EP0569300B1 - Combustion chamber with adjustable passages for primary air - Google Patents

Combustion chamber with adjustable passages for primary air Download PDF

Info

Publication number
EP0569300B1
EP0569300B1 EP93401166A EP93401166A EP0569300B1 EP 0569300 B1 EP0569300 B1 EP 0569300B1 EP 93401166 A EP93401166 A EP 93401166A EP 93401166 A EP93401166 A EP 93401166A EP 0569300 B1 EP0569300 B1 EP 0569300B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
passages
orifice
orifices
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401166A
Other languages
German (de)
French (fr)
Other versions
EP0569300A1 (en
Inventor
Patrick Samuel André Ciccia
Patrice André Commaret
Eric Jean Simon Lancelot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0569300A1 publication Critical patent/EP0569300A1/en
Application granted granted Critical
Publication of EP0569300B1 publication Critical patent/EP0569300B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/41Movement of component with one degree of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/41Movement of component with one degree of freedom
    • F05B2250/411Movement of component with one degree of freedom in rotation

Definitions

  • Known combustion chambers in particular those with which gas turbines are fitted, include numerous oxidant intake orifices allowing combustion of the injected fuel.
  • the intake ports of the primary oxidant which plays an essential role in the course of combustion proper, from the intake ports of the dilution oxidant, which, as its designation suggests, has the function main, by mixing with the burnt gases resulting from the combustion, diluting them and thus homogenizing the temperature and regulating the flow rate to allow a satisfactory supply of the blades of the gas turbine.
  • the primary oxidizer intake devices must allow very different operating speeds to be obtained.
  • the residence time of the combustion gases in the intake area of the oxidant admitted around the fuel injectors and through the primary oxidant intake orifices must be long, in order, on the one hand , to promote combustion stability, on the other hand, to reduce polluting emissions of carbon monoxide (CO) and unburnt hydrocarbons (CHx).
  • CO carbon monoxide
  • CHx unburnt hydrocarbons
  • the residence time of the combustion gases in said zone must, on the contrary, be short, in order to reduce the polluting emissions of nitrogen oxides (NOx).
  • the invention proposes a main arrangement according to which the locations of the intake ports of primary oxidant are adjustable parallel to the axis of the combustion chamber, allowing the adjustment of the residence time of the combustion gases inside the combustion zone, supplemented or not advantageously by secondary provisions allowing the adjustment of the flow rate of the primary oxidant.
  • the invention therefore relates to a combustion chamber comprising a geometric axis, and, an external wall and an internal wall, which define an enclosure inside which combustion of a fuel takes place and of which at least l 'one of these walls is in particular provided for this purpose with passages regulating the admission inside the enclosure of a primary oxidizer.
  • the combustion chamber further comprises at least one fuel injector associated with a combustion oxidizer intake device.
  • EP-A-100 135 which relates to a return combustion chamber in which the axial movement of a ring provided with orifices regulates the passage of air from the inlet orifices.
  • DE-A-1 945 921 describes a combustion chamber in which a rotating mobile ferrule adjusts the sections of the secondary air inlets, oblong orifices being provided.
  • the passages of adjustable sections include first oblong orifices with axes substantially contained in radial planes passing through the geometric axis of the combustion chamber and formed in said wall; shutter means crossed by second orifices centered substantially in the same radial planes as the first orifices; and a device for adjusting the positions of said shutter means parallel to said geometric axis, capable of producing an adjustment overlap of each first orifice by a second orifice;
  • the combustion oxidizer intake device is provided with a diaphragm for adjusting the combustion oxidant passages, and with a device for adjusting said diaphragm, while the controls for the device for adjusting the positions of said means of the shutter and the diaphragm adjustment device are synchronized, so as to obtain particular configurations.
  • the main advantage of the invention resides in the progressiveness of the adjustment relating to the primary oxidant intake orifices, resulting in obtaining satisfactory operating speeds, both with regard to the idling stability, and the reduction of polluting emissions at all operating regimes.
  • the external wall 1 is further provided with first orifices 10, of oblong shapes, each having two selvedges 11 parallel to the axis 3 and joined by two semicircles 12, therefore having an axis contained in a radial plane passing through the axis 3.
  • plates 13 for selective shutter are slidably mounted parallel to the axis 3, sliding on the external face 1A of the external wall 1, being guided to one of their ends by intermediate pads 14 and being covered by a ring 15 for holding on the outer face 1A, and, being guided at their other end by two pins 16 secured to the wall 1.
  • a lug 17, secured of each plate 13, is introduced into a groove 18 formed in an annular ring 19 pivotally mounted around the axis 3.
  • the grooves 18 are helical, and, depending on the pivoting of the ring 19, for example between the configurat ion of FIGS. 1 to 3, and that of FIGS. 4 to 6, constrain the lugs 17, and, the plates 13 of which they are integral, to slide parallel to the axis 3.
  • Each plate 13 is provided with a second oblong orifice 20, of shapes and dimensions substantially identical to those of a first orifice 10, the axis of which is contained in the radial plane containing the axis 3 and the axis of a first orifice 10.
  • each second orifice 20 is superimposed substantially completely on a first orifice 10, so that the passage 21A corresponding to the effective superposition of the orifices 10 and 20 constitutes a primary oxidizer intake passage.
  • This primary oxidizer is added to the combustion oxidant already admitted through the orifices 6 to achieve the most complete possible combustion of the injected fuel.
  • FIGS. 1 In the second configuration shown in FIGS.
  • each second orifice 20 is partly superimposed on the wall 1, which closes it, and, partly a first orifice 10, and constitutes with it a primary oxidant passage 21B of section smaller than that of passage 21A of FIGS. 1 and 2.
  • the part of each first orifice 10 partially closed by a plate 13 is the part the most distant from the bottom 4, so that in the configuration of FIGS. 4 and 5, not only is the section of each primary oxidant intake orifice 21B smaller than the corresponding section 21A of FIGS. 1 and 2, but also the average location and the extreme location of these primary oxidant intake orifices have come close to the bottom 4.
  • the internal wall 2 is provided with the same arrangements as those which have just been described with regard to the external wall 1.
  • an annular ring 22 of axis 3 pivotally mounted around this axis, controls the sliding parallel to the axis 3 of another set of plates 13 slidingly mounted on the face 2A of the internal wall 2, which is external to the combustion chamber.
  • the arrangement is exactly identical to that described with respect to the external wall 1, with the obtaining of passages 21A or 21 B for admission of primary oxidizer similar to those of FIGS. 1,2 and 4,5.
  • Lugs 19A, 22A secured to the crowns 19, 22 provided with eyes 23, 24 for receiving lugs 25, 26 secured to a lever 27 pivotally mounted on the bottom 4, around a pivot axis 28 parallel to the axis 3, allow the simultaneous controls of the pivoting of the rings 19, 22, respectively, and therefore allow the simultaneous obtaining of the same configuration of the primary oxidizer intake passages, as shown in FIGS. 1 to 3, or, in Figures 4 to 6, or again, an intermediate configuration.
  • diaphragms 7 are provided, as in the embodiment of FIGS. 1 to 6, it is further preferred to control these diaphragms simultaneously with the pivoting of the crowns 19 and 22, for example by means of lugs 29 integral with the internal crown 22, provided with eyes 30 into which are introduced lugs 31 integral with the levers 8 for controlling the pivoting of the ferrules 9 of the diaphragms 7.
  • the pivotings of the rings 19,22 correspond to the pivotings of the ferrules 9 of the diaphragms.
  • the mechanical connections are designed in such a way that the large passages 21A for admission of primary oxidizer correspond to passages of reduced sections of the diaphragms 7 shown diagrammatically in FIG.
  • oxidizer intake passages 21B of sections smaller than those of passages 21A, are associated with sections of upper passages 6 in FIGS. 4 to 6 and 10, with sections of the same passages 6 in FIGS. 1 to 3 and 9, so that the total pressure drop of the combustion oxidant and primary admitted has a substantially constant value.
  • FIGS. 7 and 8 has the main difference from that of FIGS. 1 to 6, the shape of the second orifices 20A of the plates 13, which is circular, of diameter equal to the spacing of the selvedges 11 of a first orifice. 10, the center of each second orifice 20A then being contained in the radial plane containing a first orifice 10.
  • the section of the passage 21C for the primary air intake is at most equal to the section of a second orifice 20A, and is effectively equal to this section of a second orifice 20A.
  • the axial location of the passage 21C varies in correspondence with the pivoting of the annular rings for controlling the movement of the plates 13, such as the ring 19 of Figures 7 and 8.
  • the other arrangements of Figures 1 and 3 are found with the same references, in the embodiment of FIGS. 7 and 8.
  • the arrangements shown first allow the location of the primary oxidant intake passages 21A, 21B and 21C to be adjusted relative to the bottom 4, both in the embodiment of FIGS. 1 to 6, and in that of FIGS. 7 and 8.
  • FIGS. 1 to 3, 7 and 9 correspond to the greatest distance DA, making it possible to obtain a long residence time of the combustion gases in the combustion chamber, which promotes the stability during idling, as well as reduction of carbon monoxide and unburnt hydrocarbon emissions.
  • the configurations of FIGS. 4 to 6, 8, and 10 or 11, correspond to the distance DB less than DA, make it possible to obtain a reduced residence time of the combustion gases, which promotes the reduction of oxides of nitrogen (NOx) during full gas operation.
  • the provisions of FIGS. 1 to 6 also make it possible to adjust the values of the sections of the primary oxidizer intake passages, which is favorable to the two extreme types of operation: idle and full throttle, under certain specific conditions of use. According to the embodiment of FIGS.
  • grooves 18 could be replaced more generally by support ramps for the lugs 17.
  • these grooves 18 or these ramps could be formed in the plates 13, the rings 19 and 22 then carrying the lugs 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

Les chambres de combustion connues, notamment celles dont sont munies les turbines à gaz, comportent de nombreux orifices d'admission du comburant permettant la combustion du carburant injecté. Ainsi distingue-t-on les orifices d'admission du comburant primaire, qui joue un rôle essentiel dans le déroulement de la combustion proprement dite, des orifices d'admission du comburant de dilution, qui, comme sa désignation le suggère, a pour fonction principale, en se mélangeant aux gaz brûlés issus de la combustion, de les diluer et ainsi d'homogénéiser la température et de régler le débit pour permettre une alimentation satisfaisante des aubages de la turbine à gaz.Known combustion chambers, in particular those with which gas turbines are fitted, include numerous oxidant intake orifices allowing combustion of the injected fuel. Thus we distinguish the intake ports of the primary oxidant, which plays an essential role in the course of combustion proper, from the intake ports of the dilution oxidant, which, as its designation suggests, has the function main, by mixing with the burnt gases resulting from the combustion, diluting them and thus homogenizing the temperature and regulating the flow rate to allow a satisfactory supply of the blades of the gas turbine.

Les dispositifs d'admission de comburant primaire doivent permettre l'obtention de régimes de fonctionnement très différents. Ainsi, au régime du ralenti, le temps de séjour des gaz de combustion dans la zone d'admission du comburant admis autour des injecteurs de carburant et à travers les orifices d'admission de comburant primaire doit être long, afin, d'une part, de favoriser la stabilité de la combustion, d'autre part, de réduire les émissions polluantes de monoxyde de carbone (CO) et d'hydrocarbures imbrûlés (CHx). Au régime plein gaz, le temps de séjour des gaz de combustion dans ladite zone doit, au contraire, être faible, afin de réduire les émissions polluantes d'oxydes d'azote (NOx).The primary oxidizer intake devices must allow very different operating speeds to be obtained. Thus, at idle speed, the residence time of the combustion gases in the intake area of the oxidant admitted around the fuel injectors and through the primary oxidant intake orifices must be long, in order, on the one hand , to promote combustion stability, on the other hand, to reduce polluting emissions of carbon monoxide (CO) and unburnt hydrocarbons (CHx). On the full gas regime, the residence time of the combustion gases in said zone must, on the contrary, be short, in order to reduce the polluting emissions of nitrogen oxides (NOx).

Par ailleurs, la même chambre doit satisfaire ces exigences contradictoires. De plus, les valeurs des débits de comburant primaire peuvent elles-mêmes varier.Furthermore, the same chamber must satisfy these contradictory requirements. In addition, the values of the primary oxidizer flow rates may themselves vary.

Afin de résoudre l'ensemble des problèmes relatifs à l'admission de comburant primaire, l'invention propose une disposition principale selon laquelle les emplacements des orifices d'admission de comburant primaire sont réglables parallèlement à l'axe de la chambre de combustion, permettant le réglage du temps de séjour des gaz de la combustion à l'intérieur de la zone de combustion, complétée ou non avantageusement par des dispositions secondaires permettant le réglage du débit du comburant primaire.In order to solve all the problems relating to the admission of primary oxidant, the invention proposes a main arrangement according to which the locations of the intake ports of primary oxidant are adjustable parallel to the axis of the combustion chamber, allowing the adjustment of the residence time of the combustion gases inside the combustion zone, supplemented or not advantageously by secondary provisions allowing the adjustment of the flow rate of the primary oxidant.

L'invention est donc relative à une chambre de combustion comportant un axe géométrique, et, une paroi externe et une paroi interne, qui définissent une enceinte à l'intérieur de laquelle s'effectue la combustion d'un carburant et dont au moins l'une de ces parois est notamment munie à cet effet de passages réglant l'admission à l'intérieur de l'enceinte d'un comburant primaire.The invention therefore relates to a combustion chamber comprising a geometric axis, and, an external wall and an internal wall, which define an enclosure inside which combustion of a fuel takes place and of which at least l 'one of these walls is in particular provided for this purpose with passages regulating the admission inside the enclosure of a primary oxidizer.

La chambre de combustion comprend en outre au moins un injecteur de carburant associé à un dispositif d'admission de comburant de combustion.The combustion chamber further comprises at least one fuel injector associated with a combustion oxidizer intake device.

Ces caractéristiques sont notamment connues par EP-A-100 135 qui concerne une chambre de combustion à retour dans laquelle le déplacement axial d'un anneau muni d'orifices règle le passage d'air des orifices d'entrée. Par ailleurs, DE-A-1 945 921 décrit une chambre de combustion dans laquelle une virole mobile en rotation règle les sections des entrées d'air secondaires, des orifices oblongs étant prévus.These characteristics are known in particular from EP-A-100 135 which relates to a return combustion chamber in which the axial movement of a ring provided with orifices regulates the passage of air from the inlet orifices. Furthermore, DE-A-1 945 921 describes a combustion chamber in which a rotating mobile ferrule adjusts the sections of the secondary air inlets, oblong orifices being provided.

Selon l'invention, les passages de sections réglables comprennent des premiers orifices oblongs d'axes sensiblement contenus dans des plans radiaux passant par l'axe géométrique de la chambre de combustion et ménagés dans ladite paroi ; des moyens d'obturation traversés par des deuxièmes orifices centrés sensiblement dans les mêmes plans radiaux que les premiers orifices ; et un dispositif de réglage des positions desdits moyens d'obturation parallèlement audit axe géométrique, apte à réaliser un recouvrement réglage de chaque premier orifice par un deuxième orifice ; en outre, le dispositif d'admission de comburant de combustion est muni d'un diaphragme de réglage des passages de comburant de combustion, et d'un dispositif de réglage dudit diaphragme, cependant que les commandes du dispositif de réglage des positions desdits moyens d'obturation et du dispositif de réglage des diaphragmes sont synchronisés, de manière à obtenir des configurations particulières.According to the invention, the passages of adjustable sections include first oblong orifices with axes substantially contained in radial planes passing through the geometric axis of the combustion chamber and formed in said wall; shutter means crossed by second orifices centered substantially in the same radial planes as the first orifices; and a device for adjusting the positions of said shutter means parallel to said geometric axis, capable of producing an adjustment overlap of each first orifice by a second orifice; in addition, the combustion oxidizer intake device is provided with a diaphragm for adjusting the combustion oxidant passages, and with a device for adjusting said diaphragm, while the controls for the device for adjusting the positions of said means of the shutter and the diaphragm adjustment device are synchronized, so as to obtain particular configurations.

Les avantageuses dispositions suivantes sont, en outre, de préférence adoptées :

  • selon une première réalisation, chaque premier orifice comporte deux lisières parallèles écartées d'une distance déterminée, cependant que chaque deuxième orifice a une périphérie circulaire de diamètre sensiblement égal à ladite distance déterminée, ledit réglage des positions des moyens d'obturation réalisant au moins un recouvrement de position réglable de chaque premier orifice par un deuxième orifice ;
  • selon une deuxième réalisation, chaque deuxième orifice a une section oblongue sensiblement égale à, et de même forme que celle d'un premier orifice, d'axe sensiblement contenu dans le plan radial passant par ledit axe géométrique et par l'axe d'un premier orifice, cependant que ledit recouvrement présente deux valeurs particulières : une valeur maximale, qui correspond à la superposition des premiers et des deuxièmes orifices, et, une valeur minimale, qui correspond à la superposition de seulement une partie de chacun des premiers orifices par un deuxième orifice ;
  • les configurations particulières comportent une première configuration, dans laquelle lesdits recouvrements des orifices ont leur valeur maximale et les sections desdits passages du diaphragme ont leur valeur minimale et, soit une deuxième configuration dans laquelle lesdits recouvrements des orifices ont leur valeur minimale, et les sections de passages du diaphragme ont leur valeur maximale, soit, en variante, une deuxième configuration dans laquelle lesdits recouvrements des orifices ont une valeur maximale, et, les sections de passages du diaphragme ont leur valeur maximale;
  • les valeurs de perte de charge du débit de comburant traversant l'ensemble desdits passages d'admission de comburant primaire et des passages du diaphragme dans lesdites première et deuxième configurations sont égales ;
  • lesdits moyens d'obturation sont constitués par des plaques montées coulissantes sur au moins l'une des faces de ladite paroi, selon une direction parallèle à l'axe géométrique ;
  • lesdites plaques sont montées coulissantes sur la face de ladite paroi opposée à celle délimitant l'enceinte de combustion ;
  • la chambre de combustion comporte une couronne annulaire, d'axe confondu avec ledit axe géométrique, montée pivotante par rapport à ladite paroi autour de cet axe géométrique, cependant que l'un des deux ensembles de pièces constitués par la couronne annulaire et par les plaques, est muni d'une pluralité de rampes inclinées par rapport audit axe géométrique et que l'autre ensemble de pièces est muni d'ergots, dont chacun est maintenu en appui sur l'une des rampes, un ergot par rampe ;
  • chaque rampe est constituée par une rainure ménagée dans l'ensemble de pièces comportant lesdites rampes ;
  • chacune des parois externe et interne est traversée par une pluralité desdits passages d'admission de comburant primaire, cependant que deux couronnes annulaires, l'une externe, l'autre interne, sont associées auxdites parois externe et interne, respectivement, et qu'un levier unique est monté pivotant sur un fond transversal reliant lesdites parois externe et interne, autour d'un axe de pivotement parallèle à l'axe géométrique, et est attelé auxdites couronnes annulaires par l'intermédiaire de pattes qui en sont solidaires, de manière à réaliser la synchronisation des commandes de pivotement des deuxdites couronnes annulaires.
The following advantageous arrangements are also preferably adopted:
  • according to a first embodiment, each first orifice has two parallel selvedges spaced by a determined distance, while each second orifice has a circular periphery of diameter substantially equal to said determined distance, said adjustment of the positions of the shutter means achieving at least one adjustable position overlap of each first port by a second port;
  • according to a second embodiment, each second orifice has an oblong section substantially equal to, and of the same shape as that of a first orifice, with an axis substantially contained in the radial plane passing through said geometric axis and through the axis of a first orifice, however that said overlap has two particular values: a maximum value, which corresponds to the superposition of the first and second orifices, and, a minimum value, which corresponds to the superposition of only part of each of the first orifices by a second port;
  • the particular configurations comprise a first configuration, in which said coverings of the orifices have their maximum value and the sections of said passages of the diaphragm have their minimum value and, that is to say a second configuration in which said coverings of the orifices have their minimum value, and the sections of diaphragm passages have their maximum value, or, as a variant, a second configuration in which said coverings of the orifices have a maximum value, and the diaphragm passage sections have their maximum value;
  • the pressure drop values of the oxidant flow rate passing through all of said primary oxidant intake passages and of the diaphragm passages in said first and second configurations are equal;
  • said sealing means consist of plates mounted to slide on at least one of the faces of said wall, in a direction parallel to the geometric axis;
  • said plates are slidably mounted on the face of said wall opposite to that delimiting the combustion chamber;
  • the combustion chamber comprises an annular ring, of axis coincident with said geometric axis, pivotally mounted relative to said wall around this geometric axis, while one of the two sets of parts constituted by the annular ring and by the plates , is provided with a plurality of ramps inclined relative to said geometric axis and that the other set of parts is provided with lugs, each of which is held in abutment on one of the ramps, one lug per ramp;
  • each ramp is formed by a groove formed in the set of parts comprising said ramps;
  • each of the outer and inner walls is traversed by a plurality of said primary oxidant intake passages, while two annular rings, one outer, the other inner, are associated with said outer and inner walls, respectively, and a single lever is pivotally mounted on a transverse bottom connecting said external and internal walls, around a pivot axis parallel to the geometric axis, and is coupled to said annular rings by means of legs which are integral therewith, so as to synchronize the pivoting commands of the two said annular rings.

L'avantage principal de l'invention réside dans la progressivité du réglage relatif aux orifices d'admission de comburant primaire, aboutissant à l'obtention de régimes de fonctionnement satisfaisants, aussi bien en ce qui concerne la stabilité au ralenti, que la réduction des émissions polluantes à tous les régimes de fonctionnement.The main advantage of the invention resides in the progressiveness of the adjustment relating to the primary oxidant intake orifices, resulting in obtaining satisfactory operating speeds, both with regard to the idling stability, and the reduction of polluting emissions at all operating regimes.

L'invention sera mieux comprise, et des caractéristiques secondaires et leurs avantages apparaîtront au cours de la description de réalisations donnée ci-dessous à titre d'exemple.The invention will be better understood, and secondary characteristics and their advantages will become apparent during the description of embodiments given below by way of example.

Il est entendu que la description et les dessins ne sont donnés qu'à titre indicatif et non limitatif.It is understood that the description and the drawings are given for information only and are not limiting.

Il sera fait référence aux dessins annexés, dans lesquels :

  • la figure 1 est une vue développée de la face extérieure à l'enceinte de combustion de la paroi externe ou interne d'une première réalisation d'une chambre de combustion annulaire conforme à l'invention, dans une première configuration de fonctionnement de cette chambre de combustion ;
  • la figure 2 est une coupe suivant II-II de la figure 1 ;
  • la figure 3 est une vue suivant flèche F de la figure 1 ;
  • la figure 4 est une vue analogue à la figure 1, de la même chambre de combustion, mais dans une deuxième configuration de fonctionnement ;
  • la figure 5 est une coupe suivant V-V de la figure 4;
  • la figure 6 est une vue suivant flèche G de la figure 4 ;
  • la figure 7 est une vue développée de la face extérieure à l'enceinte de combustion de la paroi externe ou interne d'une deuxième réalisation d'une chambre de combustion annulaire conforme à l'invention, dans une première configuration de fonctionnement de cette chambre de combustion ;
  • la figure 8 est une vue analogue à la figure 7, de la même chambre de combustion, mais dans une deuxième configuration de fonctionnement ;
  • les figures 9 et 10 schématisent les admissions de comburant de combustion et de comburant primaire des figures 1 et 4;
  • la figure 11 schématise les admissions de comburant de combustion et de comburant primaire de la figure 8.
La chambre de combustion partiellement représentée sur les figures 1 à 6 équipe une turbine à gaz et, de type annulaire, comprend une paroi externe 1 et une paroi interne 2, toutes deux sensiblement de révolution d'axe 3. Une paroi transversale 4 relie les parois externe 1 et interne 2, constitue le fond 4 de la chambre de combustion, et définit, avec lesdites parois externe et interne, l'enceinte à l'intérieur de laquelle s'effectue la combustion du carburant.
Plusieurs injecteurs de carburant 5 sont supportés par le fond 4, qu'ils traversent, en étant régulièrement espacés. Des orifices d'admission de comburant de combustion 6 sont associés aux injecteurs de carburant 5, qu'ils entourent, et sont munis, dans les réalisations représentées, de diaphragmes 7 qui permettent de régler les valeurs des sections de passage du comburant, munis à cet effet d'un dispositif de commande schématisé par un levier 8 de commande du pivotement d'une virole 9 d'obturation sélective des trous de passage du comburant. Chaque injecteur de carburant est associé à un diaphragme 7, étant cependant indiqué que, dans sa plus grande généralité, l'invention s'applique également aux chambres de combustion ne comportant pas de diaphragmes, bien que, naturellement, comportant des orifices 6 d'admission de comburant de combustion.Reference will be made to the accompanying drawings, in which:
  • Figure 1 is a developed view of the outside face of the combustion chamber of the external or internal wall of a first embodiment of an annular combustion chamber according to the invention, in a first operating configuration of this chamber combustion;
  • Figure 2 is a section along II-II of Figure 1;
  • Figure 3 is a view along arrow F of Figure 1;
  • Figure 4 is a view similar to Figure 1, of the same combustion chamber, but in a second operating configuration;
  • Figure 5 is a section along VV of Figure 4;
  • Figure 6 is a view along arrow G of Figure 4;
  • FIG. 7 is a developed view of the face external to the combustion chamber of the external or internal wall of a second embodiment of an annular combustion chamber according to the invention, in a first operating configuration of this chamber combustion;
  • Figure 8 is a view similar to Figure 7, of the same combustion chamber, but in a second operating configuration;
  • Figures 9 and 10 show schematically the intake of combustion oxidant and primary oxidant of Figures 1 and 4;
  • FIG. 11 diagrams the admissions of combustion oxidant and of primary oxidant of FIG. 8.
The combustion chamber partially shown in FIGS. 1 to 6 equips a gas turbine and, of the annular type, comprises an external wall 1 and an internal wall 2, both substantially of axis revolution 3. A transverse wall 4 connects the external 1 and internal 2 walls, constitutes the bottom 4 of the combustion chamber, and defines, with said external and internal walls, the enclosure inside which the combustion of the fuel takes place.
Several fuel injectors 5 are supported by the bottom 4, which they pass through, being regularly spaced. Combustion oxidizer intake orifices 6 are associated with the fuel injectors 5, which they surround, and are provided, in the embodiments shown, with diaphragms 7 which make it possible to adjust the values of the passage sections of the oxidizer, provided with this effect of a control device shown diagrammatically by a lever 8 for controlling the pivoting of a ferrule 9 for selective closure of the oxidizer passage holes. Each fuel injector is associated with a diaphragm 7, it being however indicated that, in its greatest generality, the invention also applies to combustion chambers not comprising no diaphragms, although, naturally, having orifices 6 for admission of combustion oxidant.

La paroi externe 1 est en outre munie de premiers orifices 10, de formes oblongues, présentant chacun deux lisières 11 parallèles à l'axe 3 et réunies par deux demi cercles 12, possédant donc un axe contenu dans un plan radial passant par l'axe 3. A l'extérieur de l'enceinte de combustion, des plaquettes 13 d'obturation sélective sont montées coulissantes parallèlement à l'axe 3, en glissant sur la face extérieure 1A de la paroi externe 1, en étant guidées à l'une de leurs extrémités par des plots intercalaires 14 et en étant recouvertes par une couronne 15 de maintien en appui sur la face extérieure 1A, et, en étant guidées à leur autre extrémité par deux pions 16 solidaires de la paroi 1. Un ergot 17, solidaire de chaque plaquette 13, est introduit dans une rainure 18 ménagée dans une couronne annulaire 19 montée pivotante autour de l'axe 3. Les rainures 18 sont hélicoïdales, et, en fonction du pivotement de la couronne 19, par exemple entre la configuration des figures 1 à 3, et, celle des figures 4 à 6, contraignent les ergots 17, et, les plaquettes 13 dont ils sont solidaires, à coulisser parallèlement à l'axe 3.The external wall 1 is further provided with first orifices 10, of oblong shapes, each having two selvedges 11 parallel to the axis 3 and joined by two semicircles 12, therefore having an axis contained in a radial plane passing through the axis 3. Outside the combustion chamber, plates 13 for selective shutter are slidably mounted parallel to the axis 3, sliding on the external face 1A of the external wall 1, being guided to one of their ends by intermediate pads 14 and being covered by a ring 15 for holding on the outer face 1A, and, being guided at their other end by two pins 16 secured to the wall 1. A lug 17, secured of each plate 13, is introduced into a groove 18 formed in an annular ring 19 pivotally mounted around the axis 3. The grooves 18 are helical, and, depending on the pivoting of the ring 19, for example between the configurat ion of FIGS. 1 to 3, and that of FIGS. 4 to 6, constrain the lugs 17, and, the plates 13 of which they are integral, to slide parallel to the axis 3.

Chaque plaquette 13 est munie d'un deuxième orifice oblong 20, de formes et de dimensions sensiblement identiques à celles d'un premier orifice 10, dont l'axe est contenu dans le plan radial contenant l'axe 3 et l'axe d'un premier orifice 10. Comme représenté sur les figures 1 et 2, dans la première configuration, chaque deuxième orifice 20 est superposé sensiblement complètement à un premier orifice 10, de sorte que le passage 21A correspondant à la superposition effective des orifices 10 et 20 constitue un passage d'admission de comburant primaire. Ce comburant primaire s'ajoute au comburant de combustion déjà admis à travers les orifices 6 pour réaliser la combustion la plus complète possible du carburant injecté. Dans la deuxième configuration représentée sur les figures 4 et 5, les plaquettes 13 ont été déplacées et rapprochées du fond 4, de sorte que chaque deuxième orifice 20 est superposé en partie à la paroi 1, qui l'obture, et, en partie à un premier orifice 10, et constitue avec celui-ci un passage de comburant primaire 21B de section inférieure à celle du passage 21A des figures 1 et 2. De plus, la partie de chaque premier orifice 10 partiellement obturée par une plaquette 13 est la partie la plus éloignée du fond 4, de sorte que dans la configuration des figures 4 et 5, non seulement la section de chaque orifice d'admission de comburant primaire 21B est inférieure à la section correspondante 21A des figures 1 et 2, mais encore l'emplacement moyen et l'emplacement extrême de ces orifices d'admission de comburant primaire se sont rapprochés du fond 4.Each plate 13 is provided with a second oblong orifice 20, of shapes and dimensions substantially identical to those of a first orifice 10, the axis of which is contained in the radial plane containing the axis 3 and the axis of a first orifice 10. As shown in FIGS. 1 and 2, in the first configuration, each second orifice 20 is superimposed substantially completely on a first orifice 10, so that the passage 21A corresponding to the effective superposition of the orifices 10 and 20 constitutes a primary oxidizer intake passage. This primary oxidizer is added to the combustion oxidant already admitted through the orifices 6 to achieve the most complete possible combustion of the injected fuel. In the second configuration shown in FIGS. 4 and 5, the plates 13 have been moved and brought closer to the bottom 4, so that each second orifice 20 is partly superimposed on the wall 1, which closes it, and, partly a first orifice 10, and constitutes with it a primary oxidant passage 21B of section smaller than that of passage 21A of FIGS. 1 and 2. In addition, the part of each first orifice 10 partially closed by a plate 13 is the part the most distant from the bottom 4, so that in the configuration of FIGS. 4 and 5, not only is the section of each primary oxidant intake orifice 21B smaller than the corresponding section 21A of FIGS. 1 and 2, but also the average location and the extreme location of these primary oxidant intake orifices have come close to the bottom 4.

La paroi interne 2 est munie des mêmes dispositions que celles qui viennent d'être décrites en ce qui concerne la paroi externe 1. Notamment, une couronne annulaire 22 d'axe 3, montée pivotante autour de cet axe, commande le coulissement parallèlement à l'axe 3 d'un autre jeu de plaquettes 13 montées coulissantes sur la face 2A de la paroi interne 2, qui est extérieure à la chambre de combustion. La disposition est exactement identique à celle décrite vis-à-vis de la paroi externe 1, avec l'obtention de passages 21A ou 21 B d'admission de comburant primaire analogues à ceux des figures 1,2 et 4,5.The internal wall 2 is provided with the same arrangements as those which have just been described with regard to the external wall 1. In particular, an annular ring 22 of axis 3, pivotally mounted around this axis, controls the sliding parallel to the axis 3 of another set of plates 13 slidingly mounted on the face 2A of the internal wall 2, which is external to the combustion chamber. The arrangement is exactly identical to that described with respect to the external wall 1, with the obtaining of passages 21A or 21 B for admission of primary oxidizer similar to those of FIGS. 1,2 and 4,5.

Des pattes 19A, 22A solidaires des couronnes 19,22 munies d'yeux 23,24 de réception d'ergots 25,26 solidaires d'un levier 27 monté pivotant sur le fond 4, autour d'un axe de pivotement 28 parallèle à l'axe 3, permettent les commandes simultanées des pivotements des couronnes 19,22, respectivement, et permettent donc l'obtention simultanée de la même configuration des passages d'admission de comburant primaire, telle que représentée sur les figures 1 à 3, ou, sur les figures 4 à 6, ou encore, une configuration intermédiaire.Lugs 19A, 22A secured to the crowns 19, 22 provided with eyes 23, 24 for receiving lugs 25, 26 secured to a lever 27 pivotally mounted on the bottom 4, around a pivot axis 28 parallel to the axis 3, allow the simultaneous controls of the pivoting of the rings 19, 22, respectively, and therefore allow the simultaneous obtaining of the same configuration of the primary oxidizer intake passages, as shown in FIGS. 1 to 3, or, in Figures 4 to 6, or again, an intermediate configuration.

Dans le cas où des diaphragmes 7 sont prévus, comme dans la réalisation des figures 1 à 6, il est en outre préféré de commander ces diaphragmes simultanément aux pivotements des couronnes 19 et 22, par exemple au moyen de pattes 29 solidaires de la couronne interne 22, munies d'yeux 30 dans lesquels sont introduits des ergots 31 solidaires des leviers 8 de commande du pivotement des viroles 9 des diaphragmes 7. Ainsi, aux pivotements des couronnes 19,22 correspondent les pivotements des viroles 9 des diaphragmes. Les liaisons mécaniques sont conçues de manière qu'aux grands passages 21A d'admission de comburant primaire correspondent des passages de sections réduites des diaphragmes 7 schématisés sur la figure 9 par des flèches HA épaisses pour les passages 21A et par des flèches JA fines pour les passages 6 des diaphragmes, et, sur la figure 10 par des flèches HB fines pour les passages 21B et par des flèches JB épaisses pour les passages 6 des diaphragmes. Les passages 21B d'admission de comburant, de sections inférieures à celles des passages 21A, sont associés à des sections des passages 6 supérieures dans les figures 4 à 6 et 10, aux sections des mêmes passages 6 des figures 1 à 3 et 9, de manière que la perte de charge totale du comburant de combustion et primaire admis ait une valeur sensiblement constante. A noter, sur les figures 9 et 10, les distances maximales DA et DB des passages 21A et 21B par rapport au fond 4, DB étant inférieure à DA.
La réalisation des figures 7 et 8 a pour différence principale par rapport à celles des figures 1 à 6, la forme des deuxièmes orifices 20A des plaquettes 13, qui est circulaire, de diamètre égal à l'écartement des lisières 11 d'un premier orifice 10, le centre de chaque deuxième orifice 20A étant alors contenu dans le plan radial contenant un premier orifice 10. Dans ce cas, la section du passage 21C d'admission d'air primaire est au plus égale à la section d'un deuxième orifice 20A, et est effectivement égale à cette section d'un deuxième orifice 20A. Par contre, l'emplacement axial du passage 21C varie en correspondance du pivotement des couronnes annulaires de commande du déplacement des plaquettes 13, telle que la couronne 19 des figures 7 et 8. Les autres dispositions des figures 1 et 3 se retrouvent avec les mêmes références, dans la réalisation des figures 7 et 8.
Les dispositions représentées permettent d'abord le réglage de l'emplacement des passages d'admission de comburant primaire 21A, 21B et 21C par rapport au fond 4, aussi bien dans la réalisation des figures 1 à 6, que dans celle des figures 7 et 8. Ainsi, les configurations des figures 1 à 3, 7 et 9, correspondent à la distance DA la plus grande, permettant l'obtention d'un temps de séjour long des gaz de combustion dans la chambre de combustion, ce qui favorise la stabilité pendant le fonctionnement au ralenti, ainsi que la réduction des émissions de monoxydes des carbones et d'hydrocarbures imbrûlés. Les configurations des figures 4 à 6, 8, et 10 ou 11, correspondent à la distance DB inférieure à DA, permettent l'obtention d'un temps de séjour réduit des gaz de combustion, ce qui favorise la réduction d'oxydes d'azote (NOx) pendant le fonctionnement à plein gaz.
Les dispositions des figures 1 à 6 permettent en outre d'ajuster les valeurs des sections des passages d'admission de comburant primaire, ce qui est favorable aux deux types de fonctionnement extrêmes : ralenti et plein gaz, dans certaines conditions particulières d 'utilisation.
Selon la réalisation des figures 7 et 8, par contre, les valeurs des sections des passages d'admission de comburant primaire (21C) sont conservées identiques lors du fonctionnement ralenti correspondant à la figure 9 et lors du fonctionnement plein gaz représenté par la figure 11.
Enfin, lorsque la commande de la configuration des passages d'admission de comburant primaire est combinée avec la commande des diaphragmes (figures 1 à 6, et 9 et 10, ou figures 7, 8 et 9 et 11), il est possible de conserver une perte de charge constante, ce qui est avantageux pour l'obtention d'un fonctionnement satisfaisant en aval de la chambre de combustion.
In the case where diaphragms 7 are provided, as in the embodiment of FIGS. 1 to 6, it is further preferred to control these diaphragms simultaneously with the pivoting of the crowns 19 and 22, for example by means of lugs 29 integral with the internal crown 22, provided with eyes 30 into which are introduced lugs 31 integral with the levers 8 for controlling the pivoting of the ferrules 9 of the diaphragms 7. Thus, the pivotings of the rings 19,22 correspond to the pivotings of the ferrules 9 of the diaphragms. The mechanical connections are designed in such a way that the large passages 21A for admission of primary oxidizer correspond to passages of reduced sections of the diaphragms 7 shown diagrammatically in FIG. 9 by thick arrows HA for the passages 21A and by fine arrows JA for the passages 6 of the diaphragms, and, in FIG. 10, by arrows HB fine for passages 21B and by arrows JB thick for passages 6 of the diaphragms. The oxidizer intake passages 21B, of sections smaller than those of passages 21A, are associated with sections of upper passages 6 in FIGS. 4 to 6 and 10, with sections of the same passages 6 in FIGS. 1 to 3 and 9, so that the total pressure drop of the combustion oxidant and primary admitted has a substantially constant value. To note, in FIGS. 9 and 10, the maximum distances DA and DB of the passages 21A and 21B relative to the bottom 4, DB being less than DA.
The embodiment of FIGS. 7 and 8 has the main difference from that of FIGS. 1 to 6, the shape of the second orifices 20A of the plates 13, which is circular, of diameter equal to the spacing of the selvedges 11 of a first orifice. 10, the center of each second orifice 20A then being contained in the radial plane containing a first orifice 10. In this case, the section of the passage 21C for the primary air intake is at most equal to the section of a second orifice 20A, and is effectively equal to this section of a second orifice 20A. On the other hand, the axial location of the passage 21C varies in correspondence with the pivoting of the annular rings for controlling the movement of the plates 13, such as the ring 19 of Figures 7 and 8. The other arrangements of Figures 1 and 3 are found with the same references, in the embodiment of FIGS. 7 and 8.
The arrangements shown first allow the location of the primary oxidant intake passages 21A, 21B and 21C to be adjusted relative to the bottom 4, both in the embodiment of FIGS. 1 to 6, and in that of FIGS. 7 and 8. Thus, the configurations of FIGS. 1 to 3, 7 and 9 correspond to the greatest distance DA, making it possible to obtain a long residence time of the combustion gases in the combustion chamber, which promotes the stability during idling, as well as reduction of carbon monoxide and unburnt hydrocarbon emissions. The configurations of FIGS. 4 to 6, 8, and 10 or 11, correspond to the distance DB less than DA, make it possible to obtain a reduced residence time of the combustion gases, which promotes the reduction of oxides of nitrogen (NOx) during full gas operation.
The provisions of FIGS. 1 to 6 also make it possible to adjust the values of the sections of the primary oxidizer intake passages, which is favorable to the two extreme types of operation: idle and full throttle, under certain specific conditions of use.
According to the embodiment of FIGS. 7 and 8, on the other hand, the values of the sections of the primary oxidant intake passages (21C) are kept identical during the idle operation corresponding to FIG. 9 and during the full gas operation represented by FIG. 11 .
Finally, when the control of the configuration of the primary oxidizer intake passages is combined with the control of the diaphragms (Figures 1 to 6, and 9 and 10, or Figures 7, 8 and 9 and 11), it is possible to keep a constant pressure drop, which is advantageous for obtaining satisfactory operation downstream of the combustion chamber.

En variante, les rainures 18 pourraient être remplacées plus généralement par des rampes d'appui des ergots 17. Bien entendu, ces rainures 18 ou ces rampes pourraient être ménagées dans les plaquettes 13, les couronnes 19 et 22 portant alors les ergots 17.As a variant, the grooves 18 could be replaced more generally by support ramps for the lugs 17. Of course, these grooves 18 or these ramps could be formed in the plates 13, the rings 19 and 22 then carrying the lugs 17.

Claims (11)

  1. Combustion chamber provided with at least one fuel injector (5) associated with a combustion oxidant inlet device and having a geometrical axis (3), and an outer wall (1) and an inner wall (2), which define an enclosure within which combustion of an oxidant takes place, and of which at least one of these walls is, in particular, provided for this purpose with passages (21A; 21B; 21C) controlling the admission of a primary oxidant into the enclosure; characterized in that the passages comprise first oblong orifices (10), with axes substantially contained in radial planes passing through the geometrical axis (3) of the combustion chamber, and made in the said wall (1); closure means (13), through which second orifices (20; 20A), centred substantially in the same radial planes as the first orifices (10), pass, and a device (19-17-18) for controlling the positions of the said closure means (13) parallel to the said geometrical axis (3), which device can produce controllable overlap of each first orifice (10) by a second orifice (20; 20A), and in that the combustion oxidant inlet device is provided with a diaphragm (7) for controlling the combustion oxidant passages, and a device (8) for controlling the said diaphragm (7), while the commands of the device (19A-23-25-22A-24-26) for controlling the positions of the said closure means (13) and of the device (29-30-31) for controlling the diaphragms (7) are synchronized (27) so as to obtain particular configurations.
  2. Combustion chamber according to Claim 1, characterized in that each first orifice (10) includes two parallel edges (11) separated by a determined distance, while each second orifice (20A) has a circular periphery of diameter substantially equal to the said determined distance, the said control of the positions of the closure means (13) producing at least one controllable-position overlap of each first orifice (10) by a second orifice (20A), the value of the passage cross-section (21C) remaining constant.
  3. Combustion chamber according to Claim 1, characterized in that each second orifice (20) has an oblong cross-section substantially equal to and of the same shape as that of a first orifice (10), with an axis substantially contained in the radial plane passing through the said geometrical axis (3) and through the axis of a first orifice, while the said overlap has two particular values: a maximum value (Figures 1 and 2) which corresponds to the superposition of the first and second orifices, and a minimum value (Figures 4 and 5) which corresponds to the superposition of only a part of each of the first orifices with a second orifice.
  4. Combustion chamber according to any one of Claims 1 to 3, in which the said configurations include a first configuration (Figure 9) in which the said overlaps of the orifices have their maximum value and the cross-sections of the said passages in the diaphragm have their minimum value, and a second configuration in which the said overlaps of the orifices have their minimum value (Figure 10) and the cross-sections of the passages of the diaphragm have their maximum value.
  5. Combustion chamber according to either of Claims 1 and 2, in which the said configurations include a first configuration (Figure 9) in which the said overlaps of the orifices have their maximum value and the cross-sections of the said passages of the diaphragm have their minimum value, and a second configuration in which the said overlaps of the orifices have their maximum value (Figure 11) and the cross-sections of the passages of the diaphragm have their maximum value.
  6. Combustion chamber according to one of Claims 4 or 5, characterized in that the values of the head loss of the flow of oxidant passing through all of the said primary oxidant inlet passages and the passages in the diaphragm in the said first and second configurations are substantially equal.
  7. Combustion chamber according to any one of Claims 1 to 6, characterized in that the said closure means consist of plates (13) mounted so as to slide on one of the faces (1A) of the said wall (1) in a direction parallel to the geometrical axis (3).
  8. Combustion chamber according to Claim 7, characterized in that the said plates are mounted so as to slide on that face (1A) of the said wall (1) which is opposite the face delimiting the combustion enclosure.
  9. Combustion chamber according to either of Claims 7 and 8, characterized in that it includes an annular ring (19) whose axis coincides with the said geometrical axis (3), mounted so as to pivot with respect to the said wall (1) about this geometrical axis (3) while one (19) of the two sets of parts consisting of the annular ring (19) and of the plates is provided with a plurality of ramps (18) which are inclined with respect to the said geometrical axis (3), and the other set (13) of parts is provided with lugs (17), each of which is kept bearing on one of the ramps (18), one lug per ramp.
  10. Combustion chamber according to Claim 9, characterized in that each ramp consists of a groove (18) made in the set (19) of parts including the said ramps (18).
  11. Combustion chamber according to either of Claims 9 and 10, characterized in that a plurality of the said primary oxidant inlet passages passes through each of the outer (1) and inner (2) walls, while two annular rings (19, 22), one (19) outer and the other (22) inner, are associated with the said outer and inner walls, respectively, and in that a single lever (27) is mounted so as to pivot on a transverse base (4) connecting the said outer (1) and inner (2) walls, about a pivot pin (28) parallel to the geometrical axis (3) and is coupled to the said annular rings (19, 22) by means of tabs (19A-22A) which are rigidly fixed thereto, so as to synchronize the pivoting commands of the two said annular rings.
EP93401166A 1992-05-06 1993-05-06 Combustion chamber with adjustable passages for primary air Expired - Lifetime EP0569300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9205559A FR2690977B1 (en) 1992-05-06 1992-05-06 COMBUSTION CHAMBER COMPRISING ADJUSTABLE PASSAGES FOR THE ADMISSION OF PRIMARY FUEL.
FR9205559 1992-05-06

Publications (2)

Publication Number Publication Date
EP0569300A1 EP0569300A1 (en) 1993-11-10
EP0569300B1 true EP0569300B1 (en) 1996-07-03

Family

ID=9429574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401166A Expired - Lifetime EP0569300B1 (en) 1992-05-06 1993-05-06 Combustion chamber with adjustable passages for primary air

Country Status (5)

Country Link
US (1) US5317863A (en)
EP (1) EP0569300B1 (en)
JP (1) JP2853846B2 (en)
DE (1) DE69303429T2 (en)
FR (1) FR2690977B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704628B1 (en) * 1993-04-29 1995-06-09 Snecma Combustion chamber comprising an oxidizer injection system with variable geometry.
DE4415717C2 (en) * 1994-05-04 2001-03-01 Man B & W Diesel Ag burner
GB2351343A (en) * 1999-06-22 2000-12-27 Alstom Gas Turbines Ltd Telescopically-moveable combustion chamber
US6418709B1 (en) * 2000-05-15 2002-07-16 United Technologies Corporation Gas turbine engine liner
AUPR657901A0 (en) * 2001-07-25 2001-08-16 Micro Gas Turbine Pty Ltd A miniature multifuel gas turbine engine
FR2920032B1 (en) * 2007-08-13 2014-08-22 Snecma DIFFUSER OF A TURBOMACHINE
FR3042023B1 (en) 2015-10-06 2020-06-05 Safran Helicopter Engines ANNULAR COMBUSTION CHAMBER FOR TURBOMACHINE
KR102050563B1 (en) * 2017-11-03 2019-11-29 두산중공업 주식회사 Combustor and gas turbine comprising the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329279A (en) * 1919-10-09 1920-01-27 Joseph T Voorheis Air-regulating device for oil-burners
GB1277980A (en) * 1969-09-11 1972-06-14 Mtu Muenchen Gmbh Gas turbine engines
DE1945921A1 (en) * 1969-09-11 1971-03-25 Motoren Turbinen Union Combustion chamber
US3899881A (en) * 1974-02-04 1975-08-19 Gen Motors Corp Combustion apparatus with secondary air to vaporization chamber and concurrent variance of secondary air and dilution air in a reverse sense
US3930368A (en) * 1974-12-12 1976-01-06 General Motors Corporation Combustion liner air valve
US4497170A (en) * 1982-07-22 1985-02-05 The Garrett Corporation Actuation system for a variable geometry combustor
EP0100135B1 (en) * 1982-07-22 1986-06-11 The Garrett Corporation Combustor
FR2585770B1 (en) * 1985-08-02 1989-07-13 Snecma ENLARGED BOWL INJECTION DEVICE FOR A TURBOMACHINE COMBUSTION CHAMBER
DE3742891A1 (en) * 1987-12-17 1989-06-29 Bayerische Motoren Werke Ag GAS TURBINE SYSTEM
JP2567258Y2 (en) * 1990-05-29 1998-04-02 旭光学工業株式会社 Lens guide device

Also Published As

Publication number Publication date
FR2690977A1 (en) 1993-11-12
DE69303429D1 (en) 1996-08-08
DE69303429T2 (en) 1997-01-30
JP2853846B2 (en) 1999-02-03
US5317863A (en) 1994-06-07
FR2690977B1 (en) 1995-09-01
EP0569300A1 (en) 1993-11-10
JPH0626649A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
CA2772763C (en) Device for supporting a turbine ring, turbine having such a device, and turbine engine having such a turbine
EP0506516B1 (en) Combustion air control device for turbomachine combustor
FR2786223A1 (en) COMBUSTION ENGINE, IN PARTICULAR COMBUSTION ENGINE FOR MOTOR VEHICLES, EQUIPPED WITH EXHAUST GAS RECYCLING
EP0569300B1 (en) Combustion chamber with adjustable passages for primary air
CA2619921A1 (en) Two-stage fuel injector
EP0214003A1 (en) Fuel injection nozzle with an enlarged screen for the combustion chamber of a gas turbine
EP0964206B1 (en) Variable geometry gas turbine combustor chamber
EP0496659A1 (en) Gas turbine combustion chamber with adjustable wall
EP0589745B1 (en) Inlet control system of a turbomachine
WO2009144408A2 (en) Annular combustion chamber for gas turbine engine
EP0301950B1 (en) Supercharged internal-comubustion engine provided withan auxiliary combustion chamber
EP3443266A1 (en) Improved injectors for gas turbine combustion chamber
CA2204591A1 (en) Variable-geometry injection system with airflow regulated by engine rpm
CA2218459C (en) Device for supplying oxidizing agent to a gas turbine engine comprising flow-regulating diaphragms controlled in pairs
FR2704628A1 (en) Combustion chamber comprising an oxidant injection system with variable geometry.
EP0130171A1 (en) Rotary internal combustion engine
EP0251895A1 (en) Annular gas turbine combustor having a controlling device for the primary air
FR3068076A1 (en) CONSTANT VOLUME COMBUSTION SYSTEM WITH BYPASS FLOW
EP1939505B1 (en) Gas-supply tap
EP0883735A1 (en) Improvement to loop-scavenged two-stroke internal combustion engines
FR2944829A1 (en) Engine i.e. rotary spark ignition engine, for use in motor vehicle, has working cavity provided with exhaust unit, and oxidant intake unit for intaking oxidant and fuel injection unit for injecting fuel to form air-fuel mixture in cavity
EP3987165A1 (en) Constant-volume combustion system with synchronized injection
EP0233806B1 (en) Nozzle with variable section
FR2673705A1 (en) Combustion chamber of a turbine engine equipped with an anti-coking device for the bottom of said chamber
WO2007132070A1 (en) Management of gaseous flows for rotary engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19950307

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REF Corresponds to:

Ref document number: 69303429

Country of ref document: DE

Date of ref document: 19960808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990505

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990728

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030407

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST