EP0569079A1 - Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension - Google Patents

Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension Download PDF

Info

Publication number
EP0569079A1
EP0569079A1 EP93201210A EP93201210A EP0569079A1 EP 0569079 A1 EP0569079 A1 EP 0569079A1 EP 93201210 A EP93201210 A EP 93201210A EP 93201210 A EP93201210 A EP 93201210A EP 0569079 A1 EP0569079 A1 EP 0569079A1
Authority
EP
European Patent Office
Prior art keywords
gun
tube
deflection
sub
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93201210A
Other languages
German (de)
French (fr)
Other versions
EP0569079B1 (en
Inventor
Nicolaas Gerrit c/o INT. OCTROOIBUREAU B.V. Vink
Johannes c/o INT. OCTROOIBUREAU B.V. Penninga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to EP19930201210 priority Critical patent/EP0569079B1/en
Publication of EP0569079A1 publication Critical patent/EP0569079A1/en
Application granted granted Critical
Publication of EP0569079B1 publication Critical patent/EP0569079B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only
    • H01J29/762Deflecting by magnetic fields only using saddle coils or printed windings

Definitions

  • the invention relates to a display tube comprising an electron gun system, a longitudinal axis, a display screen and an electromagnetic deflection unit, which unit comprises a line deflection coil system having two line deflection coils facing each other.
  • the electron gun system In monochrome display tubes the electron gun system is adapted to generate one electron beam, whereas in, for example colour display tubes of the in-line type the electron gun system is adapted to generate three coplanar electron beams which converge on the display screen.
  • the electromagnetic deflection unit for deflecting electron beams is used for deflecting the electron beams in two orthogonal directions from their normal undeflected straight path so that the beams impinge upon selected pixels of the display screen so as to provide visual indications on this screen.
  • the electron beams can be moved up or down or from left to right across the (vertically arranged) display screen by suitably varying the magnetic deflection fields.
  • a visual presentation of information or a picture can be formed on the display screen by simultaneously varying the intensity of the beams.
  • the deflection unit which is secured to the neck portion of the display tube, comprises two systems of deflection coils for deflecting the electron beams in two directions which are transverse to each other; a line deflection coil system to which a line deflection signal of a higher frequency is applied during operation and a field deflection coil system to which a field deflection signal of a lower frequency is applied during operation.
  • Each system comprises two coils arranged with respect to the tube axis at positions facing each other.
  • An annular core of magnetizable material surrounding the systems of deflection coils if both systems are of the saddle type, is generally used for concentrating the deflection fields and for increasing the flux density in the deflection area.
  • magnetic six-pole field components are generally to be added to the (dynamic) magnetic dipole deflection fields.
  • the effect of a positive six-pole component on the dipole deflection field is a pincushion-field variation.
  • the effect of a negative six-pole component is a barrel-shaped field variation.
  • a pincushion-shaped field is generated when the two coils of a system of deflection coils have large window apertures, whereas a barrel-shaped field is generated when they have small window apertures.
  • the line deflection field in the central area must be pincushion-shaped (the separate line deflection coils must thus have a large window aperture), while it must be homogeneous, more pincushion-shaped or less pincushion-shaped at the screen side, dependent on the quantity of admissible raster distortion, and barrel-shaped (i.e. small window aperture) at the gun side.
  • field modulation Similar field modulations are also important for monochrome systems of display tubes and deflection units which must have a high resolving power.
  • the barrel shape can be increased by means of plates of a soft-magnetic metallic material.
  • the use of metal plates in the deflection field is, however, undesired if the display tube/deflection unit is to be operated at higher frequencies (EVTV, HDTV).
  • EVTV electric-to-dielectric
  • HDTV high frequencies
  • This novel method should preferably lead to the possibility of omitting the known soil-magnetic metal plates and/or the possibility of having to vary the window apertures to a less extreme extent.
  • each line deflection coil has a gun-sided, lying, lobe and a screen-sided lobe and comprises a first, inner winding sub-assembly and a second, outer winding sub-assembly, each winding sub-assembly comprising two longitudinal conductor groups arranged at both sides of the tube, which groups are connected at their screen side by a connection group crossing in the plane of the screen-sided lobe, the second sub-assembly surrounding the first sub-assembly in such a way that one single, wedge-shaped window with its narrower side at the gun side is formed between the sub-assemblies at the gun side.
  • wedge-shaped window is herein understood to mean a coil portion which is free from turns and, viewed in the direction of the longitudinal axis of the tube, tapers towards the gun.
  • the boundary at the screen side may have different shapes.
  • the invention is based, inter alia on the recognition that it should be possible to adjust pre-deflection and six-pole strength independently of each other so as to be able to realise the variations (required for, for example self-convergence) in the distribution of the line deflection field ("line deflection field modulations") in the z direction, and that a coil of the saddle type having a gun-sided, lying lobe, with an "extension" having a wedge-shaped window being formed behind a connection group in the plane of the lobe, provides this possibility in an accurate way.
  • the use of soft-magnetic metal plates is not necessary, or is necessary to a lesser extent only, and/or, viewed in the direction of the longitudinal axis of the tube, the window apertures need not vary to such a large extent.
  • Deflection coils of the relevant saddle type are self-supporting coils comprising a plurality of conductors which are wound in such a way that they constitute longitudinal first and second lateral groups which are interconnected by an arcuate front connection group and a lying arcuate rear connection group.
  • the rear (gun-sided) connection group is arranged "flat", i.e. its conductors are situated in the plane of the lateral group, which plane is parallel to the envelope of the tube.
  • these lateral groups may subtend a larger or smaller angle to the tube axis.
  • An angle of approximately 120° to 180° subtended with respect to the tube axis generally introduces a positive sixpole field component.
  • a subtended angle of less than 120° generally introduces a negative sixpole field component, with a largest amplitude in the range around 60°.
  • An embodiment is characterized in that viewed in a plane transverse to the longitudinal tube axis the longitudinal conductor groups, arranged at both sides of the tube, of the second sub-assembly subtend an angle of less than 120° with respect to the tube axis proximate to the wider side of the wedge-shaped window.
  • a substantial negative six-pole field component is generated which leads to a substantial barrel-shaped field component having only a small dipole strength at the gun side of the line deflection field.
  • a line deflection field is also eminently suitable in, for example display tubes having a display screen with a 16:9 aspect ratio, in combination with scanning parallel to the short axis.
  • Fig. 1 is a cross-section of a display tube 1 having an envelope 6 which extends from a narrow neck portion 2, in which an electron gun system 3 is mounted, to a wide funnel-shaped portion 4 which is provided with a display screen 5.
  • An electromagnetic deflection unit 7 is mounted on the tube at the interface between the narrow and the wide portion.
  • This deflection unit 7 has a support 8 of insulating material, with a front end 9 and a rear end 10.
  • a system of deflection coils 11, 11' for generating a deflection field of a higher frequency for deflecting electron beams produced by the electron gun system 3 in the line direction is present at the inner side of the support 8
  • a system of coils 12, 12' for generating a deflection field of a lower frequency for deflecting electron beams produced by the electron gun system 3 in the field direction is present at the outer side of the support.
  • the deflection coil systems 11, 11' and 12, 12' are surrounded by an annular core 14 of magnetizable material.
  • Fig. 2A shows an S-r* ⁇ diagram of the line deflection coil 11 of the construction shown in Fig. 1(S is the coordinate of the coil profile in the z-R plane; z is the direction along the longitudinal axis of the tube).
  • Winding sub-assemblies 16 and 17 each comprising two facing longitudinal conductor groups, and connection groups 18 and 19, respectively, crossing at the wide end.
  • the conductor groups of the extension 20 subtend an angle ⁇ at the screen side of less than 120°, particularly between 70° and 110° an preferably between 80° and 100°, and at the screen side an angle ⁇ which is smaller than ⁇ (see Fig. 2B).
  • Pins 21, 22, 23, 24, 25, 27, 28, 30, 31, 32 are shown which, in this order, have been arranged in the winding jig during winding of the coil so as to obtain the desired structure.
  • Fig. 3 shows the dipole field strength 2p along the z axis and Fig. 4 shows the six-pole field strength 6p along the z axis of a conventional line deflection coil. This six-pole modulation is not deep enough for applications within the scope of the invention.
  • Fig. 5 shows the dipole field strength 2p1 and Fig. 6 shows the six-pole field strength 6p1 along the z axis of a line deflection coil of the type shown in Fig. 2.
  • a negative six-pole component extending further towards the gun is created in the gun-sided area, while the dipole contribution in this area is very small.
  • the line coma is effectively corrected thereby.
  • the line deflection coils according to the invention are thus generally longer than comparable conventional line deflection coils (hence the term: extension) and have a smaller distance between their gun-sided end and the electron gun than comparable conventional line deflection coils.
  • the six-pole modulation depth (Fig. 6) is increased with respect to the conventional coil (Fig. 4). Particularly line astigmatism is effectively corrected thereby.
  • a deflection unit with line deflection coils of the type shown in Fig. 2 is not only suitable for use in a system with a display screen having a small curvature, such as display screens of the "flat square” or “super flat” type in particular, but also very suitable in a system having a display screen aspect ratio which is more extreme than 4:3 (for example 16:9) and in an in-line gun system which is arranged parallel to the short field axis. In such a "transposed scan" system the line deflection is effected parallel to the short field axis.

Abstract

Display tube comprising an electromagnetic deflection unit with line deflection coils of the semi-saddle type which are provided at their gun-sided end with an extension having one single, wedge-shaped window directed towards the gun. Particularly line coma errors and raster errors which occur in display tubes having display screens of small curvature and/or in the case of extreme long axis: short axis ratios can be minimized with such line deflection coils.

Description

  • The invention relates to a display tube comprising an electron gun system, a longitudinal axis, a display screen and an electromagnetic deflection unit, which unit comprises a line deflection coil system having two line deflection coils facing each other.
  • In monochrome display tubes the electron gun system is adapted to generate one electron beam, whereas in, for example colour display tubes of the in-line type the electron gun system is adapted to generate three coplanar electron beams which converge on the display screen.
  • The electromagnetic deflection unit for deflecting electron beams is used for deflecting the electron beams in two orthogonal directions from their normal undeflected straight path so that the beams impinge upon selected pixels of the display screen so as to provide visual indications on this screen. The electron beams can be moved up or down or from left to right across the (vertically arranged) display screen by suitably varying the magnetic deflection fields. A visual presentation of information or a picture can be formed on the display screen by simultaneously varying the intensity of the beams. The deflection unit, which is secured to the neck portion of the display tube, comprises two systems of deflection coils for deflecting the electron beams in two directions which are transverse to each other; a line deflection coil system to which a line deflection signal of a higher frequency is applied during operation and a field deflection coil system to which a field deflection signal of a lower frequency is applied during operation. Each system comprises two coils arranged with respect to the tube axis at positions facing each other.
  • An annular core of magnetizable material surrounding the systems of deflection coils if both systems are of the saddle type, is generally used for concentrating the deflection fields and for increasing the flux density in the deflection area.
  • To satisfy given requirements of convergence (and raster) quality, magnetic six-pole field components are generally to be added to the (dynamic) magnetic dipole deflection fields. The effect of a positive six-pole component on the dipole deflection field is a pincushion-field variation. The effect of a negative six-pole component is a barrel-shaped field variation.
  • A pincushion-shaped field is generated when the two coils of a system of deflection coils have large window apertures, whereas a barrel-shaped field is generated when they have small window apertures. For a self-converging system the line deflection field in the central area must be pincushion-shaped (the separate line deflection coils must thus have a large window aperture), while it must be homogeneous, more pincushion-shaped or less pincushion-shaped at the screen side, dependent on the quantity of admissible raster distortion, and barrel-shaped (i.e. small window aperture) at the gun side. (Such a field variation is also referred to as field modulation.) Similar field modulations are also important for monochrome systems of display tubes and deflection units which must have a high resolving power.
  • The flatter the display screen (for example, "superflat" display screens), the deeper the field modulations should be to satisfy the convergence and raster requirements.
  • Until now it has been found impossible to manufacture deflection coils having a window aperture which varies as much as is desired for said applications, while using the conventional winding methods. However, there are different compromise solutions to reduce the required variation. For example, the barrel shape can be increased by means of plates of a soft-magnetic metallic material. The use of metal plates in the deflection field is, however, undesired if the display tube/deflection unit is to be operated at higher frequencies (EVTV, HDTV). In fact, the energy generated by eddy currents in the metal plates cannot be dissipated in a simple manner so that the temperature of the deflection coil(s) may become inadmissibly high.
  • It is an object of the invention to provide a display tube of the type described in the opening paragraph with a deflection unit in which line deflection field modulations are realized in a novel way. This novel method should preferably lead to the possibility of omitting the known soil-magnetic metal plates and/or the possibility of having to vary the window apertures to a less extreme extent.
  • According to the invention, a display tube of the type described in the opening paragraph is therefore characterized in that each line deflection coil has a gun-sided, lying, lobe and a screen-sided lobe and comprises a first, inner winding sub-assembly and a second, outer winding sub-assembly, each winding sub-assembly comprising two longitudinal conductor groups arranged at both sides of the tube, which groups are connected at their screen side by a connection group crossing in the plane of the screen-sided lobe, the second sub-assembly surrounding the first sub-assembly in such a way that one single, wedge-shaped window with its narrower side at the gun side is formed between the sub-assemblies at the gun side.
  • The term "wedge-shaped window" is herein understood to mean a coil portion which is free from turns and, viewed in the direction of the longitudinal axis of the tube, tapers towards the gun. The boundary at the screen side may have different shapes.
  • The invention is based, inter alia on the recognition that it should be possible to adjust pre-deflection and six-pole strength independently of each other so as to be able to realise the variations (required for, for example self-convergence) in the distribution of the line deflection field ("line deflection field modulations") in the z direction, and that a coil of the saddle type having a gun-sided, lying lobe, with an "extension" having a wedge-shaped window being formed behind a connection group in the plane of the lobe, provides this possibility in an accurate way. In such coils the use of soft-magnetic metal plates is not necessary, or is necessary to a lesser extent only, and/or, viewed in the direction of the longitudinal axis of the tube, the window apertures need not vary to such a large extent.
  • Deflection coils of the relevant saddle type are self-supporting coils comprising a plurality of conductors which are wound in such a way that they constitute longitudinal first and second lateral groups which are interconnected by an arcuate front connection group and a lying arcuate rear connection group. As it were, the rear (gun-sided) connection group is arranged "flat", i.e. its conductors are situated in the plane of the lateral group, which plane is parallel to the envelope of the tube.
  • At the location where the gun-sided connection group of the first sub-assembly is situated between the lateral groups of the second sub-assembly, i.e. proximate to the wider side of the wedge-shaped window, these lateral groups, viewed in a plane transverse to the longitudinal axis of the tube, may subtend a larger or smaller angle to the tube axis. An angle of approximately 120° to 180° subtended with respect to the tube axis generally introduces a positive sixpole field component. A subtended angle of less than 120° generally introduces a negative sixpole field component, with a largest amplitude in the range around 60°. An embodiment is characterized in that viewed in a plane transverse to the longitudinal tube axis the longitudinal conductor groups, arranged at both sides of the tube, of the second sub-assembly subtend an angle of less than 120° with respect to the tube axis proximate to the wider side of the wedge-shaped window. Such a wire arrangement, together with an extension having a wedge-shaped window, yields a deflection field modulation which is very suitable for a number of applications.
  • Due to the extension with the wedge-shaped window, a substantial negative six-pole field component is generated which leads to a substantial barrel-shaped field component having only a small dipole strength at the gun side of the line deflection field. As will be described hereinafter, such a line deflection field is also eminently suitable in, for example display tubes having a display screen with a 16:9 aspect ratio, in combination with scanning parallel to the short axis.
  • These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter. In the drawings
    • Fig. 1 is a diagrammatic cross-section of a cathode ray tube with a deflection unit mounted on said tube;
    • Fig. 2A shows an S-r*φ diagram of a line deflection coil which is characteristic of the invention; Fig. 2B shows by way of a diagrammatic cross-section the wire arrangements of the wedge-shaped window of the line deflection coil shown in Fig. 2A.
    • Figs. 3 and 4 are diagrams showing the dipole field strength and the six-pole field strength along the z axis in the ease of a conventional line deflection coil; and
    • Figs. 5 and 6 are diagrams showing the dipole field strength and the six-pole field strength along the z axis in the case of a line deflection coil of the type shown in Fig. 2.
  • Fig. 1 is a cross-section of a display tube 1 having an envelope 6 which extends from a narrow neck portion 2, in which an electron gun system 3 is mounted, to a wide funnel-shaped portion 4 which is provided with a display screen 5. An electromagnetic deflection unit 7 is mounted on the tube at the interface between the narrow and the wide portion. This deflection unit 7 has a support 8 of insulating material, with a front end 9 and a rear end 10. Between these ends 9 and 10 a system of deflection coils 11, 11' for generating a deflection field of a higher frequency for deflecting electron beams produced by the electron gun system 3 in the line direction is present at the inner side of the support 8, and a system of coils 12, 12' for generating a deflection field of a lower frequency for deflecting electron beams produced by the electron gun system 3 in the field direction is present at the outer side of the support. The deflection coil systems 11, 11' and 12, 12' are surrounded by an annular core 14 of magnetizable material. Like the coils 12, 12' of the field deflection coil system, the separate coils 11, 11' of the line deflection coil system are of the saddle type having "flat" rear connection groups (= semi-saddle type).
  • Fig. 2A shows an S-r*φ diagram of the line deflection coil 11 of the construction shown in Fig. 1(S is the coordinate of the coil profile in the z-R plane; z is the direction along the longitudinal axis of the tube). There are two winding sub-assemblies 16 and 17 each comprising two facing longitudinal conductor groups, and connection groups 18 and 19, respectively, crossing at the wide end. Winding sub-assembly 16, whose narrow end has a connection group which follows a path extending substantially straight across the tube neck (which path may be slightly curved or even V-shaped in other embodiments), is arranged within sub-assembly 17. Due to this structure the coil 11 has an extension 20 with a wedge-shaped window 15. In a practical embodiment the conductor groups of the extension 20 subtend an angle α at the screen side of less than 120°, particularly between 70° and 110° an preferably between 80° and 100°, and at the screen side an angle β which is smaller than α (see Fig. 2B).
  • Pins 21, 22, 23, 24, 25, 27, 28, 30, 31, 32 are shown which, in this order, have been arranged in the winding jig during winding of the coil so as to obtain the desired structure.
  • This structure introduces a greater six-pole modulation depth than is feasible with conventional line deflection coils and a substantial six-pole field in combination with hardly any dipole field at the gun side. This is elucidated with reference to Figs. 3, 4, 5 and 6.
  • Fig. 3 shows the dipole field strength 2p along the z axis and Fig. 4 shows the six-pole field strength 6p along the z axis of a conventional line deflection coil. This six-pole modulation is not deep enough for applications within the scope of the invention.
  • Fig. 5 shows the dipole field strength 2p¹ and Fig. 6 shows the six-pole field strength 6p¹ along the z axis of a line deflection coil of the type shown in Fig. 2. A negative six-pole component extending further towards the gun is created in the gun-sided area, while the dipole contribution in this area is very small. The line coma is effectively corrected thereby. The line deflection coils according to the invention are thus generally longer than comparable conventional line deflection coils (hence the term: extension) and have a smaller distance between their gun-sided end and the electron gun than comparable conventional line deflection coils.
  • Moreover, the six-pole modulation depth (Fig. 6) is increased with respect to the conventional coil (Fig. 4). Particularly line astigmatism is effectively corrected thereby.
  • A deflection unit with line deflection coils of the type shown in Fig. 2 is not only suitable for use in a system with a display screen having a small curvature, such as display screens of the "flat square" or "super flat" type in particular, but also very suitable in a system having a display screen aspect ratio which is more extreme than 4:3 (for example 16:9) and in an in-line gun system which is arranged parallel to the short field axis. In such a "transposed scan" system the line deflection is effected parallel to the short field axis. Due to the large distance to the electron beams in the direction of the short axis it is not possible to produce the required six-pole field modulations by means of a conventional line deflection coil system so that also in that case the simultaneous correction of line coma and astigmatic errors is not possible with the correct dipole and six-pole field strength.

Claims (4)

  1. A display tube comprising an electron gun system, a longitudinal axis, a display screen and an electromagnetic deflection unit, which unit comprises a line deflection coil system having two line deflection coils facing each other, characterized in that each line deflection coil has a gun-sided, lying, lobe and a screen-sided lobe and comprises a first, inner winding sub-assembly and a second, outer winding sub-assembly, each winding sub-assembly comprising two longitudinal conductor groups arranged at both sides of the tube, which groups are connected at their screen side by a connection group crossing in the plane of the screen-sided lobe, the second sub-assembly surrounding the first sub-assembly in such a way that one single, wedge-shaped window with its narrower side at the gun side is formed between the sub-assemblies at the gun side.
  2. A display tube as claimed in Claim 1, characterized in that viewed in a plane transverse to the longitudinal tube axis the longitudinal conductor groups, arranged at both sides of the tube, of he second sub-assembly subtend an angle of less than 120° with respect to the tube axis proximate to the wider side of the wedge-shaped window.
  3. A display tube as claimed in Claim 1, characterized in that the display screen has an aspect ratio which is larger than 4:3, particularly 14:9 or 16:9.
  4. A display tube as claimed in Claim 3, in which the electron beams are produced in a plane parallel to the short axis, characterized in that the line deflection coil system is arranged for deflection along the short axis.
EP19930201210 1992-05-06 1993-04-27 Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension Expired - Lifetime EP0569079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19930201210 EP0569079B1 (en) 1992-05-06 1993-04-27 Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP92201275 1992-05-06
EP92201275 1992-05-06
EP19930201210 EP0569079B1 (en) 1992-05-06 1993-04-27 Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension

Publications (2)

Publication Number Publication Date
EP0569079A1 true EP0569079A1 (en) 1993-11-10
EP0569079B1 EP0569079B1 (en) 1996-02-28

Family

ID=26131374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930201210 Expired - Lifetime EP0569079B1 (en) 1992-05-06 1993-04-27 Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension

Country Status (1)

Country Link
EP (1) EP0569079B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757679A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays Displacement unit for colour cathode ray tube
FR2757681A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION SYSTEM FOR CATHODE RAY TUBES ADAPTED TO CONTROL THE NORTH / SOUTH GEOMETRY OF IMAGE
FR2757678A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION UNIT FOR SELF CONVERGENT CATHODIC RAY TUBE WITH SADDLE SHAPED DEVIATION COILS
FR2757680A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION UNIT FOR COLOR CATHODIC RAY TUBE HAVING SADDLE-FORMED DEVIATION COILS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464643A (en) * 1983-01-06 1984-08-07 U.S. Philips Corporation Device for displaying television pictures and deflection unit therefor
US4524340A (en) * 1983-05-02 1985-06-18 U.S. Philips Corporation Device for displaying television pictures
EP0286189A1 (en) * 1987-04-09 1988-10-12 Koninklijke Philips Electronics N.V. Display device including a combination of a display tube and a deflection unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464643A (en) * 1983-01-06 1984-08-07 U.S. Philips Corporation Device for displaying television pictures and deflection unit therefor
US4524340A (en) * 1983-05-02 1985-06-18 U.S. Philips Corporation Device for displaying television pictures
EP0286189A1 (en) * 1987-04-09 1988-10-12 Koninklijke Philips Electronics N.V. Display device including a combination of a display tube and a deflection unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757679A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays Displacement unit for colour cathode ray tube
FR2757681A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION SYSTEM FOR CATHODE RAY TUBES ADAPTED TO CONTROL THE NORTH / SOUTH GEOMETRY OF IMAGE
FR2757678A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION UNIT FOR SELF CONVERGENT CATHODIC RAY TUBE WITH SADDLE SHAPED DEVIATION COILS
FR2757680A1 (en) * 1996-12-20 1998-06-26 Thomson Tubes & Displays DEVIATION UNIT FOR COLOR CATHODIC RAY TUBE HAVING SADDLE-FORMED DEVIATION COILS
WO1998028772A1 (en) * 1996-12-20 1998-07-02 Thomson Tubes & Display, S.A. A deflection yoke with geometry distortion correction
WO1998028773A1 (en) * 1996-12-20 1998-07-02 Thomson Tubes & Displays, S.A. A saddle shaped deflection winding having a winding space within a predetermined angular range
WO1998028771A1 (en) * 1996-12-20 1998-07-02 Thomson Tubes & Displays, S.A. A saddle shaped deflection winding having winding spaces in the rear
WO1998028770A1 (en) * 1996-12-20 1998-07-02 Thomson Tubes & Displays, S.A. A saddle shaped deflection winding having a winding space
EP0853329A1 (en) * 1996-12-20 1998-07-15 THOMSON TUBES & DISPLAYS S.A. Deflection unit for self-converging cathode-ray tubes which includes deflection coils in the shape of a saddle
US6069546A (en) * 1996-12-20 2000-05-30 Thomson Tubes & Displays, S.A. Saddle shaped deflection winding having a winding space
US6084490A (en) * 1996-12-20 2000-07-04 Thomson Tubes & Displays, S.A. Saddle shaped deflection winding having a winding space within a predetermined angular range
US6150910A (en) * 1996-12-20 2000-11-21 Thomson Tubes & Displays S. A. Deflection yoke with geometry distortion correction
US6351200B1 (en) 1996-12-20 2002-02-26 Thomson Licensing S.A. Deflection yoke with geometry distortion correction

Also Published As

Publication number Publication date
EP0569079B1 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
EP0421523B1 (en) Colour display tube system with reduced spot growth
US5506469A (en) Display tube with deflection unit comprising field deflection coils of the semi-saddle type
EP0968514B1 (en) Color display device with a deflection-dependent distance between outer beams
US5418422A (en) Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
KR910001417B1 (en) Device for displaying television and deflection unit thereof
EP0507382B1 (en) Colour display tube system with reduced spot growth
EP0853329B1 (en) Deflection unit for self-converging cathode-ray tubes which includes deflection coils in the shape of a saddle
US4703232A (en) Combination of a monochrome cathode-ray tube and a deflection unit having a high resolution
US4524340A (en) Device for displaying television pictures
WO1992002033A1 (en) A deflection system with a pair of quadrupole arrangements
EP0569079B1 (en) Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
KR910001513B1 (en) Device for displaying television pictures and deflection unit therefore
WO1992002032A1 (en) A deflection system with a controlled beam spot
KR100825144B1 (en) Deflection unit for self-converging cathode-ray tubes, comprising saddle-shaped vertical deflection coils
US6411027B1 (en) Color display device having quadrupole convergence coils
US6630803B1 (en) Color display device having quadrupole convergence coils
US3588566A (en) Electromagnetic deflection yoke having bypassed winding turns
KR20010089166A (en) Color display device having quadrupole convergence coils
US6608436B1 (en) Color display device having quadrupole convergence coils
KR100201523B1 (en) Color display tube system
KR20010021441A (en) Deflection unit for cathode-ray tubes, comprising saddle-shaped vertical deflection coils
KR20010099625A (en) Color display device having quadrupole convergence coils
JPH02155151A (en) Deflection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940509

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

17Q First examination report despatched

Effective date: 19950407

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69301627

Country of ref document: DE

Date of ref document: 19960404

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021025

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030616

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST