EP0564365B1 - Process and apparatus for thermal treatment of wastes, especially solid wastes containing organic materials - Google Patents

Process and apparatus for thermal treatment of wastes, especially solid wastes containing organic materials Download PDF

Info

Publication number
EP0564365B1
EP0564365B1 EP93400857A EP93400857A EP0564365B1 EP 0564365 B1 EP0564365 B1 EP 0564365B1 EP 93400857 A EP93400857 A EP 93400857A EP 93400857 A EP93400857 A EP 93400857A EP 0564365 B1 EP0564365 B1 EP 0564365B1
Authority
EP
European Patent Office
Prior art keywords
gases
chamber
waste
zone
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400857A
Other languages
German (de)
French (fr)
Other versions
EP0564365A1 (en
Inventor
Jean-Pierre Vanderpol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laurent Bouillet Industrie SA
Original Assignee
Laurent Bouillet Industrie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laurent Bouillet Industrie SA filed Critical Laurent Bouillet Industrie SA
Publication of EP0564365A1 publication Critical patent/EP0564365A1/en
Application granted granted Critical
Publication of EP0564365B1 publication Critical patent/EP0564365B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification

Definitions

  • the invention relates to the thermal treatment of waste, in particular solid, containing organic matter.
  • the gases which are extracted from the chamber are in fact rich in combustible components and in particular in carbon monoxide, since overall the chamber operates under sub-stoichiometric conditions.
  • the gases leaving the gasification chamber are subjected, in a first phase to partial oxidation, which raises their temperature, and calories are extracted from the gases thus reheated in a bottom ash and / or liquefier. fly ash and / or in a radiation heat exchanger. A final oxidation is then carried out to remove the residual combustible components, and these gases are cooled in exchangers making it possible to produce steam or superheated water.
  • FIGS. 1 to 3 of the attached drawing are diagrams of various waste treatment installations in accordance with the invention.
  • the gasification chamber 1 consists of a boiled assembly animated by an oscillating or rotating movement which comprises, in series on the waste path, a first drying zone 1A, a second gasification zone 1B and a third combustion zone oxidant 1C.
  • first zone 1A the water contained in the waste is evaporated by means of radiative transfers (walls + gas).
  • zone 1B most of the carbon contained in the waste is gasified (70 to 80%) while injecting air or other oxidizing agent under the waste in an amount much lower than the stoichiometry.
  • zone 1C the carbon still contained in the solid materials at the entrance to this zone is oxidized to carbon dioxide by sending into this zone an amount of air or other oxidizing agent in excess of that which would theoretically be sufficient to carry out this oxidation; gas is thus produced at a temperature of 800 to 1,200 ° C.
  • This total oxidation makes it possible to obtain clinkers having a very low carbon content and having undergone a significant rise in temperature during this third phase.
  • the clinkers are extracted at the downstream end of the gasification chamber and are recovered by an extractor 6 and then sent to a liquefier / glazing unit 3 where they are brought to high temperature by the gases coming from the oxidation chamber 2.
  • a part of the combustible fractions of zone B is oxidized by the excess of oxygen coming from zone C, an overall quantity of oxygen is used sufficient to ensure gasification but lower than stoichiometry so that the temperature of the gases at the output is of the order of 650-1000 ° C, significantly lower than the stoichiometric combustion temperature (1300 ° C-1500 ° C).
  • a good sealing of the joints between the fixed and rotating parts allows control of the average leak rate.
  • the oxygen required in zones C and B is sent by means of two pressurization systems (14) and (15) to two distribution chambers located around the cell, making it possible to send air and / or l oxygen through distribution channels, in different quantities in the two zones.
  • the slightly inclined gasification chamber in this example is supplied at the upper end of the chamber with the waste coming from a hopper 7 and the gases are evacuated from the gasification chamber by a gas collection chamber 8 which, in the example of FIG. 1 surrounds the gasification chamber.
  • this gas collection chamber is situated upstream (FIG. 2) or downstream (FIG. 3) from the gasification chamber and it can then be much less bulky since it does not have to surround the gasification.
  • This collection chamber leads to a first oxidation chamber 2 supplied with oxygen and / or air so as to carry out oxidation of all or part of the combustible fractions contained in the gases while maintaining the temperature at a level of 1100 ° C. at 1300 ° C.
  • This temperature control in the first gas oxidation chamber is carried out by measuring the quantity of oxygen injected into this chamber.
  • the hot gases coming from this oxidation chamber 2 are sent to a liquefaction device 3.
  • This liquefaction is caused by heat exchanges (convection and / or radiation), which decreases the temperature of the gases which are then evacuated through a conduit to the second oxidation chamber 4.
  • the solid products to be liquefied are at a temperature lower than that of the gases, which decreases the temperature of the latter.
  • the bottom ash 6 and / or fly ash 15 introduced into the liquefaction chamber are liquefied under the action of heat transfers (convection + radiation) and flow through the bottom of the room to be evacuated and vitrified. These particles can come from origins outside the installation.
  • This liquefaction / vitrification device can be followed or replaced by a radiation chamber thus making it possible, in all cases, to lower the temperature of the gases to 800-900 ° C. before carrying out the second oxidation, a process which makes it possible to avoid excessive temperature spikes.
  • the gases coming from the first oxidation chamber and from the heat exchanges are generally incompletely burnt since the temperature is limited by limiting the injection of air and / or oxygen.
  • a second oxidation zone is therefore produced in which the necessary supplement of oxygen and / or air is introduced to complete the complete oxidation of the residual unburnt products.
  • Heat recovery is then carried out in chamber 5 by radiation in order to cool the gases to a temperature of 600 to 700 ° C.
  • the gases are finally sent through heat exchange tubes 10 to produce, for example steam, then in the purification and filtration installations 11, 12 in a manner known per se.
  • the invention is not limited to these exemplary embodiments.
  • the technique of the present invention has significant advantages over prior combustion techniques involving total oxidation in the combustion chamber, since the present invention notably makes it possible to reduce the volume of gases in the stack up to 40% less.
  • the invention also has advantages over a technique which would only involve pyrolysis in the gasification chamber.
  • zone 1B benefit from the calories released by the exothermic reaction coming from zone 1C with the lean gases from zone 1B and also benefit from the heating of the gases from zone 1B by radiation from the vault and reheating the gases of zone 1B by radiation from the roof and by mixing these gases with the hot gases coming from zone 1C, which would not be the case in the absence of zone 1C.
  • zone 1C makes it possible to complete the transformation of carbon into gas and, unlike pyrolysis systems, allows to have a very small amount of carbon in the bottom ash.
  • the present process makes it possible to obtain much lower temperatures in the final zone, thus avoiding the formation of slag which makes pyrolysis installations difficult to control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The invention relates to the thermal treatment of waste containing organic materials. The waste is gasified in a chamber (1) where the waste passes in succession through a drying zone (1A), a gasifying zone (1B) and an oxidant combustion zone (1C), the total quantity of oxidant gas injected into the chamber being substantially less than the stoichiometric quantity, the gases produced in the three zones are mixed, they are extracted and they are subjected to additional oxidation in several phases, between which several cooling processes by heat exchange are interposed. The invention applies in particular to the treatment of solid waste. <IMAGE>

Description

L'invention concerne le traitement thermique de déchets, notamment solides, contenant des matières organiques.The invention relates to the thermal treatment of waste, in particular solid, containing organic matter.

Il est connu (publication FR-A-2 234 521) de réaliser une combustion des déchets en utilisant un excès de gaz comburant par rapport à la quantité de gaz comburant qui serait théoriquement nécessaire pour transformer la totalité du carbone des matières organiques des déchets en gaz carbonique ("quantité stoéchiométrique"), cet excès de gaz comburant servant à la fois à la combustion et au contrôle des températures, mais les quantités de gaz comburant nécessaires conduisent à des débits de gaz importants, ce qui a pour effet de nécessiter des installations de traitement de gaz importantes et de diminuer le rendement thermique en raison des calories consommées pour le réchauffage du gaz comburant.It is known (publication FR-A-2 234 521) to carry out a combustion of the waste by using an excess of oxidizing gas relative to the quantity of oxidizing gas which would theoretically be necessary to transform all the carbon of the organic materials of the waste into carbon dioxide ("stoichiometric quantity"), this excess of oxidizing gas serving both for combustion and for controlling temperatures, but the quantities of oxidizing gas required lead to significant gas flow rates, which has the effect of requiring significant gas processing facilities and decrease thermal efficiency due to the calories consumed for heating the oxidant gas.

La présente invention a pour but de fournir un procédé permettant de réaliser un traitement thermique des déchets:

  • 1) qui minimise le volume de gaz produits,
  • 2) qui maximise le rendement thermique,
  • 3) qui fournit l'énergie nécessaire pour traiter éventuellement les résidus minéraux du traitement thermique.
The object of the present invention is to provide a method for performing a thermal treatment of waste:
  • 1) which minimizes the volume of gas produced,
  • 2) which maximizes thermal efficiency,
  • 3) which provides the energy necessary to possibly treat the mineral residues from the heat treatment.

Selon l'invention :

  • on réalise la combustion dans une chambre de gazéification oscillante ou tournante où les déchets traversent successivement une première zone ou l'eau contenue dans les déchets s'évapore sous l'action du rayonnement des parois de la chambre et de la chaleur des gaz ambiants, une deuxième zone où l'on gazéifie la majeure partie du carbone contenu dans les déchets tout en injectant sous les déchets un gaz comburant en quantité très inférieure à la quantité stoéchiométrique, de façon à produire des gaz riches en imbrûlés (oxyde de carbone) à une température de 550° C à 700° C, et une troisième zone dans laquelle on injecte un gaz comburant en excès par rapport à la quantité qui serait théoriquement nécessaire pour transformer la totalité du carbone encore contenu dans les déchets solides à l'entrée de cette zone et de façon à produire des gaz à une température de 800 à 1 200°C, la quantité totale de gaz comburant injectée dans la chambre étant sensiblement inférieure à la quantité stoechiométrique ;
  • on mélange les gaz produits dans les trois zones, on les extrait de la chambre, on les soumet à une oxydation complémentaire en plusieurs phases entre lesquelles on intercale plusieurs refroidissements par échanges thermiques.
According to the invention:
  • combustion is carried out in an oscillating or rotating gasification chamber where the waste successively passes through a first zone or the water contained in the waste evaporates under the action of the radiation from the walls of the chamber and the heat of the ambient gases, a second zone where most of the carbon contained in the waste is gasified while injecting an oxidizing gas under the waste in an amount much lower than the stoichiometric amount, so as to produce gases rich in unburnt (carbon monoxide) at a temperature of 550 ° C. to 700 ° C., and a third zone into which an oxidizing gas is injected in excess in relation to the quantity which would theoretically be necessary to transform all of the carbon still contained in the solid waste at the entry of this area and in order to produce gases at a temperature of 800 to 1,200 ° C, the total amount of gas oxidizer injected into the chamber being substantially less than the stoichiometric amount;
  • the gases produced in the three zones are mixed, they are extracted from the chamber, they are subjected to an additional oxidation in several phases between which several cooling by heat exchanges are interposed.

Les gaz que l'on extrait de la chambre sont en effet riches en composants combustibles et notamment en monoxyde de carbone, puisque globalement la chambre fonctionne dans des conditions sous-stoéchiométriques.The gases which are extracted from the chamber are in fact rich in combustible components and in particular in carbon monoxide, since overall the chamber operates under sub-stoichiometric conditions.

Dans une réalisation préférée, on soumet les gaz qui sortent de la chambre de gazéification, dans une première phase à une oxydation partielle, ce qui élève leur température, et on extrait des calories des gaz ainsi réchauffés dans un liquéfacteur de mâchefers et/ou de cendres volantes et/ou dans un échangeur de chaleur par radiation. On procède ensuite à une oxydation finale pour éliminer les composants combustibles résiduels, et on refroidit ces gaz dans des échangeurs permettant de produire de la vapeur ou de l'eau surchauffée.In a preferred embodiment, the gases leaving the gasification chamber are subjected, in a first phase to partial oxidation, which raises their temperature, and calories are extracted from the gases thus reheated in a bottom ash and / or liquefier. fly ash and / or in a radiation heat exchanger. A final oxidation is then carried out to remove the residual combustible components, and these gases are cooled in exchangers making it possible to produce steam or superheated water.

On décrira ci-après un exemple de mise en oeuvre du procédé de l'invention, en référence aux figures 1 à 3 du dessin joint qui sont des schémas de différentes installations de traitement de déchets conformes à l'invention.An example of implementation of the method of the invention will be described below, with reference to FIGS. 1 to 3 of the attached drawing which are diagrams of various waste treatment installations in accordance with the invention.

Les installations comprennent chacune, en série :

  • une chambre 1 de gazéification ;
  • une première chambre 2 d'oxydation de gaz ;
  • un échangeur de chaleur 3 destiné à liquéfier puis vitrifier des résidus (mâchefers et/ou des cendres volantes) ;
  • le cas échéant un récupérateur de chaleur en complément ou substitution du liquéfacteur 3,
  • une chambre 4 d'oxydation finale des gaz ;
  • un échangeur de chaleur 5 par radiation avec des tubes d'eau situés sur les parois ;
  • un échangeur 10 à faisceau ;
  • un système de neutralisation/filtration des gaz 11 et 12.
The installations each include, in series:
  • a gasification chamber 1;
  • a first gas oxidation chamber 2;
  • a heat exchanger 3 intended to liquefy and then vitrify residues (bottom ash and / or fly ash);
  • where appropriate, a heat recovery unit in addition to or substitution of the liquefier 3,
  • a chamber 4 for final gas oxidation;
  • a heat exchanger 5 by radiation with water tubes located on the walls;
  • a beam exchanger 10;
  • a gas neutralization / filtration system 11 and 12.

La chambre de gazéification 1 est constituée d'un ensemble chaudronné animé d'un mouvement oscillant ou tournant qui comprend, en série sur le parcours des déchets, une première zone de séchage 1A, une deuxième zone de gazéification 1B et une troisième zone de combustion oxydante 1C. Dans la première zone 1A, on évapore l'eau contenue dans les déchets grâce aux transferts radiatifs (parois + gaz). Dans la zone 1B, on gazéifie la plus grande partie du carbone contenu dans les déchets (70 à 80 %) tout en injectant sous les déchets de l'air ou autre agent comburant en quantité très inférieure à la stoéchiométrie. Ce qui produit des gaz riches en imbrûlés à une température de 550 °C à 700° C ; cette zone réductrice bénéficie des apports de chaleur radiatifs et convectifs de la zone 1C et de ceux produits par l'oxydation sous voûte d'une partie des imbrûlés produits en 1B par l'excès d'oxygène ou autre agent comburant provenant de la zone 1C.The gasification chamber 1 consists of a boiled assembly animated by an oscillating or rotating movement which comprises, in series on the waste path, a first drying zone 1A, a second gasification zone 1B and a third combustion zone oxidant 1C. In the first zone 1A, the water contained in the waste is evaporated by means of radiative transfers (walls + gas). In zone 1B, most of the carbon contained in the waste is gasified (70 to 80%) while injecting air or other oxidizing agent under the waste in an amount much lower than the stoichiometry. This produces gases rich in unburnt at a temperature of 550 ° C to 700 ° C; this reducing zone benefits from the radiative and convective heat inputs from zone 1C and from those produced by the oxidation in the vault of part of the unburnt products produced in 1B by the excess of oxygen or other oxidizing agent originating from zone 1C .

Dans la zone 1C, on oxyde en gaz carbonique le carbone encore contenu dans les matières solides à l'entrée de cette zone en envoyant dans cette zone une quantité d'air ou autre agent comburant en excès par rapport à celle qui serait théoriquement suffisante pour réaliser cette oxydation ; on produit ainsi du gaz à une température de 800 à 1 200° C. Cette oxydation totale permet d'obtenir des mâchefers ayant une très faible teneur en carbone et ayant subi une élévation sensible de température durant cette troisième phase.In zone 1C, the carbon still contained in the solid materials at the entrance to this zone is oxidized to carbon dioxide by sending into this zone an amount of air or other oxidizing agent in excess of that which would theoretically be sufficient to carry out this oxidation; gas is thus produced at a temperature of 800 to 1,200 ° C. This total oxidation makes it possible to obtain clinkers having a very low carbon content and having undergone a significant rise in temperature during this third phase.

Les mâchefers sont extraits à l'extrémité aval de la chambre de gazéification et sont récupérés par un extracteur 6 et ensuite envoyés dans un liquéfacteur/vitrificateur 3 où ils sont portés à haute température par les gaz provenant de la chambre d'oxydation 2.
Une partie des fractions combustibles de la zone B est oxydée par l'excès d'oxygène provenant de la zone C, On utilise une quantité globale d'oxygène suffisante pour assurer la gazéification mais inférieure à la stoéchiométrie de sorte que la température des gaz à la sortie est de l'ordre de 650-1000°C, sensiblement inférieure à la température de combustion stoéchiométrique (1 300°C-1 500°C). Une bonne étanchéité des joints entre les parties fixes et tournantes permet un contrôle du taux de fuite moyen.
The clinkers are extracted at the downstream end of the gasification chamber and are recovered by an extractor 6 and then sent to a liquefier / glazing unit 3 where they are brought to high temperature by the gases coming from the oxidation chamber 2.
A part of the combustible fractions of zone B is oxidized by the excess of oxygen coming from zone C, an overall quantity of oxygen is used sufficient to ensure gasification but lower than stoichiometry so that the temperature of the gases at the output is of the order of 650-1000 ° C, significantly lower than the stoichiometric combustion temperature (1300 ° C-1500 ° C). A good sealing of the joints between the fixed and rotating parts allows control of the average leak rate.

L'oxygène nécessaire dans les zones C et B est envoyée au moyen de deux systèmes de mise en pression (14) et (15) dans deux chambres de distribution situées autour de la cellule, permettant d'envoyer l'air et/ou l'oxygène à travers des canaux de distribution, en quantité différente dans les deux zones.The oxygen required in zones C and B is sent by means of two pressurization systems (14) and (15) to two distribution chambers located around the cell, making it possible to send air and / or l oxygen through distribution channels, in different quantities in the two zones.

La chambre de gazéification légèrement inclinée dans cet exemple, est alimentée à l'extrémité haute de la chambre avec les déchets provenant d'une trémie 7 et les gaz sont évacués de la chambre de gazéification par une chambre 8 de collecte de gaz qui, dans l'exemple de la figure 1, entoure la chambre de gazéification. Dans des variantes, cette chambre de collecte des gaz est située en amont (figure 2) ou en aval (figure 3) de la chambre de gazéification et elle peut alors être beaucoup moins volumineuse puisqu'elle n'a pas à entourer la chambre de gazéification. Cette chambre de collecte conduit à une première chambre d'oxydation 2 alimentée en oxygène et/ou en air de façon à réaliser une oxydation de tout ou partie des fractions combustibles contenues dans les gaz en maintenant la température à un niveau de 1 100° C à 1 300° C. Ce contrôle de température dans la première chambre d'oxydation des gaz s'effectue en dosant la quantité d'oxygène injectée dans cette chambre. Les gaz chauds provenant de cette chambre d'oxydation 2 sont envoyés dans un dispositif de liquéfaction 3. Cette liquéfaction est provoquée par des échanges thermiques (convection et/ou radiation), ce qui diminue la température des gaz qui sont ensuite évacués par un conduit vers la deuxième chambre d'oxydation 4. Les produits solides à liquéfier sont à une température inférieure à celle des gaz ce qui diminue la température de ces derniers. Si on le désire, on dispose un récupérateur thermique destiné à abaisser la température des gaz à un niveau suffisant avant la phase d'oxydation finale. en complément ou en substitution du liquéfacteur.The slightly inclined gasification chamber in this example is supplied at the upper end of the chamber with the waste coming from a hopper 7 and the gases are evacuated from the gasification chamber by a gas collection chamber 8 which, in the example of FIG. 1 surrounds the gasification chamber. In variants, this gas collection chamber is situated upstream (FIG. 2) or downstream (FIG. 3) from the gasification chamber and it can then be much less bulky since it does not have to surround the gasification. This collection chamber leads to a first oxidation chamber 2 supplied with oxygen and / or air so as to carry out oxidation of all or part of the combustible fractions contained in the gases while maintaining the temperature at a level of 1100 ° C. at 1300 ° C. This temperature control in the first gas oxidation chamber is carried out by measuring the quantity of oxygen injected into this chamber. The hot gases coming from this oxidation chamber 2 are sent to a liquefaction device 3. This liquefaction is caused by heat exchanges (convection and / or radiation), which decreases the temperature of the gases which are then evacuated through a conduit to the second oxidation chamber 4. The solid products to be liquefied are at a temperature lower than that of the gases, which decreases the temperature of the latter. If desired, there is a heat recuperator intended to lower the temperature of the gases to a sufficient level before the final oxidation phase. in addition to or in substitution for the liquefier.

Les mâchefers 6 et/ou cendres volantes 15 introduits dans la chambre de liquéfaction sont liquéfiés sous l'action des transferts thermiques (convection + radiation) et s'écoulent par le bas de la chambre pour être évacués et vitrifiés. Ces particules peuvent provenir d'origines extérieures à l'installation.The bottom ash 6 and / or fly ash 15 introduced into the liquefaction chamber are liquefied under the action of heat transfers (convection + radiation) and flow through the bottom of the room to be evacuated and vitrified. These particles can come from origins outside the installation.

Ce dispositif de liquéfaction/vitrification peut être suivi ou remplacé par une chambre de radiation permettant ainsi, dans tous les cas, d'abaisser la température des gaz à 800-900° C avant d'effectuer la deuxième oxydation, processus qui permet d'éviter les pointes excessives de température.This liquefaction / vitrification device can be followed or replaced by a radiation chamber thus making it possible, in all cases, to lower the temperature of the gases to 800-900 ° C. before carrying out the second oxidation, a process which makes it possible to avoid excessive temperature spikes.

Les gaz provenant de la première chambre d'oxydation et des échanges thermiques (liquéfaction et/ou chambre de radiation) sont en général incomplètement brûlés puisqu'on limite la température en limitant l'injection d'air et/ou d'oxygène. On réalise donc une deuxième zone d'oxydation où l'on introduit le complément nécessaire d'oxygène et/ou d'air pour achever l'oxydation complète des imbrûlés résiduels. On réalise ensuite dans la chambre 5 une récupération thermique par radiation afin de refroidir les gaz jusqu'à une température de 600 à 700° C.The gases coming from the first oxidation chamber and from the heat exchanges (liquefaction and / or radiation chamber) are generally incompletely burnt since the temperature is limited by limiting the injection of air and / or oxygen. A second oxidation zone is therefore produced in which the necessary supplement of oxygen and / or air is introduced to complete the complete oxidation of the residual unburnt products. Heat recovery is then carried out in chamber 5 by radiation in order to cool the gases to a temperature of 600 to 700 ° C.

Les gaz sont enfin envoyés à travers des tubes d'échange de chaleur 10 pour produire par exemple de la vapeur, puis dans les installations d'épuration et de filtration 11, 12 de façon en soi connue.The gases are finally sent through heat exchange tubes 10 to produce, for example steam, then in the purification and filtration installations 11, 12 in a manner known per se.

L'invention n'est pas limitée à ces exemples de réalisation.The invention is not limited to these exemplary embodiments.

Il est en particulier prévu, dans des variantes, d'utiliser plusieurs chambres d'oxydation avant la chambre d'oxydation finale.It is in particular provided, in variants, to use several oxidation chambers before the final oxidation chamber.

La technique de la présente invention présente des avantages significatifs sur les techniques antérieures de combustion impliquant une oxydation totale dans la chambre de combustion, puisque la présente invention permet notamment de réduire le volume des gaz à la cheminée jusqu'à 40 % de moins.The technique of the present invention has significant advantages over prior combustion techniques involving total oxidation in the combustion chamber, since the present invention notably makes it possible to reduce the volume of gases in the stack up to 40% less.

L'invention présente également des avantages par rapport à une technique qui impliquerait seulement une pyrolyse dans la chambre de gazéification.The invention also has advantages over a technique which would only involve pyrolysis in the gasification chamber.

En effet, les conditions de pyrolyse dans la zone 1B bénéficient des calories dégagées par la réaction exothermique provenant de la zone 1C avec les gaz pauvres de la zone 1B et bénéficient également du réchauffage des gaz de la zone 1B par la radiation de la voûte et du réchauffage des gaz de la zone 1B par la radiation de la voûte et par le mélange de ces gaz avec les gaz chauds provenant de la zone 1C, ce qui ne serait pas le cas en l'absence de la zone 1C.In fact, the pyrolysis conditions in zone 1B benefit from the calories released by the exothermic reaction coming from zone 1C with the lean gases from zone 1B and also benefit from the heating of the gases from zone 1B by radiation from the vault and reheating the gases of zone 1B by radiation from the roof and by mixing these gases with the hot gases coming from zone 1C, which would not be the case in the absence of zone 1C.

Par ailleurs, la zone 1C permet d'achever la transformation du carbone en gaz et permet contrairement aux systèmes de pyrolyse d'avoir une très faible quantité de carbone dans les mâchefers.In addition, zone 1C makes it possible to complete the transformation of carbon into gas and, unlike pyrolysis systems, allows to have a very small amount of carbon in the bottom ash.

Enfin, contrairement à la pyrolyse, le présent procédé permet d'obtenir en zone finale des températures beaucoup plus basses évitant ainsi de former un laitier qui rend difficilement maîtrisable les installations de pyrolyse.Finally, unlike pyrolysis, the present process makes it possible to obtain much lower temperatures in the final zone, thus avoiding the formation of slag which makes pyrolysis installations difficult to control.

Claims (14)

  1. A method of thermal treatment for waste, in particular solid waste, containing organic matter, in which method: the waste is gasified in an oscillating or rotary chamber inside which the waste successively passes through a first zone in which the water contained in the waste evaporates under the action of radiation from the walls of the chamber, and of heat from the ambient gases, and a second zone in which a large portion of the carbon contained in the waste is gasified while an oxidizing gas is being injected under the waste, said method being characterized in that the oxidizing gas is in a quantity that is much lower than the stoichiometric quantity, so as to produce gases that are rich in unburnt components (carbon monoxide) at a temperature lying in the range 550°C to 700°C, the waste further passing through a third zone into which an oxidizing gas is injected in excess of the quantity that would theoretically be necessary to transform all of the carbon still contained in the solid waste at the input of the zone, and so as to produce gases at a temperature lying in the range 800°C to 1,200°C, the total quantity of oxidizing gas injected into the chamber being substantially lower than the stoichiometric quantity; and
       the gases produced in the three zones are mixed together, they are extracted from the chamber, and they are subjected to complementary oxidation in a plurality of stages interspersed with cooling stages during which they are cooled by heat exchange.
  2. A method according to claim 1, characterized in that the quantity of oxidizing gas sent to said second zone of the gasification chamber lies in the range 40% to 60% of said stoichiometric quantity.
  3. A method according to claim 1 or 2, characterized in that in the range 70% to 80% of the carbon contained in the waste is gasified in said second zone.
  4. A method according to any one of claims 1 to 3, characterized in that the quantity of oxidizing gas sent to said third zone exceeds by in the range 25% to 40% the quantity required to transform all of the carbon contained in the solid waste at the input of the zone into carbon dioxide.
  5. A method according to any one of claims 1 to 4, characterized in that the operating conditions in the gasification chamber are set so that the gases extracted from the chamber are at a temperature lying in the range 650°C to 1,000°C.
  6. A method according to any one of claims 1 to 5, characterized in that air is used as the oxidizing gas.
  7. A method according to any one of claims 1 to 6, characterized in that the gases output by the gasification chamber are oxidized in part during a first stage, thereby increasing their temperature, heat is extracted from the heated gases, final oxidation is performed so as to eliminate the residual combustible components, and the gases are cooled in heat exchangers enabling steam or super-heated water to be produced.
  8. A method according to claim 7, characterized in that the oxidation conditions during the first oxidation stage are set so as to maintain the temperature of the gases in the range 1,100°C to 1,300°C.
  9. A method according to claim 7 or 8, characterized in that the temperature of the gases is lowered to in the range 800°C to 900°C before a second oxidation stage is performed.
  10. A method according to any one of claims 7 to 9, characterized in that heat is extracted from the gases from the first oxidation stage in a radiation heat exchanger.
  11. A method according to any one of claims 7 to 10, characterized in that the gases from said first oxidation are used for liquefying clinker and/or fly ash.
  12. An installation for implementing a method according to any one of claims 1 to 11, the installation including an oscillating or rotary gasification chamber (1) fed with waste and inside which the following zones are constituted in series along the path of the waste: a drying first zone (1A), a gasification second zone (1B), and an oxidizing combustion third zone (1C), means (14, 15) for injecting an oxidizing gas under the waste in the second and third zones (1B and 1C), means (8) for collecting the gases from the chamber, a first oxidation chamber (2) fed with oxidizing gas, receiving the collected gases, and oxidizing them in part, means (3) for performing heat exchange with the oxidized gases, and a final oxidation chamber (4) fed with as much extra oxidizing gas as is necessary to complete the oxidation of the residual unburnt components.
  13. An installation according to claim 12, characterized in that the means (8) for collecting the gases from the gasification chamber comprise a collecting chamber (8) placed upstream from, downstream from, or around the gasification chamber.
  14. An installation according to claim 12 or 13, characterized in that said final oxidation chamber (4) is followed by a radiation heat-recovery chamber (5).
EP93400857A 1992-04-02 1993-04-02 Process and apparatus for thermal treatment of wastes, especially solid wastes containing organic materials Expired - Lifetime EP0564365B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR929204009A FR2689617B1 (en) 1992-04-02 1992-04-02 PROCESS AND DEVICE FOR THE HEAT TREATMENT OF WASTE, ESPECIALLY SOLID, CONTAINING ORGANIC MATERIAL.
FR9204009 1992-04-02

Publications (2)

Publication Number Publication Date
EP0564365A1 EP0564365A1 (en) 1993-10-06
EP0564365B1 true EP0564365B1 (en) 1995-07-26

Family

ID=9428390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400857A Expired - Lifetime EP0564365B1 (en) 1992-04-02 1993-04-02 Process and apparatus for thermal treatment of wastes, especially solid wastes containing organic materials

Country Status (4)

Country Link
EP (1) EP0564365B1 (en)
AT (1) ATE125611T1 (en)
DE (1) DE69300290T2 (en)
FR (1) FR2689617B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179149C (en) * 1995-11-28 2004-12-08 株式会社荏原制作所 Method and apparatus for treating wastes by gasification
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
FR2754589B1 (en) * 1996-10-16 1998-11-06 Soc Et Et Realisations En Prod METHOD AND PLANT FOR HEAT TREATMENT OF WASTE
ATE217699T1 (en) * 1997-10-13 2002-06-15 Alstom METHOD FOR PROCESSING SLAG AND/OR ASH FROM THE THERMAL TREATMENT OF WASTE
EP1087181A1 (en) * 1999-09-22 2001-03-28 von Görtz &amp; Finger Techn. Entwicklungs Ges.m.b.H. Spiral tube gasifier with circulating filter
US20040031523A1 (en) * 2000-03-27 2004-02-19 Xiangwei Zeng Protection device in event of pipe rupture
ITRM20040324A1 (en) * 2004-06-30 2004-09-30 Ct Sviluppo Materiali Spa APPARATUS FOR WASTE DISPOSAL.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445141A (en) * 1965-08-20 1966-07-08 Buckau Wolf Maschf R Rotary drum for the incineration of industrial waste
FR2273236A2 (en) * 1974-05-29 1975-12-26 Heliox Oscillating drum refuse incinerator - has air entry channels behind refractory lining composed of concrete blocks
FR2234521A1 (en) * 1973-06-20 1975-01-17 Heliox Oscillating drum refuse incinerator - has air entry channels behind refractory lining composed of concrete blocks
DE3101244A1 (en) * 1981-01-16 1982-08-26 Von Roll AG, 4563 Gerlafingen Combined combustion and smelting furnace for solid, pasty and liquid waste materials
JPS61211614A (en) * 1985-03-18 1986-09-19 Nippon Kokan Kk <Nkk> Polymeric waste incinerator
US4922841A (en) * 1988-09-14 1990-05-08 Kent John M Method and apparatus for using hazardous waste to form non-hazardous aggregate

Also Published As

Publication number Publication date
DE69300290T2 (en) 1995-12-21
FR2689617B1 (en) 1994-07-01
DE69300290D1 (en) 1995-08-31
EP0564365A1 (en) 1993-10-06
ATE125611T1 (en) 1995-08-15
FR2689617A1 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
RU2287010C2 (en) Environmental safe process for obtaining energy from coal (options)
CA2730164C (en) Process and manufacturing facility for cement clinker
FR2581380A1 (en) DESTRUCTION OF WASTE
EP0012091A1 (en) Method and installation for treating industrial waste
ES2132638T3 (en) PROCEDURE FOR THE GENERATION OF A FUEL GAS.
WO2009156614A1 (en) Method for manufacturing a cement clinker, and cement clinker manufacturing facility
DK159291B (en) WASTE DISPOSAL PROCEDURES, ISRAEL WASTE WASTE
EP0564365B1 (en) Process and apparatus for thermal treatment of wastes, especially solid wastes containing organic materials
NO310989B1 (en) Process and apparatus for the recovery and utilization of gas from waste materials
FR2571978A1 (en) METHOD AND INSTALLATION FOR THE CLEANING OF WASTE GASES FROM THE TREATMENT OF INDUSTRIAL OR HOUSEHOLD WASTE.
GB2502115A (en) Waste processing with soot reduction
JPS581791A (en) Coal gasification
EP1077248B1 (en) Process and plant for the production of combustible gases from a feedstock rich in organic material
RU2120460C1 (en) Method and apparatus for producing combustible gases from solid fuel, method and apparatus for treating raw phosphates
JP2660184B2 (en) Method for producing thermal energy from waste, especially garbage
BE501930A (en)
CA2240532A1 (en) Method and plant for treating solid waste products by thermolysis
FR2577034A1 (en) METHOD AND DEVICE FOR THE PRODUCTION AND RECOVERY OF HEAT
FR2850733A1 (en) Vapor generator for actuating revolving machine e.g. steam turbine, has one combustion hearth with boiler and vaporization zone, and another hearth with another boiler and over heat zone
BE1014956A6 (en) Various aspects of a process for producing energy and fuel from municipal refuse, e.g. a screw press for refuse compaction
JP2010077394A (en) Method and device for thermal treatment of waste material
EP0089329B1 (en) Process and apparatus for the pressure-gasification of coal
FR2977928A1 (en) Waste incinerator, has heat recovery unit arranged between waste combustion unit and smoke treatment unit, and smoke recycling unit for reinjecting specific percent of smoke leaving heat recovery unit into combustion unit
CZ283962B6 (en) Process of producing gases and apparatus for making the same
JPH07198117A (en) Multistage high-temperature combustion method and equipment of waste having inactive component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT NL

17P Request for examination filed

Effective date: 19931108

17Q First examination report despatched

Effective date: 19940919

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL

REF Corresponds to:

Ref document number: 125611

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69300290

Country of ref document: DE

Date of ref document: 19950831

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030313

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030429

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030723

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040402

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

BERE Be: lapsed

Owner name: LAURENT *BOUILLET INGENIERIE

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050402