated with square holes 10, and a porous plate 11 which forms a gas-permeable structure and is made of sprayed-on aluminium oxide fibres.
- the gas flow direction can also be selected opposite to the direction of arrow B.
- reference numeral 8 indicates the inlet side
- refer ⁇ ence numeral 7 indicates the outlet side.
- Fig. 4 shows a rectangular burner plate 12, consisting of a perforated base plate 13 which is pro- vided with a porous layer 14 covering the top and bottom side of the plate and filling up the perforations in the base plate.
- Fig. 5 shows a burner plate 15 similar to the burner plate 6 of Fig. 3, and differing from it in that round conical holes 17 are provided in the metal plate 16.
- Fig. 6 shows a burner plate 18 which consists of a metal fibre mat which is densified to form regions with high flow resistance 19, which bound regions with low flow resistance 20.
- a burner plate made up of a metal plate perfor ⁇ ated with round holes and covered with a porous plate was tested.
- the configuration of this plate and the test conditions are given in Table l, in which the emission of harmful substances is also stated, for an output which is held constant, and as a function of the air factor. It can be seen clearly that a considerable reduction of this emission can be achieved compared with known combustion methods, where the air factor generally was lower and never more than 1.4.
- metal plate 160 mm length of metal plate 200 mm thickness of metal plate 2 mm number of holes 150 hole diameter 8 mm surf, with low flow resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Abstract
Procédé et installation de combustion d'un mélange gazeux combustible contenant un hydrocarbure ou de l'hydrogène, une quantité suffisante d'air pour assurer une combustion totale de l'hydrocarbure ou de l'hydrogène, et un gaz de lestage essentiellement non combustible tel que l'air. On introduit le mélange gazeux dans un volume pressurisé (27) limité par une plaque de brûleur (1; 6; 12; 15; 18) dotée d'une face d'entrée située du côté du volume pressurisé, et d'une face de sortie située en regard de l'entrée et traversée par le mélange gazeux s'écoulant dans un sens perpendiculaire au plan de la plaque de brûleur. On utilise une plaque de brûleur comportant, entre la face d'entrée (2; 7) et la face de sortie (3; 8), une ou plusieurs zones comprenant une pluralité de passages étroits parcourus par le gaz, lesdites zones (4; 20) présentant une résistance faible et prédéterminée à l'écoulement et étant limitées par des zones (5; 19) présentant une résistance élevée à l'écoulement. Les zones de faible résistance à l'écoulement sont séparées les unes des autres par une distance telle que, lors de la combustion du mélange gazeux au niveau de la face de sortie de la plaque de brûleur, il se forme, à partir de chaque zone de faible résistance à l'écoulement, une flamme au moins quasi-entièrement séparée des flammes des autres zones de faible résistance.Process and installation for the combustion of a combustible gas mixture containing a hydrocarbon or hydrogen, a sufficient quantity of air to ensure complete combustion of the hydrocarbon or hydrogen, and an essentially non-combustible ballast gas such as than looks. The gaseous mixture is introduced into a pressurized volume (27) limited by a burner plate (1; 6; 12; 15; 18) provided with an inlet face located on the side of the pressurized volume, and a outlet located opposite the inlet and crossed by the gaseous mixture flowing in a direction perpendicular to the plane of the burner plate. A burner plate is used comprising, between the inlet face (2; 7) and the outlet face (3; 8), one or more zones comprising a plurality of narrow passages through which the gas passes, said zones (4; 20) having a low and predetermined resistance to flow and being bounded by areas (5; 19) having a high resistance to flow. The zones of low flow resistance are separated from each other by a distance such that, during combustion of the gas mixture at the outlet face of the burner plate, it is formed, from each zone of low resistance to flow, a flame at least almost entirely separated from the flames of the other zones of low resistance.
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9101668 | 1991-10-03 | ||
NL9101668A NL9101668A (en) | 1991-10-03 | 1991-10-03 | BURNER PLATE AND BURNER FOR A HIGH AIR FACTOR GAS MIXTURE. |
PCT/NL1992/000172 WO1993007420A1 (en) | 1991-10-03 | 1992-10-02 | Method and installation for the combustion of a gas mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0605645A1 true EP0605645A1 (en) | 1994-07-13 |
EP0605645B1 EP0605645B1 (en) | 1997-02-12 |
Family
ID=19859773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92921500A Expired - Lifetime EP0605645B1 (en) | 1991-10-03 | 1992-10-02 | Method and installation for the combustion of a gas mixture |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0605645B1 (en) |
DE (1) | DE69217500T2 (en) |
NL (1) | NL9101668A (en) |
WO (1) | WO1993007420A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140036A1 (en) * | 2020-01-08 | 2021-07-15 | Bekaert Combustion Technology B.V. | Gas burner and heating appliance |
NL2024623B1 (en) * | 2020-01-08 | 2021-09-07 | Bekaert Combustion Tech Bv | Gas burner and heating appliance |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9400280A (en) * | 1994-02-23 | 1995-10-02 | Stichting Energie | Process for the combustion of highly reactive gaseous air / fuel mixtures and burner equipment for carrying out this process. |
JP3695201B2 (en) * | 1998-04-08 | 2005-09-14 | リンナイ株式会社 | Burner plate for combustion |
GB2394275B (en) * | 2002-08-14 | 2005-09-21 | Hamworthy Combustion Eng Ltd | Burner and method of burning gas in a furnace |
DE10251548A1 (en) * | 2002-11-05 | 2004-05-19 | Cramer Sr, S.R.O. | Performance-optimized radiation burner |
DE102014206372A1 (en) * | 2014-04-03 | 2015-10-08 | Vaillant Gmbh | Cogeneration system |
DE102021103800B4 (en) * | 2021-02-18 | 2024-10-17 | Viessmann Climate Solutions Se | Method for operating a gas burner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0092838B1 (en) | 1982-04-28 | 1987-04-22 | Ruhrgas Aktiengesellschaft | Gas-fired water heating apparatus |
US4673349A (en) * | 1984-12-20 | 1987-06-16 | Ngk Insulators, Ltd. | High temperature surface combustion burner |
AU583674B2 (en) * | 1985-10-25 | 1989-05-04 | Rinnai Corporation | Combustion heater |
GB8620228D0 (en) * | 1986-08-20 | 1986-10-01 | Valor Heating Ltd | Gas burner |
-
1991
- 1991-10-03 NL NL9101668A patent/NL9101668A/en unknown
-
1992
- 1992-10-02 WO PCT/NL1992/000172 patent/WO1993007420A1/en active IP Right Grant
- 1992-10-02 DE DE69217500T patent/DE69217500T2/en not_active Expired - Lifetime
- 1992-10-02 EP EP92921500A patent/EP0605645B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9307420A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140036A1 (en) * | 2020-01-08 | 2021-07-15 | Bekaert Combustion Technology B.V. | Gas burner and heating appliance |
NL2024623B1 (en) * | 2020-01-08 | 2021-09-07 | Bekaert Combustion Tech Bv | Gas burner and heating appliance |
Also Published As
Publication number | Publication date |
---|---|
WO1993007420A1 (en) | 1993-04-15 |
DE69217500D1 (en) | 1997-03-27 |
DE69217500T2 (en) | 1997-05-28 |
NL9101668A (en) | 1993-05-03 |
EP0605645B1 (en) | 1997-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4608012A (en) | Gas burner | |
EP0705409B1 (en) | Multiple firing rate zone burner and method | |
US5511974A (en) | Ceramic foam low emissions burner for natural gas-fired residential appliances | |
US4900245A (en) | Infrared heater for fluid immersion apparatus | |
US7631640B2 (en) | Radiant burner | |
US5380192A (en) | High-reflectivity porous blue-flame gas burner | |
US6129545A (en) | Gas burner with pollution-reducing features | |
US3173470A (en) | Gas-fueled radiant heater | |
EP0605645A1 (en) | Method and installation for the combustion of a gas mixture. | |
US6435861B1 (en) | Gas burner assembly and method of making | |
US6932593B2 (en) | Method of preheating catalytic heater | |
US3923447A (en) | Burner of use with fluid fuels | |
US3724994A (en) | Burner | |
DE19545504A1 (en) | Radiant gas burner with a burner plate made of fiber material and reduced noise | |
US6971380B2 (en) | Cylindrical catalytic heater | |
US4133632A (en) | Vaporizing type oil burner | |
RU2094703C1 (en) | Surface-combustion gas burner | |
DE3523811C2 (en) | ||
KR20090032686A (en) | Gas heater | |
JP3488634B2 (en) | Hydrogen surface combustion burner | |
CA1336258C (en) | Gas distributing and infrared radiating block assembly | |
EP4253837A1 (en) | Gas burner | |
RU209658U1 (en) | INFRARED GAS BURNER | |
KR100375654B1 (en) | Gas burner of condensing gas boiler | |
JPS62155431A (en) | Surface combustion burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940315 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19951114 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 69217500 Country of ref document: DE Date of ref document: 19970327 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980922 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980925 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991002 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19991002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: NEFIT BUDERUS B.V. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101022 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20111102 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69217500 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69217500 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20121002 |