EP0595764B1 - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
EP0595764B1
EP0595764B1 EP93810658A EP93810658A EP0595764B1 EP 0595764 B1 EP0595764 B1 EP 0595764B1 EP 93810658 A EP93810658 A EP 93810658A EP 93810658 A EP93810658 A EP 93810658A EP 0595764 B1 EP0595764 B1 EP 0595764B1
Authority
EP
European Patent Office
Prior art keywords
gear pump
accordance
inlet
pump
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93810658A
Other languages
German (de)
French (fr)
Other versions
EP0595764A1 (en
Inventor
Felix Streiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Chemtech AG
Original Assignee
Sulzer Chemtech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Chemtech AG filed Critical Sulzer Chemtech AG
Publication of EP0595764A1 publication Critical patent/EP0595764A1/en
Application granted granted Critical
Publication of EP0595764B1 publication Critical patent/EP0595764B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids

Definitions

  • the invention relates to a gear pump according to the preamble of claim 1.
  • the invention further relates to pump systems with such a gear pump and to the use of the gear pump, in particular for discharging highly viscous media from a vacuum against a high delivery pressure.
  • the enlargement in the inlet can extend as far as the level of the gearwheel axes, and the length R of the enlargement can be at least 10% greater than the length D of the gearwheel pair.
  • the enlargement of the inlet area can have a width C in the gearwheels which is larger than the tooth width T, for example by at least 10%.
  • Favorable inlet geometries can be further achieved by a ratio of inlet diameter B to inlet depth L of at least 2 and by a ratio of extension length R to inlet depth L, which is greater than 1.85.
  • a funnel-shaped inlet area can advantageously have an opening angle W of at least 55 °.
  • a cost-effective modular design with pumps according to the invention is possible by, for example, different tooth sizes with an adapted inlet area in the same housing and outlet diameter can be used.
  • the outlet diameter A can be set appropriately using an insert sleeve.
  • a particularly powerful pumping and mixing system is formed with a gear pump according to the invention combined with a downstream static mixing element.
  • a simple and efficient pumping and degassing system is formed with a gear pump according to the invention combined with a degassing chamber for the discharge of highly viscous media from the degassing chamber with high delivery pressure.
  • the gear pump 1 has an inlet 4, an outlet 6 and a pair of gearwheels 2 in a housing 3.
  • the inlet 4 has an extension 10 which extends down to the plane 11 of the gearwheel axes 12.
  • 1c shows the cross-sectional area FZ of the gear wheels 2, in the form of a rectangle D x T with length D and width T of the gear pair.
  • the extension 10 with the cross-sectional area FE has a length R and a width C.
  • the shape of the extension is made up of funnel-shaped or conical and flat boundary surfaces.
  • the funnel-shaped part of the inlet has an opening angle W, with an inlet diameter D in the upper flange plane 14.
  • the cross-sectional area FE of the extension (in the region of the gearwheel axes) is larger than that of the gearwheels FZ and the diagonal D3 is in accordance with claim 1
  • Gear cross-sectional area FZ is always smaller than the inlet diameter B.
  • both the length R and the width C of the extension FE are greater than the corresponding length D and the width T of the gear cross-sectional area FZ.
  • FIG. 3 and 4 show further examples of cross-sectional areas FE.
  • the cross-sectional area 32 in FIG. 3 is likewise rectangular like the gearwheel cross-sectional area FZ.
  • the cross-sectional area 33 of FIG. 4 shows, as a further advantageous example, a rounded, crescent-shaped extension 33 in the area of the external teeth of the gear pair 2.
  • the cross-sectional area FA is also shown in FIG. 4, which is formed by the center distance Z and tooth width T.
  • the outlet diameter A should then essentially correspond to the diagonal D4 of this cross-sectional area FA.
  • the ratio of outlet diameter A to Diagonal D4 is preferably in the range 0.9 to 1.1.
  • FIG. 5 and 6 show further examples of the vertical course of the extension 10.
  • the extension 10 first runs vertically downward and then bends into the axis plane 11 with a curve 34.
  • the extension 10 tapers, delimited by the offset oblique planes 35, to the axis plane 11.
  • FIG. 8 shows a system for pumping, mixing and degassing polymer melts, for example of PE, PS or PMMA, with an inlet 21, a degassing chamber 25, a pump 1 according to the invention, which pumps into a static mixing element 20 and with an outlet 24 a vapor outlet 22, solvents and monomers are removed from the degassing chamber 25.
  • Additives 26, for example, can be added to the mixer 20 via a further access be fed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

Die Erfindung betrifft eine Zahnradpumpe gemäss Oberbegriff von Anspruch 1. Die Erfindung bezieht sich weiter auf Pumpanlagen mit einer solchen Zahnradpumpe sowie auf die Verwendung der Zahnradpumpe, insbesondere zum Austrag hochviskoser Medien aus Vakuum gegen einen hohen Förderdruck.The invention relates to a gear pump according to the preamble of claim 1. The invention further relates to pump systems with such a gear pump and to the use of the gear pump, in particular for discharging highly viscous media from a vacuum against a high delivery pressure.

Beim Austragen hochviskoser Medien aus Vakuum bzw. aus einem niedrigen Druckbereich gegen einen hohen Förderdruck wird die Pumpleistung bisheriger Zahnradpumpen durch Sieden bzw. Gasbildung im Medium und in der Folge durch Kavitation in der Zahnradpumpe sehr stark eingeschränkt. Um Gasbildung und Kavitation zu vermeiden, muss entsprechend der Zulaufdruck durch eine entsprechend hohe Zulaufhöhe, d.h. durch den statischen Druck der darüberliegenden Flüssigkeitssäule des Mediums erzeugt werden. Kavitation in der Pumpe muss unbedingt vermieden werden, denn dies lässt nicht nur die Förderleistung zusammenbrechen, es bewirkt überdies auch Schäden in der Pumpe selber. Um gute Pumpleistungen zu erreichen, wurde bei bisherigen Zahnradpumpen der Einlaufbereich so ausgeführt, dass das Medium direkt auf die Zahnräder geführt wird. Aus der US-PS 4.137.023 ist eine derartige Pumpe bekannt.When discharging highly viscous media from a vacuum or from a low pressure range against a high delivery pressure, the pumping capacity of previous gear pumps is very severely limited by boiling or gas formation in the medium and subsequently by cavitation in the gear pump. In order to avoid gas formation and cavitation, the inlet pressure must be adjusted accordingly by a correspondingly high inlet height, i.e. be generated by the static pressure of the liquid column of the medium above. Cavitation in the pump must be avoided because this not only causes the delivery rate to collapse, it also causes damage to the pump itself. In order to achieve good pumping performance, the inlet area of previous gear pumps was designed so that the medium is fed directly onto the gear wheels. Such a pump is known from US Pat. No. 4,137,023.

Es ist Aufgabe der vorliegenden Erfindung, eine Pumpe zu schaffen, welche wesentlich höhere Leistungen als bisherige Pumpen zulässt und insbesondere auch den sicheren Austrag hochviskoser Medien mit darin enthaltenen flüchtigen Komponenten aus Vakuum gegen einen hohen Förderdruck von 100 bis 250 bar mit sehr geringer Zulaufhöhe ermöglicht.It is an object of the present invention to provide a pump which has significantly higher performances than allows previous pumps and in particular also enables the safe discharge of highly viscous media with volatile components contained therein from vacuum against a high delivery pressure of 100 to 250 bar with a very low inlet height.

Diese Aufgabe wird erfindungsgemäss gelöst mittels einer Pumpe nach Anspruch 1. In der erfindungsgemässen Pumpe wird eine Erweiterung des Einlaufquerschnitts über die rechteckige Querschnittsfläche der Zahnräder hinaus derart eingeführt, dass der Einlaufquerschnitt bei den Zahnrädern in Richtung der Zahnradachsen breiter als die Zahnräder ist. Dadurch können günstigere Zuströmungsbedingungen geschaffen und damit statt eines Druckabfalls im Einlaufbereich im Gegenteil sogar noch eine leichte Druckerhöhung, infolge des statischen Flüssigkeitsdrucks des Mediums, im Einlaufbereich erreicht werden.This object is achieved according to the invention by means of a pump according to claim 1. In the pump according to the invention, an expansion of the inlet cross section beyond the rectangular cross-sectional area of the gear wheels is introduced such that the inlet cross section of the gear wheels is wider than the gear wheels in the direction of the gear wheel axes. As a result, more favorable inflow conditions can be created and, on the contrary, instead of a pressure drop in the inlet area, a slight pressure increase can be achieved in the inlet area due to the static liquid pressure of the medium.

Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen der Erfindung. Um besonders gute Pumpeneigenschaften zu erreichen, kann die Erweiterung im Einlauf bis zur Ebene der Zahnradachsen hinein reichen, und es kann die Länge R der Erweiterung mindestens 10 % grösser sein als die Länge D des Zahnradpaares. Die Erweiterung des Einlaufbereichs kann bei den Zahnrädern eine Breite C aufweisen, welche grösser ist als die Zahnbreite T, beispielsweise um mindestens 10 %. Günstige Einlaufgeometrien können weiter erreicht werden durch ein Verhältnis von Einlaufdurchmesser B zu Einlauftiefe L von mindestens 2 und durch ein Verhältnis von Erweiterungslänge R zu Einlauftiefe L, welches grösser ist als 1,85. Ein trichterförmiger Einlaufbereich kann mit Vorteil einen Oeffnungswinkel W von mindestens 55° aufweisen. Mit einem Verhältnis von Breite T zu Achsabstand Z der Zahnräder zwischen 0,9 und 1,3 kann eine günstige Zahngeometrie realisiert werden und mit einem Verhältnis von Auslaufdurchmesser A zu Diagonale D4 der Querschnittsfläche FA zwischen 0,9 und 1,1 kann eine besonders gut abgestimmte Auslaufgeometrie erreicht werden, wobei FA definiert ist durch: Zahnbreite T x Achsabstand Z. Eine kostengünstige Modulbauweise mit erfindungsgemässen Pumpen ist möglich, indem im gleichen Gehäuse z.B. verschiedene Zahngrössen mit angepasstem Einlaufbereich und Auslaufdurchmesser eingesetzt werden. Dazu kann der Auslaufdurchmesser A durch eine Einsatzbüchse passend eingestellt werden. Eine besonders leistungsfähige Pump- und Mischanlage wird gebildet mit einer erfindungsgemässen Zahnradpumpe kombiniert mit einem nachgeschalteten statischen Mischelement. Und eine einfache und effiziente Pump- und Entgasungsanlage wird mit einer erfindungsgemässen Zahnradpumpe kombiniert mit einer Entgasungskammer gebildet, zum Austrag von hochviskosen Medien aus der Entgasungskammer mit hohem Förderdruck.The dependent claims relate to advantageous developments of the invention. In order to achieve particularly good pump properties, the enlargement in the inlet can extend as far as the level of the gearwheel axes, and the length R of the enlargement can be at least 10% greater than the length D of the gearwheel pair. The enlargement of the inlet area can have a width C in the gearwheels which is larger than the tooth width T, for example by at least 10%. Favorable inlet geometries can be further achieved by a ratio of inlet diameter B to inlet depth L of at least 2 and by a ratio of extension length R to inlet depth L, which is greater than 1.85. A funnel-shaped inlet area can advantageously have an opening angle W of at least 55 °. With a ratio of width T to center distance Z of the gears between 0.9 and 1.3, a favorable tooth geometry can be realized and with a ratio of outlet diameter A to diagonal D4 Cross-sectional area FA between 0.9 and 1.1, a particularly well-coordinated outlet geometry can be achieved, where FA is defined by: tooth width T x center distance Z. A cost-effective modular design with pumps according to the invention is possible by, for example, different tooth sizes with an adapted inlet area in the same housing and outlet diameter can be used. For this purpose, the outlet diameter A can be set appropriately using an insert sleeve. A particularly powerful pumping and mixing system is formed with a gear pump according to the invention combined with a downstream static mixing element. And a simple and efficient pumping and degassing system is formed with a gear pump according to the invention combined with a degassing chamber for the discharge of highly viscous media from the degassing chamber with high delivery pressure.

Im folgenden wird die Erfindung anhand von Beispielen und Figuren weiter erläutert. Es zeigt:

Fig.1a,1b,2
eine erfindungsgemässe Zahnradpumpe in drei Ansichten mit einer Einlauferweiterung,
Fig.3,4
Beispiele von Querschnittsflächen von Einlauferweiterungen,
Fig.5,6
Beispiele für den Verlauf von Einlauferweiterungen bis zur Ebene der Zahnradachsen,
Fig.7
den Druckverlauf im Einlaufbereich für eine bisherige und eine erfindungsgemässe Zahnradpumpe,
Fig.8
eine Anlage zum Pumpen, Mischen und Entgasen mit einer Entgasungskammer und einem statischen Mischer.
In the following, the invention is further explained with the aid of examples and figures. It shows:
1a, 1b, 2
a gear pump according to the invention in three views with an inlet extension,
Fig. 3.4
Examples of cross-sectional areas of inlet extensions,
Fig. 5.6
Examples of the course of inlet extensions up to the level of the gear axis,
Fig. 7
the pressure curve in the inlet area for a previous gear pump and a gear pump according to the invention,
Fig. 8
a system for pumping, mixing and degassing with a degassing chamber and a static mixer.

Die erfindungsgemässe Zahnradpumpe 1 weist nach Fig.1 einen Einlauf 4, einen Auslauf 6 und ein Zahnradpaar 2 in einem Gehäuse 3 auf. Der Einlauf 4 weist eine Erweiterung 10 auf, welche bis auf die Ebene 11 der Zahnradachsen 12 hinabreicht. In Fig.1c ist die Querschnittsfläche FZ der Zahnräder 2 dargestellt, in Form eines Rechtecks D x T mit Länge D und Breite T des Zahnradpaars. Die Erweiterung 10 mit Querschnittsfläche FE weist eine Länge R und eine Breite C auf. Die Form der Erweiterung ist gebildet aus trichter- oder kegelförmigen und ebenen Begrenzungsflächen. Der trichterförmige Teil des Einlaufs weist einen Oeffnungswinkel W auf, mit einem Einlaufdurchmesser D in der oberen Flanschebene 14. In allen Fällen ist gemäss Anspruch 1 die Querschnittsfläche FE der Erweiterung (im Bereich der Zahnradachsen) grösser als jene der Zahnräder FZ und die Diagonale D3 der Zahnradquerschnittsfläche FZ ist immer kleiner als der Einlaufdurchmesser B. Wobei in diesem Beispiel 1 sowohl die Länge R als auch die Breite C der Erweiterung FE grösser ist als die entsprechende Länge D und die Breite T der Zahnradquerschnittsfläche FZ.According to FIG. 1, the gear pump 1 according to the invention has an inlet 4, an outlet 6 and a pair of gearwheels 2 in a housing 3. The inlet 4 has an extension 10 which extends down to the plane 11 of the gearwheel axes 12. 1c shows the cross-sectional area FZ of the gear wheels 2, in the form of a rectangle D x T with length D and width T of the gear pair. The extension 10 with the cross-sectional area FE has a length R and a width C. The shape of the extension is made up of funnel-shaped or conical and flat boundary surfaces. The funnel-shaped part of the inlet has an opening angle W, with an inlet diameter D in the upper flange plane 14. In all cases, the cross-sectional area FE of the extension (in the region of the gearwheel axes) is larger than that of the gearwheels FZ and the diagonal D3 is in accordance with claim 1 Gear cross-sectional area FZ is always smaller than the inlet diameter B. In this example 1, both the length R and the width C of the extension FE are greater than the corresponding length D and the width T of the gear cross-sectional area FZ.

Weitere Beispiele von Querschnittsflächen FE zeigen die Fig.3 und 4. Die Querschnittsfläche 32 in Fig.3 ist ebenfalls rechteckförmig wie die Zahnradquerschnittsfläche FZ. Die Querschnittsfläche 33 von Fig.4 zeigt als weiteres vorteilhaftes Beispiel eine gerundete, sichelförmige Erweiterung 33 im Bereich der aussenliegenden Zähne des Zahnradpaares 2. In Fig.4 ist auch die Querschnittsfläche FA dargestellt, welche gebildet ist durch Achsabstand Z und Zahnbreite T. Der Auslaufdurchmesser A sollte dann im wesentlichen der Diagonalen D4 dieser Querschnittsfläche FA entsprechen. Das Verhältnis von Auslaufdurchmesser A zu Diagonale D4 liegt vorzugsweise im Bereich 0,9 bis 1,1. Mit wählbaren Einsatzbüchsen 15 (Fig.1a,b) und mit Variation der Zahnbreite T und Anpassung der Einlauferweiterung 10 können mehrere Leistungsgrössen der Zahnradpumpe im gleichen Gehäuse 2 auf einfache und kostengünstige Art realisiert werden.3 and 4 show further examples of cross-sectional areas FE. The cross-sectional area 32 in FIG. 3 is likewise rectangular like the gearwheel cross-sectional area FZ. The cross-sectional area 33 of FIG. 4 shows, as a further advantageous example, a rounded, crescent-shaped extension 33 in the area of the external teeth of the gear pair 2. The cross-sectional area FA is also shown in FIG. 4, which is formed by the center distance Z and tooth width T. The outlet diameter A should then essentially correspond to the diagonal D4 of this cross-sectional area FA. The ratio of outlet diameter A to Diagonal D4 is preferably in the range 0.9 to 1.1. With selectable insert bushings 15 (FIG. 1a, b) and with variation of the tooth width T and adaptation of the inlet extension 10, several performance sizes of the gear pump can be realized in the same housing 2 in a simple and inexpensive manner.

Die Fig.5 und 6 zeigen weitere Beispiele für den vertikalen Verlauf der Erweiterung 10. In Fig.5 läuft die Erweiterung 10 zuerst senkrecht nach unten und biegt dann mit einer Rundung 34 in die Achsebene 11 ein. In Fig.6 verjüngt sich die Erweiterung 10, begrenzt durch die abgesetzt schrägen Ebenen 35, bis zur Achsebene 11.5 and 6 show further examples of the vertical course of the extension 10. In FIG. 5, the extension 10 first runs vertically downward and then bends into the axis plane 11 with a curve 34. 6, the extension 10 tapers, delimited by the offset oblique planes 35, to the axis plane 11.

Die Fig.7 zeigt für eine bisherige - Kurve 28 - und eine erfindungsgemässe Zahnradpumpe - Kurve 29 - den Druckverlauf im Einlaufbereich (bei gleicher Fördermenge und gleicher Produktviskosität). Hier ist aufgetragen, wie der Druck P, ausgehend von einem Referenzdruck 0 beim Einlaufflansch 14, in Funktion der Tiefe H bis zu den Zahnrädern verläuft. Während bei bisherigen Pumpen gemäss Kurve 28 bis zur Tiefe L ein Druckabfall DP1 von z.B. 10 mbar auftritt, ist bei der erfindungsgemässen Pumpe nach Kurve 29 sogar eine leichte Druckerhöhung DP2 von z.B. 7 mbar möglich. Die Verbesserung besteht also in einer ganz wesentlichen Druckdifferenz DP = DP1 + DP2 von z.B. 17 mbar. Dies bedeutet, dass eine dieser Differenz entsprechend geringere Füllhöhe NPSH (nach Fig.8) erforderlich ist, um Kavitation in der Pumpe zu vermeiden. Fig.8 zeigt eine Anlage zum Pumpen, Mischen und Entgasen von Polymerschmelzen, z.B. von PE, PS oder PMMA mit einem Eingang 21, einer Entgasungskammer 25, einer erfindungsgemässen Pumpe 1, welche in ein statisches Mischelement 20 fördert und mit einem Ausgang 24. Ueber einen Brüdenabzug 22 werden Lösungsmittel und Monomere aus der Entgasungskammer 25 abgezogen. Ueber einen weiteren Zugang 26 können eingangs des Mischers 20 z.B. Additive zugeführt werden. Mit der erfindungsgemässen Zahnradpumpe bzw. mit einer Anlage nach Fig.8 kann vor allem auch die immer wichtigere Hochentgasung in der Kunststoffaufbereitung mit dem relativ einfachen statischen Entgasungsverfahren wirtschaftlich ausgeführt werden.7 shows, for a previous curve 28 and a gear pump according to the invention curve 29, the pressure curve in the inlet area (with the same delivery quantity and the same product viscosity). Here it is plotted how the pressure P, starting from a reference pressure 0 at the inlet flange 14, runs as a function of the depth H up to the gearwheels. While a pressure drop DP1 of, for example, 10 mbar occurs to the depth L in previous pumps according to curve 28, a slight pressure increase DP2 of, for example, 7 mbar is possible in the pump according to the invention according to curve 29. The improvement therefore consists in a very significant pressure difference DP = DP1 + DP2 of, for example, 17 mbar. This means that a lower filling level NPSH (according to Fig. 8) corresponding to this difference is required to avoid cavitation in the pump. 8 shows a system for pumping, mixing and degassing polymer melts, for example of PE, PS or PMMA, with an inlet 21, a degassing chamber 25, a pump 1 according to the invention, which pumps into a static mixing element 20 and with an outlet 24 a vapor outlet 22, solvents and monomers are removed from the degassing chamber 25. Additives 26, for example, can be added to the mixer 20 via a further access be fed. With the gear pump according to the invention or with a system according to FIG. 8, the increasingly important high degassing in plastics processing can be carried out economically with the relatively simple static degassing process.

Claims (14)

  1. Gear pump, in particular for the delivery of high viscosity media out of a vacuum against a high delivery pressure, comprising a gear wheel pair (2) and an inlet region and also an outlet region in a housing, with the inlet (4) having a broadened portion (10) which extends at least up to the plane (11) of the axes (12) of the gearwheels, with the length R of this broadened portion parallel to the plane of the gearwheel axes and perpendicular to the gearwheel axes being greater than the length D of the gearwheel pair, characterised in that the broadened portion (10) has a width C at the gearwheels (2) in the direction of the gearwheel axes (12) which is greater than the tooth width T.
  2. Gear pump in accordance with claim 1, characterised in that the cross-sectional area of the inlet region reduces in the flow direction, with the diameter (B) at the entry of the inlet being greater than the diagonal (D3) of the rectangular cross-sectional area (FZ) of the gearwheels.
  3. Gear pump in accordance with claim 1 or claim 2, characterised in that the length R of the broadened portion (10) is at least 10 % greater than the length D of the gearwheel pair.
  4. Gear pump in accordance with one of the preceding claims, characterised in that inlet width C is at least 10 % greater than the tooth width T.
  5. Gear pump in accordance with one of the preceding claims, characterised in that the ratio of the inlet diameter (B) to the inlet depth (L) amounts to at least 2.
  6. Gear pump in accordance with one of the preceding claims, characterised in that the ratio of the length of the broadened portion (R) to the depth of the inlet (L) is greater than 1.85.
  7. Gear pump in accordance with one of the preceding claims, characterised by a funnel-like entry region (4) having an opening angle (W) of the funnel of at least 55°.
  8. Gear pump in accordance with one of the preceding claims, characterised in that the ratio of the width (T) to the axial spacing (Z) of the gearwheels (2) lies between 0.9 and 1.3.
  9. Gear pump in accordance with one of the preceding claims, characterised in that the ratio of the outlet diameter A to the diagonal D4 of the cross-sectional area FA lies between 0.9 and 1.1, with the cross-sectional area FA being defined by the tooth width T and the axial spacing Z.
  10. Gear pump in accordance with one of the preceding claims, characterised in that the outlet diameter A is determined by an insert sleeve (15).
  11. Pump and mixing plant having a gear pump (1) in accordance with one of the preceding claims, with a static mixing element (20) being connected after the gear pump.
  12. Pump and degasification plant having a gear pump (1) in accordance with one of the claims 1 to 10 for the delivery of highly viscous media from a degasification chamber (25) with a high delivery pressure.
  13. Use of a gear pump (1) in accordance with one of the claims 1 to 10 for the delivery of highly viscous media from a vacuum against a high delivery pressure.
  14. Use of a gear pump (1) in accordance with one of the claims 1 to 10 for the delivery and degasification of polymer melts, for example of PE, PS, PMMA, out of a degasification chamber (25) into a static mixing element (20).
EP93810658A 1992-10-29 1993-09-20 Gear pump Expired - Lifetime EP0595764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3379/92 1992-10-29
CH337992 1992-10-29

Publications (2)

Publication Number Publication Date
EP0595764A1 EP0595764A1 (en) 1994-05-04
EP0595764B1 true EP0595764B1 (en) 1997-10-29

Family

ID=4254688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810658A Expired - Lifetime EP0595764B1 (en) 1992-10-29 1993-09-20 Gear pump

Country Status (5)

Country Link
US (1) US5388974A (en)
EP (1) EP0595764B1 (en)
JP (1) JPH06200881A (en)
DE (1) DE59307598D1 (en)
ES (1) ES2110077T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007011644B4 (en) * 2006-03-10 2016-01-14 Robert Bosch Gmbh Hydrostatic piston machine in axial piston design with a combination pump housing for several engine nominal sizes and various auxiliary pumps

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635706C2 (en) * 1996-09-03 1998-12-03 Andreas Prof Dr Limper Process for plasticizing, sieving, dosing and conveying highly viscous rubber mixtures and device for carrying out the process
DE19717295C2 (en) * 1997-04-24 1999-09-23 Danfoss As Fluid machine
JPH11247767A (en) * 1997-12-23 1999-09-14 Maag Pump Syst Textron Ag Positioning method for gear pump shaft, and gear pump
DE19825650C2 (en) * 1998-06-09 2001-03-01 Danfoss As Lube oil supply device for a device with a rotating device shaft
KR100610524B1 (en) * 1998-10-01 2006-08-09 다우 글로벌 테크놀로지스 인크. High efficiency gear pump for pumping highly viscous fluids
DE102006058355A1 (en) * 2006-03-10 2007-09-13 Brueninghaus Hydromatik Gmbh Combi pump housing for several nominal sizes
DE202009012158U1 (en) * 2009-09-08 2011-02-03 Hugo Vogelsang Maschinenbau Gmbh Rotary pump
DE202010011626U1 (en) 2010-08-20 2010-10-21 Hugo Vogelsang Maschinenbau Gmbh Rotary pump
US20140323792A1 (en) * 2013-04-25 2014-10-30 Mp Associates, Inc. Desensitizing explosive materials using a vacuum vessel
CN105745448B (en) * 2013-10-01 2017-09-22 马格泵系统公司 Gear pump with improved pump intake
US11378076B1 (en) * 2021-01-28 2022-07-05 Shimadzu Corporation Gear pump or motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531726A (en) * 1946-01-26 1950-11-28 Roper Corp Geo D Positive displacement rotary pump
FR1073834A (en) * 1952-04-02 1954-09-29 Daimler Benz Ag Rotary piston compressor, especially root compressor for internal combustion engines
DE1941673A1 (en) * 1969-08-16 1971-02-18 Barmag Barmer Maschf Gear pump with wedge-shaped narrowed intake chambers
US3837768A (en) * 1973-08-31 1974-09-24 Maag Zahnraeder & Maschinen Ag Gear pump for highly viscous media
US4137023A (en) * 1975-09-03 1979-01-30 Union Carbide Corporation Low energy recovery compounding and fabricating apparatus for plastic materials
US4737087A (en) * 1984-12-10 1988-04-12 Barmag Ag Drive shaft seal for gear pump and method
GB2169350B (en) * 1985-01-05 1989-06-21 Hepworth Plastics Ltd Gear pumps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007011644B4 (en) * 2006-03-10 2016-01-14 Robert Bosch Gmbh Hydrostatic piston machine in axial piston design with a combination pump housing for several engine nominal sizes and various auxiliary pumps

Also Published As

Publication number Publication date
US5388974A (en) 1995-02-14
JPH06200881A (en) 1994-07-19
DE59307598D1 (en) 1997-12-04
ES2110077T3 (en) 1998-02-01
EP0595764A1 (en) 1994-05-04

Similar Documents

Publication Publication Date Title
EP0595764B1 (en) Gear pump
WO2007118788A1 (en) Continuous process for performing a chemical reaction in which a gaseous phase is added to a charge stream comprising one or more solid phases which have been dissolved or dispersed in water
EP1717014B1 (en) Method and apparatus for pressing
EP2022760B1 (en) Filter cartridge for a water filtration device
EP2710896B1 (en) Food conveyor device, and method for conveying a food product
DE19856298C1 (en) Liquid fuel transfer system for moving fuel from storage tank to internal combustion engine incorporates excess fuel return operating jet pump with baffle to prevent rotation of jet
EP1687509B1 (en) Method for delivering a multi-phase mixture and pump installation
EP1165965B1 (en) Side channel compressor
WO2021009275A1 (en) Stator for an eccentric screw pump
DD157358A1 (en) DEVICE FOR DEFROSTING AND DEGASSING A FLUID CIRCUIT
EP2749335A1 (en) Two-part particle filter and method for producing the same
EP1276992B1 (en) Gear-wheel pump, in particular for a high-pressure fuel pump
DE10020089B4 (en) Method and device for the metered introduction of a liquid volume flow into a system
DE2144609A1 (en) Extraction device for liquid-liquid extraction
WO2001052966A1 (en) Filter device
DE10119349A1 (en) Device for supporting a suction process as well as a suction system and suction method
DE8420170U1 (en) Column for medium pressure liquid chromatography
DE2523855C3 (en) Device for compressing a reactive gas
WO2018019318A1 (en) Rotor/stator system with an inlet funnel for an eccentric screw pump
DE2325098C3 (en) Emptying device for a shaft furnace
DE3743700A1 (en) Two-stage pump
DE1528777C3 (en) Suction line for a directly self-priming pump
EP0778417A2 (en) Gear pump
DE69321537T2 (en) Passive inline membrane degasser
EP2989295B1 (en) Vacuum-pump system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19941007

17Q First examination report despatched

Effective date: 19951117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971031

REF Corresponds to:

Ref document number: 59307598

Country of ref document: DE

Date of ref document: 19971204

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2110077

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030827

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030901

Year of fee payment: 11

Ref country code: CH

Payment date: 20030901

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030903

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030904

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030919

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031001

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040921

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

BERE Be: lapsed

Owner name: *SULZER CHEMTECH A.G.

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050920

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040921

BERE Be: lapsed

Owner name: *SULZER CHEMTECH A.G.

Effective date: 20040930