EP0604698A2 - Verfahren zur Dekontamination von Behältern - Google Patents

Verfahren zur Dekontamination von Behältern Download PDF

Info

Publication number
EP0604698A2
EP0604698A2 EP93104356A EP93104356A EP0604698A2 EP 0604698 A2 EP0604698 A2 EP 0604698A2 EP 93104356 A EP93104356 A EP 93104356A EP 93104356 A EP93104356 A EP 93104356A EP 0604698 A2 EP0604698 A2 EP 0604698A2
Authority
EP
European Patent Office
Prior art keywords
vessel
steam
extractant
surfactant
pounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93104356A
Other languages
English (en)
French (fr)
Other versions
EP0604698B1 (de
EP0604698A3 (en
Inventor
Nishaneth K. Mehta
Richard W. Krajicek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Serv Tech Inc
Original Assignee
Serv Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/998,556 external-priority patent/US5356482A/en
Application filed by Serv Tech Inc filed Critical Serv Tech Inc
Publication of EP0604698A2 publication Critical patent/EP0604698A2/de
Publication of EP0604698A3 publication Critical patent/EP0604698A3/en
Application granted granted Critical
Publication of EP0604698B1 publication Critical patent/EP0604698B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
    • C23G1/26Cleaning or pickling metallic material with solutions or molten salts with neutral solutions using inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • C11D3/188Terpenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines

Definitions

  • This invention relates to the cleaning of process equipment and vessels to remove contaminants, particularly benzene, during turn-around periods making it safe for personnel to enter the vessel for maintenance and repair. Specifically, it involves an improvement in the process for using steam acids alkalies or wetting agents to decontaminate the vessels.
  • the goal of the present invention is to provide a process for vessel decontamination which exceeds this standard -- in fact, which approaches, if not meets, 0 ppm of benzene. Benzene can be trapped beneath scale or other contaminants only to seep out at a later time when cleaning had been considered completed or gathered in the head space of the vessel.
  • the present invention provides a process for decontaminating process vessels and auxiliary equipment in fluid communication therewith to remove hazardous chemical contamination to permit entry by humans into the vessel to perform maintenance and repair characterized by the steps of contacting contaminated surfaces, at a temperature of from about 710C to 1100C (1600F to about 2300F) with an aqueous solution containing a terpene extractant chemical and a surfactant having an HLB of from about 6 to about 18, agitating the solution in contact with the surface to allow invasion of interstices by the surfactant and extractant for a time sufficient to entrap contaminants into the solution, and separating the solution from the surface to remove the contaminants from the vessel with the fluid.
  • the extractant material is chosen based upon its boiling point and vapor pressure and the known solubility of the contaminant in the extractant. Even if the surfactant and extractant do not boil in the temperature range of the steam, if the partial pressure of these two components is sufficiently high at cleaning conditions, the material will be dispersed throughout the vessel and will condense in the interstices of the metal and matrix of hydrocarbon scale to assure extraction and removal of the contaminants, especially benzene. Condensation of the vapors in the closed vessel creates sufficient vacuum to extract the contaminants from the interstices and break down the scale particle. In the event other gases are present, such as, for example, hydrogen sulfide, a scavenger material for the hydrogen sulfide would also be used, such as, for example, an alkanolamine.
  • the vessel to be decontaminated is a distillation tower, either with trays or packing, or similarly fitted reactors
  • a cascading method is used to produce agitation of the solution against the contaminated surfaces, as opposed to the flowing condensed liquids mentioned above, to clean the tower where a pool of water is circulated from the bottom of the tower and discharged back into the top.
  • the pool of liquid flows through the tower cascading down over the trays or through the packing, contacting the surfaces of the tower with extractant, surfactant and water mixture.
  • the pool of liquid is recycled through the circulation loop at an optimum flow rate based upon the tower design for flooding the trays or tower packing. The skilled engineer can easily determine such rates for a given tower.
  • a circulation rate from of about 2950 to 5225 lit/min (800 to about 1400 gallons per minute) is used, preferably about 3860 lit/min (1000 GPM) with simultaneous injection of steam to the base of the vessel to heat the circulating water.
  • steam condenses on the internals in the tower as well as heating the water.
  • the extractant and surfactant materials are injected into the water circulation loop or in the steam injection stream, or both.
  • Circulation, with steam injection, is continued from about two to about eight hours, preferably from about four to about six hours, at a preferred temperature of about 850C (1850F).
  • the circulation is stopped and the tower is rinsed with fresh water and tested for unsafe contamination.
  • Auxiliary equipment such as heat exchangers and tube bundles are also decontaminated by circulation of the hot water, extractant, and surfactant system of the invention.
  • the vessels are all normally equipped with attachments where steam at a temperature of from about 1000C to 1910C (2120F to about 3750F), preferably from about 1010C to 1770C (2150F to about 3500F), may be introduced for periods of time to condense on the internal surfaces within the vessel and apparatus to wash it to the bottom where the contaminant and wash fluid is removed. Additional washing is often necessary with water and surfactants to gather up residual contaminants. It is this process of steam decontamination that is improved by the process of this invention. This improvement is brought about by introducing with the steam used to clean the tower a fog of an extractant, preferably accompanied by a surfactant.
  • the extractant can be introduced into the tower with the steam or fogged into the vessel where it is then vaporized in the steam and carried up into the vessel where it condenses along with the steam and trickles down the inside of the vessel, agitating the solution against the contaminant while flooding the internals and thus removing the contamination.
  • the extractant may be introduced into the steam and injected into a packed tower or a trayed tower while water is being circulated over the tower.
  • Yet another alternative is to collect water in the bottom of the tower and circulate it over the tower while injecting steam to heat the circulating water to a temperature of from about 710C to 1100C (1600F to about 2300F), preferably from about 850C to 990C (1850F to about 2100F), and then adding the extractant to the circulating water to obtain a concentration of from about 1-1/2% to about 5% by volume.
  • the extractant is chosen to correspond to the contaminant being removed.
  • the criteria for selection are the solubility of the material being removed in the extractant, the vapor pressure and the boiling point of the extractant such that it is within the range of the temperature of the steam and will condense on the surfaces of the metal and in the interstices in the metal, preferably prior to the condensation of the steam, such that the water condensate, as it trickles down, washes the internal surfaces of the vessel.
  • satisfactory extractants would include materials such as limonene and other like materials, preferably the various terpenes including for example dipentenes, cinenes, cajeputenes, diamylenes, the oils of bergamot, geranium, citronella, dill, and caraway, and the like and related terpenes such as hermiterpenes (isoprenes), sesquiterpenes (caryophyllenes), diterpenes, and polyterpenes.
  • materials such as limonene and other like materials, preferably the various terpenes including for example dipentenes, cinenes, cajeputenes, diamylenes, the oils of bergamot, geranium, citronella, dill, and caraway, and the like and related terpenes such as hermiterpenes (isoprenes), sesquiterpenes (caryophyllenes), diterpenes, and polyterpenes.
  • the extractant material should be non-toxic and non-hazardous and selected such that it has a high vapor pressure or boiling point within the range of the steam available at the particular plant for use, when injection with the steam is to be practiced, preferably within the range of from about 1000C to 1910C (2120F to about 3750F), preferably from about 1350C to 1770C (2750F to about 3500F).
  • the partial pressure of the extractant will be significant at cleaning conditions.
  • Mixtures of several extractants may be used satisfactorily with the same criteria as set forth above. Simple experimentation is all that is necessary to select the mixture and relative proportions.
  • the matter of selecting the satisfactory surfactant is also within the range of one skilled in the art.
  • the boiling point and vapor pressure criteria remain the same, i.e., up to about 1910C (3750F) such that the surfactant will also condense at substantially the same time as the steam and the extractant material condenses. This allows the cracks and crevices of the metal and tower internals, including the matrix of scaley contamination, to all be invaded by the components of this cleaning system to break down the scale and trap the contaminants into the solution (microemulsion) and remove the troublesome contaminants, especially benzene.
  • all of the materials may be introduced simultaneously with the steam or any one introduced with the steam with either other or both of the extractant and surfactant being picked up by the steam within the tower, vaporized and transported up the vessel with the steam until condensed.
  • the steam and extractant can be premised prior to injection into the vessel or injected at separate points in the vessel.
  • the extractant, surfactant and steam, all three may be premixed prior to injection into the vessel.
  • Many vessels notably catalytic cracking units and distillation columns, include reflux systems and demister pads of woven strands of metal at the upper end of the tower, which must also be decontaminated.
  • the steam is injected into the vessel until a pressure of from about 2.9 to 8.7 kPa (20 to about 60 psig) is reached. Injection is stopped and the tower is held to allow condensation to occur on the internal surfaces.
  • a cascading, or circulation, method is used to clean the vessel.
  • the closed vessel usually a packed tower or trayed distillation column is first partially filled with water sufficient to wet packing or fill trays and still leave the pump intake covered when circulating, usually about 8% to 15% of the tower volume.
  • a water circulation loop is provided by connecting a line from the bottom of the vessel to the top of the vessel. This loop allows the water to flow down through the packing or over trays in the vessel, be suctioned from the bottom, and pumped upward for discharge again to the top of the vessel. The water is recycled through the circulation loop at a rate sufficient to flood packing or fill the trays, preferably about 1000 GPM, with simultaneous injection of steam to the base of the vessel.
  • microemulsion having a long shelf life and exhibiting good solvency for oils or greases, including the lighter materials such as benzene, toluene, and xylene which are trapped and held by the microemulsion until removed from the vessel in spite of the elevated temperatures at which the cleaning is performed.
  • either microemulsion described above is injected with steam into the tower at a rate of 0.5 Kg per 1.4 to 1.8 Kg (1 pound per 3 to 4 pounds) of steam. The injection is continued until the tower is cleaned, the amount of surfactant/extractant and steam being determined by the size of the tower and the degree of contamination in it.
  • a filter/pump trailer was connected to the tower, taking suction from the bottoms removal line of the tower, and discharging to the top tray of the tower, to provide a continuous, recycled cascade effect through the tower.
  • Circulation of the water was commenced at 3860 lit/min (1000 GPM) to cause agitation between the solution and surface with simultaneous steam injection at the base of the tower using steam available at the refinery.
  • 850C (1850F) the decontamination mixture of the present invention (Mixture B, above) was injected into the water loop to provide 2.0% concentration. Circulation was continued for 3-1/2 hours, while holding the temperature at 850C (1850F).
  • the circulation was then stopped and the liquid containing hydrocarbon scale and contaminants was pumped directly to refinery "slops" storage.
  • the tower was rinsed twice with water and again all contaminated water was pumped to the slops.
  • the tower was refilled to 10% volume with water, the cleaning Mixture B was again added to provide a 2.0% solution, and the circulation stage was repeated for 3-1/2 hours. As before, all "spent" solution and rinse water was pumped to slops.
  • Decontamination was performed on a Visbreaker Tower which was 1.7m (5'6") in diameter and 19m (62') high, containing 23 trays with bubble cap design. Approximately 10598 lit (2800 gallons) (25% of tower volume) of water at 820C (1800F) containing 3.0% of cleaning Mixture B was circulated for 8 hours through the whole tower using a filter truck connected to the tower as described in Example 1 above. Samples of the circulating water were collected at 1 hour intervals, to test how well the emulsification of the contaminants in the tower was progressing. After 8 hours, the spent solution from the tower was removed and hauled to a portable tank by a vacuum truck.
  • This example describes cleaning a heat exchanger bundle which had Visbreaker bottoms on the shell side and crude oil on the tube side.
  • a 8.2m x 2.2m x 2.9m (27' x 8' x 9.6') "vat" was built and fitted with steam and air lines to clean the bundle.
  • This is an auxiliary heat exchanger to the Visbreaker tower described in Example 2.
  • the "vat” was filled with approximately 30280 lit (8000 gallons) of water. Steam was injected into the water via a steam line until the water temperature reached about 820C (1800F). Four drums of cleaning Mixture B were added to the "vat" to make approximately 3% solution.
  • the liquid circulation tubes of two finned fan coolers were connected in series and the volume of the tubes was calculated to be about 7570 lit (2000 gallons).
  • a holding tank (Baker) was filled with approximately 11355 lit (3000 gallons) of water and a steam line was hooked up to the tank.
  • the water in the tank was heated to 820C (1800F) and approximately 303 lit (1-1/2 drums) (about 80 gallons) of the cleaning Mixture B was added to the tank.
  • the solution thus made (about 2.75% of the cleaning mixture) was circulated through the tubes of the in fans connected in series for 6 hours at a temperature of about 820C (1800F).
  • the solution was drained back into the tank after circulation.
  • Fresh water from a fire hydrant was used to rinse the fin fans. Discharge ports of the fin fans were inspected and looked very clean. Again, the refinery personnel were very pleased with the job. Two additional fin fans were cleaned on a later date, in the same manner, with excellent results. No hydrocarbon foul
  • This example relates to a successful decontamination of a complete hydrocracker process system at a refinery.
  • the hydrocracker process system which was decontaminated consisted of the following ten units plus all the heat exchangers and piping associated with the units:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)
  • Wrappers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packages (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Detergent Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP93104356A 1992-12-30 1993-03-17 Verfahren zur Dekontamination von Behältern Expired - Lifetime EP0604698B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US998556 1992-12-30
US07/998,556 US5356482A (en) 1991-12-10 1992-12-30 Process for vessel decontamination
CN94107939.2A CN1114243A (zh) 1992-12-30 1994-06-28 除去设备污染物的方法

Publications (3)

Publication Number Publication Date
EP0604698A2 true EP0604698A2 (de) 1994-07-06
EP0604698A3 EP0604698A3 (en) 1996-12-11
EP0604698B1 EP0604698B1 (de) 1999-11-17

Family

ID=37075783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93104356A Expired - Lifetime EP0604698B1 (de) 1992-12-30 1993-03-17 Verfahren zur Dekontamination von Behältern

Country Status (8)

Country Link
EP (1) EP0604698B1 (de)
CN (1) CN1114243A (de)
AT (1) ATE186756T1 (de)
CA (1) CA2094165C (de)
DE (1) DE69327034T2 (de)
DK (1) DK0604698T3 (de)
PT (1) PT604698E (de)
SG (1) SG59993A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502089A (en) * 2012-05-15 2013-11-20 Pell Frischmann Consultants Ltd Filtering contaminants from fluid
CN105970244A (zh) * 2016-05-20 2016-09-28 深圳市鑫承诺环保产业股份有限公司 一种金银币母件高精清洗工艺
CA3228998A1 (en) * 2021-09-30 2023-04-06 Ronny TEPPER Composition and its use in cleaning applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891592A (en) * 1932-07-26 1932-12-20 Gerald James W Fitz Method of cleaning and gas-freeing hydrocarbon storage tanks
US2023496A (en) * 1928-03-12 1935-12-10 Verne J Todd Method for cleaning oil-covered surfaces
US2715594A (en) * 1952-08-26 1955-08-16 Standard Oil Co Method of cleaning asphalt tanks
US4511488A (en) * 1983-12-05 1985-04-16 Penetone Corporation D-Limonene based aqueous cleaning compositions
WO1988009199A1 (en) * 1987-05-26 1988-12-01 Werner Steiner A process for the removal of organic contaminants from solids and sediments
GB2243842A (en) * 1990-04-12 1991-11-13 Electrolube Limited Circuit board cleaning
WO1992010314A1 (en) * 1990-12-07 1992-06-25 Golden Technologies Company, Inc. Method for finishing metal surfaces with terpene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2023496A (en) * 1928-03-12 1935-12-10 Verne J Todd Method for cleaning oil-covered surfaces
US1891592A (en) * 1932-07-26 1932-12-20 Gerald James W Fitz Method of cleaning and gas-freeing hydrocarbon storage tanks
US2715594A (en) * 1952-08-26 1955-08-16 Standard Oil Co Method of cleaning asphalt tanks
US4511488A (en) * 1983-12-05 1985-04-16 Penetone Corporation D-Limonene based aqueous cleaning compositions
US4511488B1 (de) * 1983-12-05 1990-09-11 Penetone Corp
WO1988009199A1 (en) * 1987-05-26 1988-12-01 Werner Steiner A process for the removal of organic contaminants from solids and sediments
GB2243842A (en) * 1990-04-12 1991-11-13 Electrolube Limited Circuit board cleaning
WO1992010314A1 (en) * 1990-12-07 1992-06-25 Golden Technologies Company, Inc. Method for finishing metal surfaces with terpene

Also Published As

Publication number Publication date
CA2094165C (en) 1999-12-07
DE69327034D1 (de) 1999-12-23
EP0604698B1 (de) 1999-11-17
CN1114243A (zh) 1996-01-03
ATE186756T1 (de) 1999-12-15
SG59993A1 (en) 1999-02-22
DE69327034T2 (de) 2000-05-25
CA2094165A1 (en) 1994-07-01
PT604698E (pt) 2000-05-31
DK0604698T3 (da) 2000-04-03
EP0604698A3 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US5356482A (en) Process for vessel decontamination
US5389156A (en) Decontamination of hydrocarbon process equipment
US5425814A (en) Method for quick turnaround of hydrocarbon processing units
US6893509B2 (en) Method of cleaning vessels in a refinery
CA2978544C (en) Decontamination and cleaning process for hydrocarbon contaminated equipment
US5502263A (en) Method of reclaiming styrene and other products from polystyrene based products
US5611869A (en) Refinery vessel cleaning treatment
US5663135A (en) Terpene-based cleaning composition
EP0604698B1 (de) Verfahren zur Dekontamination von Behältern
US6462011B1 (en) Method of and composition for treating hydrocarbon based materials
JP2766186B2 (ja) 容器の除染方法
US11786893B2 (en) Solvent system for cleaning fixed bed reactor catalyst in situ
PT91380A (pt) Processo de preparacao de uma composicao solvente nao toxica, biodegradavel e nao perigosa, a base de para-mentadienos
CN115362034B (zh) 去除烃设备中爆炸性气体和有毒气体并清洁金属表面的方法
EP0553208B1 (de) Verfahren und zusammensetzung zum reinigen von gegenständen
WO1995019420A1 (en) Cleaning composition, method of making same and method of cleaning
KR20230097050A (ko) 저온 고정상 반응기 촉매를 현장에서 세정하기 위한 용매 시스템
KR102586683B1 (ko) 오염된 산업 장비를 세정하기 위한 용매 조성물 및 방법
US10882081B2 (en) Chemical compositions and method for degassing of processing equipment
Mohr Chlorinated Solvents and Solvent Stabilizers
US6401731B2 (en) Method of decontaminating PCB transformers
Lizotte et al. Cleaning Modification Steps that Resulted in Pollution Prevention and Waste Minimization
CA2944914A1 (en) Chemical compositions and method for degassing of processing equipment
Risotto 8 Vapor Degreasing with Traditional Chlorinated Solvents
CA2241442C (en) Method of decontaminating pcb transformers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

17P Request for examination filed

Effective date: 19970109

17Q First examination report despatched

Effective date: 19980205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991117

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991117

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991117

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991117

REF Corresponds to:

Ref document number: 186756

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69327034

Country of ref document: DE

Date of ref document: 19991223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000317

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000210

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040316

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040407

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050317

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050317

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110325

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110504

Year of fee payment: 19

Ref country code: BE

Payment date: 20110330

Year of fee payment: 19

Ref country code: DE

Payment date: 20110329

Year of fee payment: 19

BERE Be: lapsed

Owner name: *SERV-TECH INC.

Effective date: 20120331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69327034

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002