EP0561600A2 - Wasser-in-Öl-Emulsionen - Google Patents
Wasser-in-Öl-Emulsionen Download PDFInfo
- Publication number
- EP0561600A2 EP0561600A2 EP93301965A EP93301965A EP0561600A2 EP 0561600 A2 EP0561600 A2 EP 0561600A2 EP 93301965 A EP93301965 A EP 93301965A EP 93301965 A EP93301965 A EP 93301965A EP 0561600 A2 EP0561600 A2 EP 0561600A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- emulsion
- component
- weight
- substituted
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 98
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 99
- 150000001412 amines Chemical class 0.000 claims abstract description 86
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229920000098 polyolefin Polymers 0.000 claims abstract description 45
- 125000001424 substituent group Chemical group 0.000 claims abstract description 42
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 32
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 25
- 239000000446 fuel Substances 0.000 claims abstract description 23
- 239000012074 organic phase Substances 0.000 claims abstract description 16
- 239000008346 aqueous phase Substances 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 230000001804 emulsifying effect Effects 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 91
- 229920000768 polyamine Polymers 0.000 claims description 66
- 125000004432 carbon atom Chemical group C* 0.000 claims description 47
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 36
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical group OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 35
- 150000003839 salts Chemical class 0.000 claims description 31
- 150000001336 alkenes Chemical group 0.000 claims description 21
- 125000002947 alkylene group Chemical group 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 19
- 239000003513 alkali Substances 0.000 claims description 13
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 12
- 239000003607 modifier Substances 0.000 claims description 12
- 239000011800 void material Substances 0.000 claims description 9
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 8
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 8
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 8
- 229960002887 deanol Drugs 0.000 claims description 8
- 239000012972 dimethylethanolamine Substances 0.000 claims description 8
- 229920001083 polybutene Polymers 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 7
- 239000004094 surface-active agent Substances 0.000 claims description 7
- 150000003512 tertiary amines Chemical class 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 239000007762 w/o emulsion Substances 0.000 claims description 6
- 230000001235 sensitizing effect Effects 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229920001519 homopolymer Polymers 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 claims description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 3
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims description 3
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 claims description 3
- 239000000295 fuel oil Substances 0.000 claims description 3
- 125000005702 oxyalkylene group Chemical class 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 235000010344 sodium nitrate Nutrition 0.000 claims description 3
- 239000004317 sodium nitrate Substances 0.000 claims description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 3
- 239000002562 thickening agent Substances 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims 1
- 230000008719 thickening Effects 0.000 claims 1
- 239000002360 explosive Substances 0.000 abstract description 45
- -1 epoxides Chemical class 0.000 description 70
- 239000003921 oil Substances 0.000 description 65
- 235000019198 oils Nutrition 0.000 description 46
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 42
- 239000011572 manganese Substances 0.000 description 33
- 238000000034 method Methods 0.000 description 31
- 229910052757 nitrogen Inorganic materials 0.000 description 28
- 239000002253 acid Substances 0.000 description 21
- 239000000376 reactant Substances 0.000 description 20
- 125000003118 aryl group Chemical group 0.000 description 19
- 229920002367 Polyisobutene Polymers 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- 239000011541 reaction mixture Substances 0.000 description 16
- 239000012071 phase Substances 0.000 description 14
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 125000000217 alkyl group Chemical group 0.000 description 13
- 150000002148 esters Chemical class 0.000 description 13
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 13
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 13
- 239000000178 monomer Substances 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 11
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 11
- 150000008064 anhydrides Chemical class 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000001993 wax Substances 0.000 description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 10
- 239000000654 additive Substances 0.000 description 10
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 10
- 229910052801 chlorine Inorganic materials 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 125000000623 heterocyclic group Chemical group 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000002480 mineral oil Substances 0.000 description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 description 9
- 150000001408 amides Chemical class 0.000 description 8
- 238000007664 blowing Methods 0.000 description 8
- 235000010446 mineral oil Nutrition 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000007127 saponification reaction Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 229920001281 polyalkylene Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001339 alkali metal compounds Chemical class 0.000 description 4
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229940012017 ethylenediamine Drugs 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000003949 imides Chemical class 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 150000004885 piperazines Chemical class 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical class NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical class C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 150000002780 morpholines Chemical class 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 150000002924 oxiranes Chemical class 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 235000011044 succinic acid Nutrition 0.000 description 3
- 125000001302 tertiary amino group Chemical group 0.000 description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 3
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CYOIAXUAIXVWMU-UHFFFAOYSA-N 2-[2-aminoethyl(2-hydroxyethyl)amino]ethanol Chemical compound NCCN(CCO)CCO CYOIAXUAIXVWMU-UHFFFAOYSA-N 0.000 description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical group C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 2
- 239000013538 functional additive Substances 0.000 description 2
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- CWLKGDAVCFYWJK-UHFFFAOYSA-N m-Aminophenol Natural products NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N ortho-hydroxyaniline Natural products NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 150000003235 pyrrolidines Chemical class 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical class NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- 150000004886 thiomorpholines Chemical class 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- MMWRGWQTAMNAFC-UHFFFAOYSA-N 1,2-dihydropyridine Chemical class C1NC=CC=C1 MMWRGWQTAMNAFC-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical group CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 1
- WTGGXKMCUUXBQR-UHFFFAOYSA-N 1-butyl-2-(4-methylphenyl)hydrazine Chemical compound CCCCNNC1=CC=C(C)C=C1 WTGGXKMCUUXBQR-UHFFFAOYSA-N 0.000 description 1
- UUHXCOGOBLTVJX-UHFFFAOYSA-N 1-cyclohexyl-2-phenylhydrazine Chemical compound C1CCCCC1NNC1=CC=CC=C1 UUHXCOGOBLTVJX-UHFFFAOYSA-N 0.000 description 1
- MNZGWEVNYBSBHA-UHFFFAOYSA-N 1-ethyl-2-phenylhydrazine Chemical compound CCNNC1=CC=CC=C1 MNZGWEVNYBSBHA-UHFFFAOYSA-N 0.000 description 1
- HYWXQFOMMUKUAV-UHFFFAOYSA-N 1-methyl-1-(4-nitrophenyl)hydrazine Chemical compound CN(N)C1=CC=C([N+]([O-])=O)C=C1 HYWXQFOMMUKUAV-UHFFFAOYSA-N 0.000 description 1
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- MGUMZJAQENFQKN-UHFFFAOYSA-N 2-(cyclohexylamino)ethanol Chemical compound OCCNC1CCCCC1 MGUMZJAQENFQKN-UHFFFAOYSA-N 0.000 description 1
- KKFDCBRMNNSAAW-UHFFFAOYSA-N 2-(morpholin-4-yl)ethanol Chemical compound OCCN1CCOCC1 KKFDCBRMNNSAAW-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- VARKIGWTYBUWNT-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanol Chemical compound OCCN1CCN(CCO)CC1 VARKIGWTYBUWNT-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- HFACYWDPMNWMIW-UHFFFAOYSA-N 2-cyclohexylethanamine Chemical compound NCCC1CCCCC1 HFACYWDPMNWMIW-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- XOTLKHMCKYDSBU-UHFFFAOYSA-N 2-ethylpiperazine-1,4-diamine Chemical compound CCC1CN(N)CCN1N XOTLKHMCKYDSBU-UHFFFAOYSA-N 0.000 description 1
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 description 1
- YHFYRVZIONNYSM-UHFFFAOYSA-N 3-aminocyclopentan-1-ol Chemical compound NC1CCC(O)C1 YHFYRVZIONNYSM-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- KMVPXBDOWDXXEN-UHFFFAOYSA-N 4-nitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1 KMVPXBDOWDXXEN-UHFFFAOYSA-N 0.000 description 1
- 125000004070 6 membered heterocyclic group Chemical group 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- DJEQZVQFEPKLOY-UHFFFAOYSA-N N,N-dimethylbutylamine Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000765083 Ondina Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000006294 amino alkylene group Chemical group 0.000 description 1
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- UCXOJWUKTTTYFB-UHFFFAOYSA-N antimony;heptahydrate Chemical compound O.O.O.O.O.O.O.[Sb].[Sb] UCXOJWUKTTTYFB-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 150000008072 azecines Chemical class 0.000 description 1
- 150000001538 azepines Chemical class 0.000 description 1
- 150000001539 azetidines Chemical class 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 150000004916 azocines Chemical class 0.000 description 1
- 150000007982 azolidines Chemical class 0.000 description 1
- 150000008068 azonines Chemical class 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- OTBHHUPVCYLGQO-UHFFFAOYSA-N bis(3-aminopropyl)amine Chemical compound NCCCNCCCN OTBHHUPVCYLGQO-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012174 chinese wax Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- PSVJDFLPZZXFDU-UHFFFAOYSA-N cyclohexen-1-amine Chemical class NC1=CCCCC1 PSVJDFLPZZXFDU-UHFFFAOYSA-N 0.000 description 1
- 150000003946 cyclohexylamines Chemical class 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical class NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- OQGVPWWLCUMRCI-UHFFFAOYSA-N cyclopenten-1-amine Chemical class NC1=CCCC1 OQGVPWWLCUMRCI-UHFFFAOYSA-N 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical group [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910001959 inorganic nitrate Inorganic materials 0.000 description 1
- 229910001484 inorganic perchlorate Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002518 isoindoles Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- ITZPOSYADVYECJ-UHFFFAOYSA-N n'-cyclohexylpropane-1,3-diamine Chemical compound NCCCNC1CCCCC1 ITZPOSYADVYECJ-UHFFFAOYSA-N 0.000 description 1
- YWWNNLPSZSEZNZ-UHFFFAOYSA-N n,n-dimethyldecan-1-amine Chemical compound CCCCCCCCCCN(C)C YWWNNLPSZSEZNZ-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- LSICDRUYCNGRIF-UHFFFAOYSA-N n,n-dimethylheptan-1-amine Chemical compound CCCCCCCN(C)C LSICDRUYCNGRIF-UHFFFAOYSA-N 0.000 description 1
- NHLUVTZJQOJKCC-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCN(C)C NHLUVTZJQOJKCC-UHFFFAOYSA-N 0.000 description 1
- QMHNQZGXPNCMCO-UHFFFAOYSA-N n,n-dimethylhexan-1-amine Chemical compound CCCCCCN(C)C QMHNQZGXPNCMCO-UHFFFAOYSA-N 0.000 description 1
- AMAADDMFZSZCNT-UHFFFAOYSA-N n,n-dimethylnonan-1-amine Chemical compound CCCCCCCCCN(C)C AMAADDMFZSZCNT-UHFFFAOYSA-N 0.000 description 1
- UQKAOOAFEFCDGT-UHFFFAOYSA-N n,n-dimethyloctan-1-amine Chemical compound CCCCCCCCN(C)C UQKAOOAFEFCDGT-UHFFFAOYSA-N 0.000 description 1
- IDFANOPDMXWIOP-UHFFFAOYSA-N n,n-dimethylpentan-1-amine Chemical compound CCCCCN(C)C IDFANOPDMXWIOP-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- SFBHPFQSSDCYSL-UHFFFAOYSA-N n,n-dimethyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(C)C SFBHPFQSSDCYSL-UHFFFAOYSA-N 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- VSHTWPWTCXQLQN-UHFFFAOYSA-N n-butylaniline Chemical compound CCCCNC1=CC=CC=C1 VSHTWPWTCXQLQN-UHFFFAOYSA-N 0.000 description 1
- AGVKXDPPPSLISR-UHFFFAOYSA-N n-ethylcyclohexanamine Chemical class CCNC1CCCCC1 AGVKXDPPPSLISR-UHFFFAOYSA-N 0.000 description 1
- SEGJNMCIMOLEDM-UHFFFAOYSA-N n-methyloctan-1-amine Chemical compound CCCCCCCCNC SEGJNMCIMOLEDM-UHFFFAOYSA-N 0.000 description 1
- URXNVXOMQQCBHS-UHFFFAOYSA-N naphthalene;sodium Chemical compound [Na].C1=CC=CC2=CC=CC=C21 URXNVXOMQQCBHS-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000012186 ozocerite Substances 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- GOFBAXKHFOIFKP-UHFFFAOYSA-N tetrakis(4-tert-butylphenyl) silicate Chemical compound C1=CC(C(C)(C)C)=CC=C1O[Si](OC=1C=CC(=CC=1)C(C)(C)C)(OC=1C=CC(=CC=1)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1 GOFBAXKHFOIFKP-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007056 transamidation reaction Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- SWZDQOUHBYYPJD-UHFFFAOYSA-N tridodecylamine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CCCCCCCCCCCC SWZDQOUHBYYPJD-UHFFFAOYSA-N 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
- C06B47/14—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
- C06B47/145—Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase
Definitions
- This invention relates to water-in-oil emulsions which are useful as explosives.
- These emulsions contain at least one emulsifier derived from at least one substituted succinic acylating agent.
- the substituted succinic acylating agent consists of substituent groups and succinic groups wherein the substituent groups are derived from a polyalkene (e.g., polybutene), said acylating agents being characterized by the presence within their structure of an average of at least 1.3 succinic groups for each equivalent weight of substituent groups.
- Hydrocarbyl-substituted carboxylic acylating agents having at least about 30 aliphatic carbon atoms in the substituent are known.
- acylating agents include the polyisobutenyl-substituted succinic acids and anhydrides.
- the use of such carboxylic acylating agents as additives in normally liquid fuels and lubricants is disclosed in U.S. Patents 3,288,714 and 3,346,354. These acylating agents are also useful as intermediates for preparing additives for use in normally liquid fuels and lubricants as described in U.S.
- U.S.Patent 4,234,435 discloses carboxylic acid acylating agents derived from polyalkenes such as polybutenes, and a dibasic carboxylic reactant such as maleic or fumaric acid or certain derivatives thereof. These acylating agents are characterized in that the polyalkenes from which they are derived have an Mn value of about 1300 to about 5000 and an Mw/Mn value of about 1.5 to about 4. The acylating agents are further characterized by the presence within their structure of at least 1.3 groups derived from the dibasic carboxylic reactant for eacb equivalent weight of the groups derived from the polyalkene.
- the acylating agents can be reacted with an amine to produce derivatives useful per se as lubricant additives or as intermediates to be subjected to post-treatment with various other chemical compounds and compositions, such as epoxides, to produce still other derivatives useful as lubricant additives.
- Water-in-oil explosive emulsions typically comprise a continuous organic phase (e.g., a carbonaceous fuel) and a discontinuous aqueous phase containing an oxygen-supplying component (e.g., ammonium nitrate).
- an oxygen-supplying component e.g., ammonium nitrate.
- Examples of such water-in-oil explosive emulsions are disclosed in U.S. Patents 3,447,978; 3,765,964; 3,985,593; 4,008,110; 4,097,316; 4,104,092; 4,218,272; 4,259,977; 4,357,184; 4,371,408; 4,391,659; 4,404,050; 4,409,044; 4,448,619; 4,453,989; and 4,534,809; and U.K. Patent Application GB 2,050,340A.
- U.S. Patent 4,216,040 discloses water-in-oil emulsion blasting agents having a discontinuous aqueous phase, a continuous oil or water-immiscible liquid organic phase, and an organic cationic emulsifier having a lipophilic portion and a hydrophilic portion, the lipophilic portion being an unsaturated hydrocarbon chain.
- U.S. Patents 4,708,753 and 4,844,756 disclose water-in-oil emulsions which comprise (A) a continuous oil phase; (B) a discontinuous aqueous phase; (C) a minor emulsifying amount of at least one salt derived from (C)(I) at least one hydrocarbyl-substituted carboxylic acid or anhydride, or ester or amide derivative of said acid or anhydride, the hydrocarbyl substituent of (C)(I) having an average of from about 20 to about 500 carbon atoms, and (C)(II) ammonia or at least one amine; and (D) a functional amount of at least one water-soluble, oil-insoluble functional additive dissolved in said aqueous phase.
- component (C)(II) can also be an alkali or alkaline-earth metal. These emulsions are useful as explosive emulsions when the functional additive (D) is an oxygen-supplying component (e.g., ammonium nitrate).
- oxygen-supplying component e.g., ammonium nitrate
- U.S. Patent 4,710,248 discloses an emulsion explosive composition comprising a discontinuous oxidizer-phase dispersed throughout a continuous fuel phase with a modifier comprising a hydrophilic moiety and a lipophilic moiety.
- the hydrophilic moiety comprises a carboxylic acid or a group capable of hydrolyzing to a carboxylic acid.
- the lipophilic moiety is a saturated or unsaturated hydrocarbon chain.
- the emulsion explosive composition pH is above 4.5.
- U.S. Patent 4,822,433 discloses an explosive emulsion composition comprising a discontinuous phase containing an oxygen-supplying component and an organic medium forming a continuous phase wherein the oxygen-supplying component and organic medium are capable of forming an emulsion which, in the absence of a supplementary adjuvant, exhibits an electrical conductivity measured at 60°C, not exceeding 60,000 picomhos/meter.
- the reference indicates that the conductivity may be achieved by the inclusion of a modifier which also functions as an emulsifier.
- the modifier is comprised of a hydrophilic moiety and a lipophilic moiety.
- the lipophilic moiety can be derived from a poly[alk(en)yl] succinic anhydride.
- Poly(isobutylene) succinic anhydride having a number average molecular weight in the range of 400 to 5000 is specifically identified as being useful.
- the hydrophilic moiety is described as being polar in character, having a molecular weight not exceeding 450 and can be derived from polyols, amines, amides, alkanol amines and heterocyclics.
- U.S. Patent 4,828,633 discloses salt compositions which comprise (A) at least one salt moiety derived from (A)(I) at least one high-molecular weight polycarboxylic acylating agent, said acylating agent (A)(I) having at least one hydrocarbyl substituent having an average of from about 20 to about 500 carbon atoms, and (A)(II) ammonia, at least one amine, at least one alkali or alkaline earth metal, and /or at least one alkali or alkaline earth metal compound; (B) at least one salt moiety derived from (B)(I) at least one low-molecular weight polycarboxylic acylating agent, said acylating agent (B)(I) optionally having at least one hydrocarbyl substituent having an average of up to about 18 carbon atoms, and (B)(II) ammonia, at least one amine, at least one alkali or alkaline earth metal, and /or at least one
- U.S. Patents 4,840,687 and 4,956,028 disclose explosive compositions comprising a discontinuous oxidizer phase comprising at least one oxygen-supplying component, a continuous organic phase comprising at least one water-immiscible organic liquid, and an emulsifying amount of at least one nitrogen-containing emulsifier derived from (A) at least one carboxylic acylating agent, (B) at least one polyamine, and (C) at least one acid or acid-producing compound capable of forming at least one salt with said polyamine.
- Examples of (A) include polyisobutenyl succinic acid or anhydride.
- Examples of (B) include the alkylene polyamines.
- Examples of (C) include the phosphorus acids (e.g., O,S-dialkylphosphorotrithioic acid).
- These explosive compositions can be water-in-oil emulsions or melt-in-oil emulsions.
- U.S.Patent 4,863,534 discloses an explosive composition comprising a discontinuous oxidizer phase comprising at least one oxygen-supplying component, a continuous organic phase comprising at least carbonaceous fuel, and an emulsifying amount of (A) at least one salt composition derived from (A)(1) at least one high-molecular weight hydrocarbyl-substituted carboxylic acid or anhydride, or ester or amide derivative of said acid or anhydride, the hydrocarbyl substituent of (A)(1) having an average of from about 20 to about 500 carbon atoms, and (A)(2) ammonia, at least one amine, at least one alkali or alkaline earth metal compound; and (B) at least one salt composition derived from B)(1) at least one low-molecular weight hydrocarbyl-substituted carboxylic acid or anhydride, or ester or amide derivative of said acid or anhydride, the hydrocarbyl substituent of (B)(1) having an average of from about 8 to about 18
- U.S. Patent, 4,919,178 discloses emulsifiers which comprise the reaction product of component (I) with component (II).
- Component (I) comprises the reaction product of certain carboxylic acids or anhydrides, or ester or amide derivatives thereof, with ammonia, at least one amine, at least one alkali and/or at least one alkaline-earth metal.
- Component (II) comprises certain phosphorous-containing acids; or metal salts of said phosphorous-containing acids, the metals being selected from the group consisting of magnesium, calcium, strontium, chromium, manganese, iron, molybdenum, cobalt, nickel, copper, silver, zinc, cadmium, aluminum, tin, lead, and mixtures of two or more thereof.
- metals being selected from the group consisting of magnesium, calcium, strontium, chromium, manganese, iron, molybdenum, cobalt, nickel, copper, silver, zinc, cadmium, aluminum, tin, lead, and mixtures of two or more thereof.
- emulsifiers are useful in water-in-oil explosive emulsions.
- U.S. Patent 4,956,028 discloses an explosive composition which comprises a discontinuous oxidizer phase comprising at least one oxygen-supplying component, a continuous organic phase comprising at least one water-immiscible organic liquid, and an emulsifying amount of at least one nitrogen-containing emulsifier derived from (A) at least one carboxylic acylating agent (B) at least one polyamine, and (C) at least one acid or acid-producing compound capable of forming at least one salt with said polyamine.
- These explosive compositions can be water-in-oil emulsions or melt-in-oil emulsions.
- U.S. Patent 4,999,062 describes an emulsion explosive composition comprising a discontinuous phase comprising an oxygen-releasing salt, a continuous water-immiscible organic phase and an emulsifier component comprising a condensation product of a primary amine and a poly[alk(en)yl]succinic acid or anhydride and wherein the condensation product comprises at least 70% by weight succinimide product.
- Water-in-oil explosive emulsions are often blended with ammonium nitrate prills or ANFO for the purpose increasing the explosive energy of such emulsions.
- ammonium nitrate prills that are used are those that are made using one or more crystal habit modifiers to control crystal growth and one or more surfactants to reduce caking.
- a problem with using these treated prills is that they tend to destabilize the emulsions. It would be advantageous to provide explosive emulsions that remain stable when blended with such treated ammonium nitrate prills.
- the invention is directed to water-in-oil emulsions which are useful as explosives.
- These emulsions comprise a discontinuous aqueous phase comprising at least one oxygen-supplying component, a continuous organic phase comprising at least one carbonaceous fuel, and a minor emulsifying amount of at least one emulsifier.
- the emulsifier is the product made by the reaction of component (A) with component (B): component (A) being at least one substituted succinic acylating agent, said substituted succinic acylating agent consisting of substituent groups and succinic groups wherein the substituent groups are derived from a polyalkene, said acylating agents being characterized by the presence within their structure of an average of at least 1.3 succinic groups for each equivalent weight of substituent groups; and component (B) being ammonia and/or at least one amine.
- these emulsions are stably blended with ammonium nitrate prills that have been made using one or more crystal habit modifiers to control crystal growth and one or more surfactants to reduce caking.
- emulsion as used in this specification and in the appended claims is intended to cover not only water-in-oil emulsions, but also compositions derived from such emulsions wherein at temperatures below that at which the emulsion is formed the discontinuous phase is solid or in the form of droplets of super-cooled liquid. This term also covers compositions derived from or formulated as such water-in-oil emulsions that are in the form of gelatinous or semi-gelatinous compositions.
- hydrocarbyl is used herein to include:
- no more than about three nonhydrocarbon groups or heteroatoms and preferably no more than one, will be present for each ten carbon atoms in a hydrocarbyl group.
- the hydrocarbyl groups are preferably free from acetylenic unsaturation; ethylenic unSaturation, when present will generally be such that there is no more than one ethylenic linkage present for every ten carbon-to-carbon bonds.
- the hydrocarbyl groups are often completely saturated and therefore contain no ethylenic unsaturation.
- lower as used herein in conjunction with terms such as alkyl, alkenyl, alkoxy, and the like, is intended to describe such groups which contain a total of up to 7 carbon atoms.
- inventive water-in-oil emulsions which are useful as explosives, comprise a discontinuous aqueous phase comprising at least one oxygen-supplying component, a continuous organic phase comprising at least one carbonaceous fuel, and a minor emulsifying amount of at least one emulsifier.
- these emulsions are stably blended with ammonium nitrate prills that have been treated with surfactants and crystal growth modifiers.
- the continuous organic phase is preferably present at a level of at least about 2% by weight, more preferably in the range of about 2% to about 15% by weight, more preferably in the range of about 3.5% to about 10%, more preferably about 5% to about 8% by weight based on the total weight of the water-in-oil emulsion.
- the discontinuous aqueous phase is preferably present at a level of at least about 85% by weight, more preferably at a level in the range of about 85% to about 98% by weight, more preferably about 92% to about 95% by weight based on the total weight of the emulsion.
- the emulsifier is preferably present at a level in the range of about 5% to about 95%, more preferably about 5% to about 50%, more preferably about 5% to about 20%, more preferably about 10% to about 20% by weight based on the total weight of the organic phase.
- the oxygen-supplying component is preferably present at a level in the range of about 70% to about 95% by weight, more preferably about 75% to about 92% by weight, more preferably about 78% to about 90% by weight based on the total weight of the aqueous phase.
- the water is preferably present at a level in the range of about 5% to about 30% by weight, more preferably about 8% to about 25% by weight, more preferably about 10% to about 22% by weight based on the weight of the aqueous phase.
- the carbonaceous fuel that is useful in the emulsions of the invention can include most hydrocarbons, for example, paraffinic, olefinic, naphthenic, aromatic, saturated or unsaturated hydrocarbons, and is typically in the form of an oil or a wax or a mixture thereof.
- the carbonaceous fuel is a water-immiscible, emulsifiable hydrocarbon that is either liquid or liquefiable at a temperature of up to about 95°C, and preferably between about 40°C and about 75°C. Oils from a variety of sources, including natural and synthetic oils and mixtures thereof can be used as the carbonaceous fuel.
- Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as solvent-refined or acid-refined mineral oils of the paraffinic, naphthenic, or mixed paraffin-naphthenic types. Oils derived from coal or shale are also useful.
- Synthetic oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.); alkyl benzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl) benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.); and the like.
- polymerized and interpolymerized olefins e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.
- esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.
- alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, pentaerythritol, etc.
- esters include dibutyl adipate, di(2-ethylhexyl)-sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethyl-hexanoic acid, and the like.
- Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another class of useful oils. These include tetraethyl-silicate, tetraisopropylsilicate, tetra-(2-ethylhexyl)-silicate, tetra-(4-methyl-hexyl)-silicate, tetra(p-tert-butylphenyl)-silicate, hexyl- (4-methyl-2-pentoxy)-di-siloxane,poly(methyl)-siloxanes,poly-(methylphenyl)-siloxanes, etc.
- liquid esters of phosphorus-containing acid e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decane phosphonic acid, etc.
- polymeric tetrahydrofurans and the like.
- Unrefined, refined and rerefined oils (and mixtures of each with each other) of the type disclosed hereinabove can be used.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from a retorting operation a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
- Refined oils are similar to the unrefined oils except that they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those of skill in the art such as solvent extraction, distillation, acid or base extraction, filtration, percolation, etc.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed toward removal of spent additives and oil breakdown products.
- useful oils include a white mineral oil available from Witco Chemical Company under the trade designation KAYDOL; a white mineral oil available from Shell under the trade designation ONDINA; and a mineral oil available from Pennzoil under the trade designation N-750-HT.
- Diesel fuel e.g., Grade No. 2-D as specified in ASTM D-975 can be used as the oil.
- the carbonaceous fuel can be any wax having melting point of at least about 25°C, such as petrolatum wax, microcrystalline wax, and paraffin wax, mineral waxes such as ozocerite and montan wax, animal waxes such as spermacetic wax, and insect waxes such as beeswax and Chinese wax.
- Useful waxes include waxes identified by the trade designation MOBILWAX 57 which is available from Mobil Oil Corporation; D02764 which is a blended wax available from Astor Chemical Ltd.; and VYBAR which is available from Petrolite Corporation.
- Preferred waxes are blends of microcrystalline waxes and paraffin.
- the carbonaceous fuel includes a combination of a wax and an oil.
- the wax content can be at least about 25% and preferably in the range of about 25% to about 90% by weight of the organic phase
- the oil content can be at least about 10% and preferably ranges from about 10% to about 75% by weight of the organic phase.
- the oxygen-supplying component is preferably at least one inorganic oxidizer salt such as ammonium, alkali or alkaline earth metal nitrate, chlorate or perchlorate.
- inorganic oxidizer salt such as ammonium, alkali or alkaline earth metal nitrate, chlorate or perchlorate. Examples include ammonium nitrate, sodium nitrate, calcium nitrate, ammonium chlorate, sodium perchlorate and ammonium perchlorate. Ammonium nitrate is preferred. Mixtures of ammonium nitrate and sodium or calcium nitrate are also useful.
- inorganic oxidizer salt comprises principally ammonium nitrate, although up to about 25% by weight of the oxidizer phase can comprise either another inorganic nitrate (e.g., alkali or alkaline earth metal nitrate) or an inorganic perchlorate (e.g., ammonium perchlorate or an alkali or alkaline earth metal perchlorate) or a mixture thereof.
- another inorganic nitrate e.g., alkali or alkaline earth metal nitrate
- an inorganic perchlorate e.g., ammonium perchlorate or an alkali or alkaline earth metal perchlorate
- substituted and substituted succinic acylating agent are to be given their normal meanings.
- a substituent is an atom or group of atoms that has replaced another atom or group in a molecule as a result of a reaction.
- acylating agent or substituted succinic acylating agent refers to the compound per se and does not include unreacted reactants used to form the acylating agent or substituted succinic acylating agent.
- the substituted succinic acylating agent (A) utilized in the preparation of the emulsifier can be characterized by the presence within its structure of two groups or moieties.
- the first group or moiety is referred to hereinafter, for convenience, as the "substituent group(s)" and is derived from a polyalkene.
- the polyalkene from which the substituted groups are derived is characterized by an Mn (number average molecular weight) value of at least about 500, more preferably at least about 1000, more preferably at least about 1300, more preferably at least about 1500.
- the polyalkene has an Mn in the range of about 500 to about 10,000, more preferably about 1000 to about 7000, more preferably about 1300 to about 5000, more preferably about 1500 to about 5000, more preferably about 1500 to about 3000, more preferably about 1500 to about 2400, more preferably about 1500 to about 2000, more preferably about 1600 to about 1900.
- the polyalkene preferably has an Mw/Mn value of at least about 1.5, preferably from about 1.5 to about 5, more preferably about 2 to about 5, more preferably about 2.8 to about 5, more preferably about 2.8 to about 4.5, more preferably about 3.3 to about 3.9.
- the abbreviation Mw is the conventional symbol representing the weight average molecular weight.
- GPC Gel permeation chromatography
- Polyalkenes having the Mn and Mw values discussed above are known in the art and can be prepared according to conventional procedures. For example, some of these polyalkenes are described and exemplified in U.S. Patent 4,234,435. The disclosure of this patent relative to such polyalkenes is hereby incorporated by reference. Several such polyalkenes, especially polybutenes, are commercially available.
- the second group or moiety in the acylating agent is referred to herein as the "succinic group(s)".
- the succinic groups are those groups characterized by the structure wherein X and X' are the same or different provided that at least one of X and X' is such that the substituted succinic acylating agent can function as a carboxylic acylating agent. That is, at least one of X and X' must be such that the substituted acylating agent can form, for example, amides, imides or amine salts with amino compounds, and esters, ester-salts, amides, imides, etc. with the hydroxyamines, and otherwise function as a conventional carboxylic acid acylating agent. Transesterification and transamidation reactions are considered, for purposes of this invention, as conventional acylating reactions.
- X and/or X' is usually -OH, -O-hydrocarbyl, -O-M+ where M+ represents one equivalent of a metal, ammonium or amine cation, -NH2, -Cl, -Br, and together, X and X' can be -O- so as to form the anhydride.
- the specific identity of any X or X' group which is not one of the above is not critical so long as its presence does not prevent the remaining group from entering into acylation reactions.
- X and X' are each such that both carboxyl functions of the succinic group (i.e., both -C(O)X and -C(O)X') can enter into acylation reactions.
- One of the unsatisfied valences in the grouping of Formula I forms a carbon-to-carbon bond with a carbon atom in the substituent group. While other such unsatisfied valence may be satisfied by a similar bond with the same or different substituent group, all but the said one such valence is usually satisfied by hydrogen; i.e., -H.
- the substituted succinic acylating agents are characterized by the presence within their structure of an average of at least 1.3 succinic groups (that is, groups corresponding to Formula I) for each equivalent weight of substituent groups.
- These acylating agents can have from about 1.5 to about 2.5, preferably about 1.7 to about 2.1, more preferably about 1.8 to about 2.0 succinic groups for each equivalent weight of substituent group.
- the equivalent weight of substituent groups is deemed to be the number obtained by dividing the Mn value of the polyalkene from which the substituent is derived into the total weight of the substituent groups present in the substituted succinic acylating agents.
- the ratio of succinic groups to equivalents of substituent groups present in the acylating agent can be determined by one skilled in the art using conventional techniques (e.g., acid number, saponification number).
- the succinic groups correspond to the formula wherein R and R' are each independently selected from the group consisting of -OH, -Cl, -O-lower alkyl, and when taken together, R and R' are -O-.
- the succinic group is a succinic anhydride group. All the succinic groups in a particular succinic acylating agent need not be the same, but they can be the same.
- the succinic groups correspond to and mixtures of III(a) and III(b). Providing substituted succinic acylating agents wherein the succinic groups are.
- succinic acylating agents are intended to be understood as being both independent and dependent. They are intended to be independent in the sense that, for example, a preference for a minimum of 1.4 or 1.5 succinic groups per equivalent weight of substituent groups is not tied to a more preferred value of Mn or Mw/Mn. They are intended to be dependent in the sense that, for example, when a preference for a minimum of 1.4 or 1.5 succinic groups is combined with more preferred values of Mn and/or Mw/Mn, the combination of preferences does in fact describe still further more preferred embodiments of the invention.
- the various parameters are intended to stand alone with respect to the particular parameter being discussed but can also be combined with other parameters to identify further preferences. The same concept is intended to apply throughout the specification with respect to the description of preferred values, ranges, ratios, reactants, and the like unless a contrary intent is clearly demonstrated or apparent.
- the polyalkenes from which the substituent groups are derived are homopolymers and interpolymers of polymerizable olefin monomers of 2 to about 16 carbon atoms; usually 2 to about 6 carbon atoms.
- the interpolymers are those in which two or more olefin monomers are interpolymerized according to well-known conventional procedures to form polyalkenes having units within their structure derived from each of said two or more olefin monomers.
- "interpolymer(s)" as used herein is inclusive of copolymers, terpolymers, tetrapolymers, and the like.
- the polyalkenes from which the substituent groups are derived are often conventionally referred to as "polyolefin(s)".
- monoolefinic monomers such as ethylene, propylene, butene-1, isobutene, and octene-1 or polyolefinic monomers (usually diolefinic monomers) such as butadiene-1,3 and isoprene.
- polymerizable internal olefin monomers (sometimes referred to in the literature as medial olefins) characterized by the presence within their structure of the group can also be used to form the polyalkenes.
- internal olefin monomers When internal olefin monomers are employed, they normally will be employed with terminal olefins to produce polyalkenes which are interpolymers.
- a particular polymerized olefin monomer can be classified as both a terminal olefin and an internal olefin, it will be deemed to be a terminal olefin.
- pentadiene-1,3 i.e., piperylene
- substituted succinic acylating agents (A) useful in preparing the inventive emulsifiers are known in the art and are described in, for example, U.S. Patent 4,234,435, the disclosure of which is hereby incorporated by reference.
- the acylating agents described in the '435 patent are characterized as containing substituent groups derived from polyalkenes having an Mn value of about 1300 to about 5000, and an Mw/Mn value of about 1.5 to about 4.
- aliphatic, hydrocarbon polyalkenes free from aromatic and cycloaliphatic groups.
- polyalkenes which are derived from the group consisting of homopolymers and interpolymers of terminal hydrocarbon olefins of 2 to about 16 carbon atoms.
- This further preference is qualified by the proviso that, while interpolymers of terminal olefins are usually preferred, interpolymers optionally containing up to about 40% of polymer units derived from internal olefins of up to about 16 carbon atoms are also within a preferred group.
- a more preferred class of polyalkenes are those selected from the group consisting of homopolymers and interpolymers of terminal olefins of 2 to about 6 carbon atoms, more preferably 2 to 4 carbon atoms.
- another preferred class of polyalkenes are the latter more preferred polyalkenes optionally containing up to about 25% of polymer units derived from internal olefins of up to about 6 carbon atoms.
- the polybutenes and polyisobutenes are particularly preferred.
- the polyalkene is a polybutene in which at least about 50% of the total units derived from butenes is derived from isobutene.
- the polyalkene is an interpolymer or copolymer of ethylene and propylene, or an interpolymer or copolymer of styrene and at least one diene (e.g., butadiene, pentadiene, isoprene, etc.).
- diene e.g., butadiene, pentadiene, isoprene, etc.
- polyalkenes as described above which meet the various criteria for Mn and Mw/Mn is within the skill of the art and does not comprise part of the present invention.
- Techniques readily apparent to those skilled in the art include controlling polymerization temperatures, regulating the amount and type of polymerization initiator and/or catalyst, employing chain terminating groups in the polymerization procedure, and the like.
- Other conventional techniques such as stripping (including vacuum stripping) a very light end and/or oxidatively or mechanically degrading high molecular weight polyalkene to produce lower molecular weight polyalkenes can also be used.
- the maleic or fumaric reactants will be maleic acid, fumaric acid, maleic anhydride, or a mixture of two or more of these.
- the maleic reactants are usually preferred over the fumaric reactants because the former are more readily available and are, in general, more readily reacted with the polyalkenes (or derivatives thereof) to prepare the substituted succinic acylating agents of the present invention.
- the especially preferred reactants are maleic acid, maleic anhydride, and mixtures of these. Due to availability and ease of reaction, maleic anhydride will usually be employed.
- maleic reactant is sometimes used to refer to the acidic reactants used to prepare the succinic acylating agents.
- acidic reactants used to prepare the succinic acylating agents.
- the term is generic to acidic reactants selected from maleic and fumaric reactants corresponding to Formulae (IV) and (V) above including mixtures of such reactants.
- acylating agents described above are intermediates in the process for preparing the emulsifier for the inventive emulsion, the process comprising reacting (A) one or more acylating agents with (B) ammonia and/or at least one amine.
- the amines (B) useful in making the emulsifiers include primary amines, secondary amines and tertiary amines, with the secondary and tertiary amines being preferred and the tertiary amines being particularly useful. These amines can be monoamines or polyamines. Hydroxy amines, especially tertiary alkanol monoamines, are useful. Mixtures of two or more amines can be used.
- the amines can be aliphatic, cycloaliphatic, aromatic or heterocyclic, including aliphatic-substituted aromatic, aliphatic-substituted cycloaliphatic, aliphatic-substituted heterocyclic, cycloaliphatic-substituted aliphatic, cycloaliphatic-substituted aromatic, cycloaliphatic-substituted heterocyclic, aromatic-substituted aliphatic, aromatic-substituted cycloaliphatic, aromatic-substituted heterocyclic, heterocyclic-substituted aliphatic, heterocyclic-substituted aliphatic and heterocyclic-substituted aromatic amines.
- amines may be saturated or unsaturated. If unsaturated, the amine is preferably free from acetylenic unsaturation.
- the amines may also contain non-hydrocarbon substituents or groups as long as these groups do not significantly interfere with the reaction of the amines with the acylating agents (A).
- non-hydrocarbon substituents or groups include lower alkoxy, lower alkyl, mercapto, nitro, and interrupting groups such as -O- and -S- (e.g., as in such groups as -CH2CH2-X-CH2CH2- where X is -O- or -S-).
- the amines used in this invention ordinarily contain less than about 40 carbon atoms in total and usually not more than about 20 carbon atoms in total.
- Aliphatic monoamines include mono-aliphatic, di-aliphatic and trialiphatic-substituted amines wherein the aliphatic groups can be saturated or unsaturated and straight or branched chain.
- Such amines include, for example, mono-, di- and tri-alkyl-substituted amines; mono-, di- and tri-alkenyl-substituted amines; amines having one or more N-alkenyl substituents and one or more N-alkyl substituents, and the like.
- the total number of carbon atoms in these aliphatic monoamines preferably does not exceed about 40 and usually does not exceed about 20 carbon atoms.
- Such monoamines include ethylamine, di-ethylamine, tri-ethylamine, n-butylamine, di-n-butylamine, allylamine, isobutylamine, cocoamine, stearylamine, laurylamine, methyllaurylamine, oleylamine, N-methyl-octylamine, dodecylamine, octadecylamine, and the like.
- cycloaliphatic-substituted aliphatic amines examples include 2-(cyclohexyl)-ethylamine, benzylamine, phenylethylamine, and 3-(furylpropyl) amine.
- Cycloaliphatic monoamines are those monoamines wherein there is one cycloaliphatic substituent attached directly to the amino nitrogen through a carbon atom in the cyclic ring structure.
- Examples of cycloaliphatic monoamines include cyclohexylamines, cyclopentylamines, cyclohexenylamines, cyclopentenylamines, N-ethyl-cyclohexylamines, dicyclohexylamines, and the like.
- Examples of aliphatic-substituted, aromatic-substituted, and heterocyclic-substituted cycloaliphatic monoamines include propyl-substituted cyclohexylamines, phenyl-substituted cyclopentylamines and pyranyl-substituted cyclohexylamine.
- Suitable aromatic amines include those monoamines wherein a carbon atom of the aromatic ring structure is attached directly to the amino nitrogen.
- the aromatic ring will usually be a mononuclear aromatic ring (i.e., one derived from benzene) but can include fused aromatic rings, especially those derived from naphthylene.
- aromatic monoamines include aniline, di(para-methylphenyl) amine, naphthylamine, N-(n-butyl) aniline, and the like.
- Examples of aliphatic-substituted, cycloaliphatic-substituted, and heterocyclic-substituted aromatic monoamines include para-ethoxyaniline,paradodecylamine, cyclohexyl-substituted naphthylamine and thienyl-substituted aniline.
- Suitable polyamines include aliphatic, cycloaliphatic and aromatic polyamines analogous to the above-described monoamines except for the presence within their structure of another amino nitrogen.
- the other amino nitrogen can be a primary, secondary or tertiary amino nitrogen.
- Examples of such polyamines include N-aminopropyl-cyclohexylamine, N-N'-di-n-butyl-para-phenylene diamine, bis-(para-aminophenyl)-methane, 1,4-diaminocyclohexane, and the like.
- Heterocyclic mono- and polyamines can also be used.
- the terminology "heterocyclic mono- and polyamine(s)" is intended to describe those heterocyclic amines containing at least one primary, secondary or tertiary amino group and at least one nitrogen as a heteroatom in the heterocyclic ring.
- Heterocyclic amines can be saturated or unsaturated and can contain various substituents such as nitro, alkoxy, alkyl mercapto, alkyl, alkenyl, aryl, alkaryl, or aralkyl substituents. Generally, the total number of carbon atoms in the substituents will not exceed about 20.
- Heterocyclic amines can contain heteroatoms other than nitrogen, especially oxygen and sulfur. Obviously they can contain more than alone nitrogen heteroatom. The 5- and 6-membered heterocyclic rings are preferred.
- heterocyclics are aziridines, azetidines, azolidines, tetra- and di-hydro pyridines, pyrroles, indoles, piperadines, imidazoles, di- and tetra-hydroimidazoles, piperazines, isoindoles, purines, morpholines, thiomorpholines, N-aminoalkyl-morpholines, N-aminoalkylthiomorpholines, N-aminoalkyl-piperazines, N,N'-di-aminoalkylpiperazines, azepines, azocines, azonines, anovanes and tetra-, di- and perhydroderivatives of each of the above and mixtures of two or more of these heterocyclic amines.
- Preferred heterocyclic amines are the saturated 5- and 6-membered heterocyclic amines containing only nitrogen, oxygen and/or sulfur in the hetero ring, especially the piperidines, piperazines, thiomorpholines, morpholines, pyrrolidines, and the like.
- Piperidine, aminoalkyl-substitutedpiperidines, piperazine, aminoalkyl-substituted piperazines, morpholine, aminoalkyl-substituted morpholines, pyrrolidine, and aminoalkyl-substituted pyrrolidines are useful.
- the aminoalkyl substituents are substituted on a nitrogen atom forming part of the hetero ring.
- Specific examples of such heterocyclic amines include N-aminopropylmorpholine, N-aminoethylpiperazine, and N,N'-di-aminoethyl-piperazine.
- the tertiary amines include monoamines and polyamines.
- the monoamines can be represented by the formula wherein R1 , R2 and R3 are the same or different hydrocarbyl groups.
- R1 , R2 and R3 are independently hydrocarbyl groups of from 1 to about 20 carbon atoms.
- tertiary amines examples include trimethyl amine, triethyl amine, tripropyl amine, tributyl amine, monomethyldiethyl amine, monoethyldlmethyl amine, dimethylpropyl amine, dimethylbutyl amine, dimethylpentyl amine, dimethylhexyl amine, dimethylheptyl amine, dimethyloctyl amine, dimethylnonyl amine, dimethyldecyl amine, dimethyldicodanylamine, dimethylphenyl amine, N,N-dioctyl-1-octanamine, N,N-didodecyl-1-dodecanamine tricoco amine, trihydrogenated-tallow amine, N-methyl-dihydrogenated tallow amine, N,N-dimethyl-1-dodecanamine,N,N-dimethyl-1-tetradecanamine,N,N-dimethyl-1
- Hydroxyamines both mono- and polyamines, analogous to those mono- and polyamines described herein are also useful.
- the hydroxy-substituted amines contemplated are those having hydroxy substituents bonded directly to a carbon atom other than a carbonyl carbon atom; that is, they have hydroxy groups capable of functioning as alcohols.
- the hydroxyamines can be primary, secondary or tertiary amines, with the secondary and tertiary amines being preferred, and the tertiary amines being especially preferred.
- the terms "hydroxyamine” and "aminoalcohol” describe the same class of compounds and, therefore, can be used interchangeably.
- the hydroxyamines include N-(hydroxyl-substituted hydrocarbyl) amines, hydroxyl-substituted poly(hydrocarbyloxy) analogs thereof and mixtures thereof. These include secondary and tertiary alkanol amines represented, respectfully, by the formulae: and wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or hydroxyl-substituted hydrocarbyl group of two to about eight carbon atoms and R' is a divalent hydrocarbyl group of about two to about 18 carbon atoms.
- the group -R'-OH in such formulae represents the hydroxyl-substituted hydrocarbyl group.
- R' can be an acyclic, alicyclic or aromatic group.
- R' is an acyclic straight or branched alkylene group such as an ethylene, 1,2-propylene, 1,2-butylene, 1,2-octadecylene, etc. group.
- two R groups are present in the same molecule they can be joined by a direct carbon-to-carbon bond or through a heteroatom (e.g., oxygen, nitrogen or sulfur) to form a 5-, 6-, 7- or 8-membered ring structure.
- heterocyclic amines examples include N-(hydroxyl lower alkyl)-morpholines, -thiomorpholines, -piperidines, -oxazolidines, -thiazolidines and the like.
- each R is a lower alkyl group of up to seven carbon atoms.
- N-(hydroxyl-substituted hydrocarbyl) amines examples include di- and triethanolamine, dimethylethanolamine, diethylethanolamine, di-(3-hydroxylpropyl) amine, N-(3-hydroxylbutyl) amine, N-(4-hydroxylbutyl) amine, N,N-di-(2-hydroxylpropyl) amine, N-(2-hydroxylethyl) morpholine and its thio analog, N-(2-hydroxylethyl) cyclohexylamine, N-3-hydroxyl cyclopentylamine, o-, m- and p-aminophenol, N-(hydroxylethyl) piperazine, N,N'-di(hydroxylethyl) piperazine, and the like.
- the hydroxyamine is a compound represented by the formula wherein each R is independently an alkyl group of 1 to about 4 carbon atoms, preferably 1 or 2 carbon atoms, and R' is an alkylene group of 2 to about 4 carbon atoms, preferably about 2 or 3 carbon atoms.
- the hydroxyamine is dimethylethanolamine.
- the hydroxyamines can also be ether N-(hydroxy-substituted hydrocarbyl)amines. These are hydroxyl-substituted poly(hydrocarbyloxy) analogs of the above-described hydroxy amines (these analogs also include hydroxyl-substituted oxyalkylene analogs).
- Such N-(hydroxyl-substituted hydrocarbyl) amines can be conveniently prepared by reaction of epoxides with afore-described amines and can be represented by the formulae: wherein x is a number of about 2 to about 15, and R and R' are as described above with respect to Formulae (VI) and (VII).
- alkoxylated alkylene polyamines e.g., N,N-(diethanol)-ethylene diamine
- Such polyamines can be made by reacting alkylene amines (e.g., ethylenediamine) with one or more alkylene oxides (e.g., ethylene oxide, octadecene oxide) of two to about 20 carbons.
- alkylene oxide-alkanol amine reaction products can also be used such as the products made by reacting the afore-described secondary or tertiary alkanol amines with ethylene, propylene or higher epoxides in a 1:1 or 1:2 molar ratio. Reactant ratios and temperatures for carrying out such reactions are known to those skilled in the art.
- alkoxylated alkylene polyamines include N-(2-hydroxyethyl) ethylene diamine, N,N-bis(2-hydroxyethyl)-ethylene-diamine, 1-(2-hydroxyethyl) piperazine, mono(hydroxypropyl)-substituted diethylene triamine, di(hydroxypropyl)-substituted tetraethylene pentamine, N-(3-hydroxybutyl)-tetramethylene diamine, etc.
- Higher homologs obtained by condensation of the above-illustrated hydroxy alkylene polyamines through amino groups or through hydroxy groups are likewise useful.
- Hydroxyalkyl alkylene polyamines having one or more hydroxyalkyl substituents on the nitrogen atoms are also useful.
- Useful hydroxyalkyl-substituted alkylene polyamines include those in which the hydroxyalkyl group is a lower hydroxyalkyl group, i.e., having less than eight carbon atoms.
- hydroxyalkyl-substituted polyamines examples include N-(2-hydroxyethyl) ethylene diamine, N,N-bis(2-hydroxyethyl) ethylene diamine, 1-(2-hydroxyethyl)-piperazine, monohydroxypropyl-substituted diethylene triamine, dihydroxypropylsubstituted tetraethylenepentamine, N-(3-hydroxybutyl)tetramethylene diamine, etc.
- Higher homologs as are. obtained by condensation of the above-illustrated hydroxy alkylene polyamines through amino groups or through hydroxy groups are likewise useful. Condensation through amino groups results in a higher amine accompanied by removal of ammonia and condensation through the hydroxy groups results in products containing ether linkages accompanied by removal of water.
- Useful polyamines include the alkylene polyamines represented by the formula: wherein n is from 1 to about 10, preferably about 2 to about 10; each R is independently a hydrogen atom, a hydrocarbyl group or a hydroxy-substituted hydrocarbyl group having up to about 700 carbon atoms, preferably up to about 100 carbon atoms, more preferably up to about 50 carbon atoms, more preferably up to about 30 carbon atoms; and the "Alkylene" group has from about 1 to about 18 carbon atoms, preferably 2 to about 18 carbon atoms, more preferably 2 to about 4 carbon atoms, with the preferred Alkylene being ethylene or propylene.
- Useful alkylene polyamines include those wherein each R is hydrogen with the ethylene polyamines, and mixtures of ethylene polyamines being particularly preferred.
- Alkylene polyamines that are useful include methylene polyamines, ethylene polyamines, butylene polyamines, propylene polyamines, pentylene polyamines, hexylene polyamines, heptylene polyamines, etc.
- ethylene diamine triethylene tetramine, propylene diamine, trimethylene diamine, hexamethylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene) triamine, N-(2-aminoethyl) piperazine, 1,4-bis(2-aminoethyl) piperazine, and the like.
- Higher homologs as are obtained by condensing two or more of the above-illustrated alkylene amines are useful as amines in this invention as are mixtures of two or more of any of the afore-described polyamines.
- Ethylene polyamines such as those mentioned above, are described in detail under the heading "Diamines and Higher Amines” in The Encyclopedia of Chemical Technology, Second Edition, Kirk and Othmer, Volume 7, pages 27-39, Interscience Publishers, Division of John Wiley and Sons, 1965, these pages being incorporated herein by reference.
- Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia or by reaction of an ethylene imine with a ring-opening reagent such as ammonia, etc. These reactions result in the production of the somewhat complex mixtures of alkylene polyamines, including cyclic condensation products such as piperazines.
- amines are also suitable as amines.
- R is OH, NH2, ONH4, etc.
- R a is a polyvalent organic group having a valence equal to x + y
- R b and R c are each independently hydrogen, hydrocarbyl or substituted hydrocarbyl with the proviso that at least one of R b and R c is hydrogen per aminosulfonic acid molecule
- x and y are each integers equal to or greater than one.
- Each aminosulfonic reactant is characterized by at least one HN ⁇ or H2N- group and at least one group.
- these sulfonic acids can be aliphatic, cycloaliphatic or aromatic aminosulfonic acids and the corresponding functional derivatives of the sulfo group.
- the aminosulfonic acids can be aromatic aminosulfonic acids, that is, where R a is a polyvalent aromatic group such as phenylene where at least one group is attached directly to a nuclear carbon atom of the aromatic group.
- the aminosulfonic acid may also be a mono-amino aliphatic sulfonic acid; that is, an acid where x is one and R a is a polyvalent aliphatic group such as ethylene, propylene, trimethylene, and 2-methylene propylene.
- Other suitable aminosulfonic acids and derivatives thereof useful as amines in this invention are disclosed in U.S. Patents 3,029,250; 3,367,864; and 3,926,820; which are incorporated herein by reference.
- Hydrazine and substituted-hydrazine can also be used as amines in this invention. At least one of the nitrogens in the hydrazine must contain a hydrogen directly bonded thereto.
- the substituents which may be present on the hydrazine include alkyl, alkenyl, aryl, aralkyl, alkaryl, and the like. Usually, the substituents are alkyl, especially lower alkyl, phenyl, and substituted phenyl such as lower alkoxy-substituted phenyl or lower alkyl-substituted phenyl.
- substituted hydrazines are methylhydrazine, N,N-dimethylhydrazine, N,N'-dimethylhydrazine, phenylhydrazine, N-phenyl-N'-ethylhydrazine, N-(para-tolyl)-N'-(n-butyl)hydrazine, N-(para-nitrophenyl)-hydrazine, N-(paranitrophenyl)-N-methylhydrazine, N,N'-di-(para-chlorophenol)-hydrazine, N-phenyl-N'-cyclohexylhydrazine, and the like.
- the high molecular weight hydrocarbyl amines both monoamines and polyamines, which can be used as amines in this invention are generally prepared by reacting a chlorinated polyolefin having a molecular weight of at least about 400 with ammonia or an amine.
- the amines that can be used are known in the art and described, for example, in U.S. Patents 3,275,554 and 3,438,757, both of which are incorporated herein by reference. These amines must possess at least one primary or secondary amino group.
- branched polyalkylene polyamines are branched polyalkylene polyamines.
- the branched polyalkylene polyamines are polyalkylene polyamines wherein the branched group is a side chain containing on the average at least one nitrogen-bonded aminoalkylene group per nine amino units present on the main chain; for example, 1-4 of such branched chains per nine units on the main chain, but preferably one side chain unit per nine main chain units.
- these polyamines contain at least three primary amino groups and at least one tertiary amino group.
- R is an alkylene group such as ethylene, propylene, butylene and other homologs (both straight chained and branched), etc., but preferably ethylene; and x, y and z are integers; x is in the range of from about 4 to about 24 or more, preferably from about 6 to about 18; y is in the range of from 1 to about 6 or more, preferably from 1 to about 3; and z is in the range of from zero to about 6, preferably from zero to about 1.
- the x and y units may be sequential, alternative, orderly or randomly distributed.
- a useful class of such polyamines includes those of the formula: wherein n is an integer in the range of from 1 to about 20 or more, preferably in the range of from 1 to about 3, and R is preferably ethylene, but may be propylene, butylene, etc. (straight chained or branched).
- Useful embodiments are represented by the formula: wherein n is an integer in the range of 1 to about 3.
- the groups within the brackets may be joined in a head-to-head or a head-to-tail fashion.
- U.S. Patents 3,200,106 and 3,259,578 are incorporated herein by reference for their disclosures relative to said polyamines.
- Suitable amines also include polyoxyalkylene polyamines, e.g., polyoxyalkylene diamines and polyoxyalkylene triamines, having average molecular weights ranging from about 200 to about 4000, preferably from about 400 to 2000.
- polyoxyalkylene polyamines e.g., polyoxyalkylene diamines and polyoxyalkylene triamines, having average molecular weights ranging from about 200 to about 4000, preferably from about 400 to 2000.
- polyoxyalkylene polyamines examples include those amines represented by the formula: NH2-Alkylene-(-O-Alkylene-) m NH2 wherein m has a value of from about 3 to about 70, preferably from about 10 to about 35; and the formula: R-[Alkylene-(-O-Alkylene-) n NH2]3 ⁇ 6 wherein n is a number in the range of from 1 to about 40, with the proviso that the sum of all of the n's is from about 3 to about 70 and generally from about 6 to about 35, and R is a polyvalent saturated hydrocarbyl group of up to about 10 carbon atoms having a valence of from about 3 to about 6.
- the alkylene groups may be straight or branched chains and contain from 1 to about 7 carbon atoms, and usually from 1 to about 4 carbon atoms.
- the various alkylene groups present within the above formulae may be the same or different.
- polyamines include: wherein x has a value of from about 3 to about 70, preferably from about 10 to 35; and wherein x + y + z have a total value ranging from about 3 to about 30, preferably from about 5 to about 10.
- Useful polyoxyalkylene polyamines include the polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to about 2000.
- the polyoxyalkylene polyamines are commercially available from the Jefferson Chemical Company, Inc. under the trade name "Jeffamine”.
- U.S. Patents 3,804,763 and 3,948,800 are incorporated herein by reference for their disclosure of such polyoxyalkylene polyamines.
- the carboxylic derivative compositions produced from the acylating agents (A) and ammonia or the amines (B) described hereinbefore comprise acylated amines which typically include one or more amine salts, amides, imides and/or imidazolines as well as mixtures of two or more thereof.
- the carboxylic derivative compositions usually include esters and/or ester-salts (e.g., half-ester and half-salt).
- the amine salt can be an external salt wherein the ionic salt linkage is formed between the acylating agent (A) and a nitrogen atom from the amine (B); the amine is not otherwise bonded to the acylating agent.
- the amine salt can also be an internal salt wherein the acylating agent (A) and amine (B) are bonded to each other through a non-salt linkage (e.g., an ester linkage) and a nitrogen atom from the bonded amine forms a salt linkage with the acylating agent.
- a non-salt linkage e.g., an ester linkage
- a nitrogen atom from the bonded amine forms a salt linkage with the acylating agent.
- these salts are as follows: wherein R is a polyalkene (e.g., polybutene) group.
- one or more acylating agents and one or more of ammonia and/or amines are heated, optionally in the presence of a normally liquid, substantially inert organic liquid solvent/diluent, at temperatures in the range of about 30°C up to the decomposition point of the reactant or product having the lowest such temperature, but normally at temperatures in the range of about 50°C up to about 300°C provided 300°C does not exceed the decomposition point. Temperatures of about 50°C to about 200°C can be used.
- the acylating agent (A) is reacted with from about 0.5 to about 3, preferably about 0.5 to about 2, more preferably about 0.5 to about 1.5, more preferably about 0.8 to about 1.2 equivalents of ammonia or amine (B) per equivalent of acylating agent (A). In other embodiments, increasing amounts of the ammonia or amine (B) can be used.
- the number of equivalents of the acylating agent (A) depends on the total number of carboxylic functions present. In determining the number of equivalents for the acylating agents, those carboxyl functions which are not capable of reacting as a carboxylic acid acylating agent are excluded. In general, however, there is one equivalent of acylating agent for each carboxy group in these acylating agents. For example, there are two equivalents in an anhydride derived from the reaction of one mole of olefin polymer and one mole of maleic anhydride. Conventional techniques are readily available for determining the number of carboxyl functions (e.g., acid number, saponification number) and, thus, the number of equivalents of the acylating agent can be readily determined by one skilled in the art.
- An equivalent weight of an amine or a polyamine is the molecular weight of the amine or polyamine divided by the total number of nitrogens present in the molecule.
- ethylene diamine has an equivalent weight equal to one-half of its molecular weight
- diethylene triamine has an equivalent weight equal to one- third its molecular weight.
- the equivalent weight of a commercially available mixture of polyalkylene polyamine can be determined by dividing the atomic weight of nitrogen (14) by the %N contained in the polyamine and multiplying by 100; thus, a polyamine mixture containing 34% N would have an equivalent weight of 41.2.
- An equivalent weight of ammonia or a monoamine is its molecular weight.
- An equivalent weight of a hydroxyamine to be reacted with the acylating agent under amide- or imide-forming conditions is its molecular weight divided by the total number of nitrogens present in the molecule. Under such conditions, the hydroxyl groups are ignored when calculating equivalent weight.
- ethanolamine would have an equivalent weight equal to its molecular weight
- diethanolamine would have an equivalent weight (based on nitrogen) equal to its molecular weight when such amines are reacted under amide- or imide-forming conditions.
- the equivalent weight of a hydroxyamine to be reacted with the acylating agent under ester-forming conditions is its molecular weight divided by the number of hydroxyl groups present, and the nitrogen atoms present are ignored.
- the equivalent weight of the diethanolamine is one-half of its molecular weight.
- the amount of ammonia or amine (B) that is reacted with the acylating agent (A) may also depend in part on the number and type of nitrogen atoms present. For example, a smaller amount of a polyamine containing one or more -NH2 groups is required to react with a given acylating agent than a polyamine having the same number of nitrogen atoms and fewer or no -NH2 groups.
- One -NH2 group can react with two -COOH groups to form an imide. If only secondary nitrogens are present in the amine compound, each >NH group can react with only one -COOH group.
- the amount of polyamine to be reacted with the acylating agent to form the carboxylic derivatives of the invention can be readily determined from a consideration of the number and types of nitrogen atoms in the polyamine (i.e.., -NH2, >NH, and >N-).
- acylating agent (A) and ammonia or amine (B) used to form the carboxylic derivative composition other important features of the carboxylic derivative compositions used in this Invention are the Mn and the Mw/Mn values of the polyalkene as well as the presence within the acylating agents of an average of at least 1.3 succinic groups for each equivalent weight of substituent groups.
- acylating agents (A) The preparation of the acylating agents (A) is illustrated in the following Examples 1-10, and the preparation of the carboxylic acid derivative compositions useful as emulsifiers in the inventive emulsions is illustrated in Examples A-D.
- all temperatures are in degrees Centigrade, and all percentages and parts are by weight, unless otherwise clearly indicated.
- the reaction mixture is adjusted with chlorine addition, maleic anhydride addition or nitrogen blowing as needed to provide a polyisobutene-substituted succinic acylating agent composition with a total acid number of 95, a free maleic anhydride content of no more than 0.6% by weight, and a chlorine content of about 0.8% by weight.
- the composition has flash point of 180°C, a viscosity at 150°C of 530 cSt, and a viscosity at 100°C of 5400 cSt.
- the ratio of succinic groups to equivalent weights of polyisobutene in the acylating agent is 1.91.
- the reaction mixture is held at 200-224°C for 6.33 hours, stripped at 210°C under vacuum and filtered.
- the filtrate is the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 94 as determined by ASTM procedure D-94.
- the reaction mixture is heated at 201-236°C with nitrogen blowing for 2 hours and stripped under vacuum at 203°C.
- the reaction mixture is filtered to yield the filtrate as the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 92 as determined by ASTM procedure D-94.
- the reaction mixture is cooled to 170°C.
- 170-190°C 105 parts of gaseous chlorine are added beneath the surface in 8 hours.
- the reaction mixture is heated at 190°C with nitrogen blowing for 2 hours and then stripped under vacuum at 190°C.
- the reaction mixture is filtered to yield the filtrate as the desired polyisobutene-substituted succinic acylating agent.
- a mixture of 800 parts of a polyisobutene falling within the scope of the claims of the present invention and having an Mn of about 2000, 646 parts of mineral oil and 87 parts of maleic anhydride is heated to 179°C in 2.3 hours. At 176-180°C, 100 parts of gaseous chlorine is added beneath the surface over a 19 hour period. The reaction mixture is stripped by blowing with nitrogen for 0.5 hour at 180°C. The residue is an oil-containing solution of the desired polyisobutene-substituted succinic acylating agent.
- a mixture of 4920 parts (8.32 equivalents) of the polyisobutene-substituted succinic acylating agent prepared in accordance with the teachings of Example 1 and 2752 parts of a 40 Neutral oil are heated to 50-55°C with stirring. 742 parts (8.32 equivalents) of dimethylethanolamine are added over a period of 6 minutes. The reaction mixture exotherms to 59°C. The reaction mixture is heated to 115°C over a period of 3 hours. Nitrogen blowing is commenced at a rate of 1.5 standard cubic feet per hour, and the reaction mixture is heated to 135°C over a period of 0.5 hour.
- the mixture is heated to and maintained at a temperature of 140-160°C for 14 hours, then cooled to room temperature to provide the desired product.
- the product has a nitrogen content of 1.35% by weight, a total acid number of 13.4, a total base number of 54.8, a viscosity at 100°C of 125 cSt, a viscosity at 40°C of 2945 cSt, a specific gravity at 15.6°C of 0.94, and a flash point of 82°C.
- a mixture of 1773 parts (3 equivalents) of the polyisobutene-substituted succinic acylating agent prepared in accordance with the teachings of Example 1 and 992 parts of a 40 Neutral oil are heated to 80°C with stirring. 267 parts (3 equivalents) of dimethylethanolamine are added over a period of 6 minutes. The reaction mixture is heated to 132°C over a period of 2.75 hours. The mixture is heated to and maintained at a temperature of 150-174°C for 12 hours, then cooled to room temperature to provide the desired product.
- the product has a nitrogen content of 0.73% by weight, a total acid number of 12.3, a total base number of 29.4, a viscosity at 100°C of 135 cSt, a viscosity at 40°C of 2835 cSt, a specific gravity at 15.6°C of 0.933, and a flash point of 97°C.
- Example B The procedure of Example B is repeated except that after the product is cooled to room temperature, 106 parts of dimethylethanolamine are added with stirring.
- the resulting product has a nitrogen content of 1.21% by weight, a total acid number of 11.3, a total base number of 48.9, a viscosity at 100°C of 110 cSt, a viscosity at 40°C of 2730 cSt, a specific gravity at 15.6°C of 0.933, and a flash point of 90°C.
- a mixture is prepared by the addition of 10.2 parts (0.25 equivalent) of a commercial mixture of ethylene polyamines having from about 3 to about 10 nitrogen atoms per molecule to 113 parts of mineral oil and 161 parts (0.25 equivalent) of the substituted succinic acylating agent prepared in Example 2 at 138°C.
- the reaction mixture is heated to 150°C in 2 hours and stripped by blowing with nitrogen.
- the reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.
- closed-cell, void-containing materials are used as sensitizing components.
- the term "closed-cell, void-containing material” is used herein to mean any particulate material which comprises closed cell, hollow cavities. Each particle of the material can contain one or more closed cells, and the cells can contain a gas, such as air, or can be evacuated or partially evacuated.
- sufficient closed cell, void containing material is used to yield a density in the resulting emulsion of from about 0.8 to about 1.35 g/cc, more preferably about 0.9 to about 1.3 g/cc, more preferably about 1.1 to about 1.3 g/cc.
- the emulsions of the subject invention can contain up to about 15% by weight, preferably from about 0.25% to about 15% by weight of the closed cell void containing material.
- Preferred closed cell void containing materials are discrete glass spheres having a particle size within the range of about 10 to about 175 microns.
- the bulk density of such particles can be within the range of about 0.1 to about 0.4 g/cc.
- Useful glass microbubbles or microballoons which can be used are the microbubbles sold by 3M Company and which have a particle size distribution in the range of from about 10 to about 160 microns and a nominal size in the range of about 60 to 70 microns, and densities in the range of from about 0.1 to about 0.4 g/cc.
- Microballoons identified by the industry designation C15/250 which have a particle density of 0.15 gm/cc and 10% of such microballoons crush at a static pressure of 250 psig can be used.
- microballoons identified by the designation B37/2000 which have a particle density of 0.37 gm/cc and 10% of such microballoons crush at a static pressure of 2000 psig can be used.
- Other useful glass microballoons are sold under the trade designation of ECCOSPHERES by Emerson & Cumming, Inc., and generally have a particle size range from about 44 to about 175 microns and a bulk density of about 0.15 to about 0.4 g/cc.
- Other suitable microballoons include the inorganic microspheres sold under the trade designation of Q-CEL by Philadelphia Quartz Company.
- the closed cell, void containing material can be made of inert or reducing materials.
- phenol-formaldehyde microbubbles can be utilized within the scope of this invention. If the phenol-formaldehyde microbubbles are utilized, the microbubbles themselves are a fuel component for the explosive and their fuel value should be taken into consideration when designing a water-in-oil emulsion explosive composition.
- Another closed cell, void containing material which can be used within the scope of the subject invention is the saran microspheres sold by Dow Chemical Company. The saran microspheres have a diameter of about 30 microns and a particle density of about 0.032 g/cc. Because of the low bulk density of the saran microspheres, it is preferred that only from about 0.25 to about 1% by weight thereof be used in the water-in-oil emulsions of the subject invention.
- Gas bubbles which are generated in-situ by adding to the composition and distributing therein a gas-generating material such as, for example, an aqueous solution of sodium nitrite, can also be used can be used to sensitize the explosive emulsions.
- a gas-generating material such as, for example, an aqueous solution of sodium nitrite
- suitable sensitizing components which may be employed alone or in addition to the foregoing include insoluble particulate solid self-explosives or fuel such as, for example, grained or flaked TNT, DNT, RDX and the like, aluminum, aluminum alloys, silicon and ferrosilicon; and water-soluble and/or hydrocarbon-soluble organic sensitizers such as, for example, amine nitrates, alkanolamine nitrates, hydroxyalkyl nitrates, and the like.
- the explosive emulsions of the present invention may be formulated for a wide range of applications. Any combination of sensitizing components may be selected in order to provide an explosive composition of visually any desired density, weight-strength or critical diameter.
- the quantity of solid self-explosives or fuels and of water-soluble and /or hydrocarbon-soluble organic sensitizers may comprise up to about 50% by weight of the total explosive composition.
- the volume of the occluded gas component may comprise up to about 50% of the volume of the total explosive composition.
- particulate-solid oxygen-supplying salts may be incorporated into or blended with the inventive emulsions to increase the explosive energy of such emulsions.
- These salts can be ammonium nitrate, sodium nitrate, calcium nitrate or mixtures of two or more thereof. Ammonium nitrate is particularly useful.
- These particulate solids can be in the form of prills, crystals or flakes. Ammonium nitrate prills are especially useful.
- ammonium nitrate prills made by the Kaltenbach-Thoring (KT) process are used. This process involves the use of one or more crystal growth modifiers to help control the growth of the crystals. It also involves the use of one or more surfactants which are used to reduce caking.
- KT Kaltenbach-Thoring
- An example of a commercially available material made by this process is Columbia KT ammonium nitrate prills which are marketed by Columbia Nitrogen.
- the crystal habit modifier and the surfactant used in the production of Columbia KT prills are each available under the trade designation Galoryl.
- Ammonium nitrate particulate solids (e.g., ammonium nitrate prills), which are availablae in the form of preblended ammonium nitrate-fuel oil (ANFO) mixtures, can be used.
- ANFO ammonium nitrate-fuel oil
- ANFO contains about 94% by weight ammonium nitrate and about 6% fuel oil (e.g., diesel fuel oil), although these proportions can be varied.
- the quantities of these particulate-solid oxygen-supplying salts or ANFO that are used can comprise up to about 80% by weight of the total explosive composition.
- explosive compositions comprising about 25% to about 35% by weight of the inventive emulsion and about 65% to about 75% of particulate solid, oxygen-supplying salts or ANFO are used.
- explosive compositions comprising about 45% to about 55% by weight of the inventive emulsion and about 45% to about 55% of particulate solid, oxygen-supplying salts or AnFO are used.
- explosive compositions comprising about 70% to about 80% by weight of the inventive emulsion and about 20% to about 30% of particulate solid, oxygen-supplying salts or ANFO are used.
- Supplemental additives may be incorporated in the emulsions of the invention in order to further improve sensitivity, density, strength, rheology and cost of the final explosive.
- materials found useful as optional additives include, for example, particulate non-metal fuels such as sulfur, gilsonite and the like; particulate inert materials such as sodium chloride, barium sulphate and the like; thickeners such as guar gum, polyacrylamide, carboxymethyl or ethyl cellulose, biopolymers, starches, elastomeric materials, and the like; crosslinkers for the thickeners such as potassium pyroantimonate and the like; buffers or pH controllers such as sodium borate, zinc nitrate and the like; crystals habit modifiers such as alkyl naphthalene sodium sulphonate and the like; liquid phase extenders such as formamide, ethylene glycol and the like; and bulking agents and additives of common use in the explosives art.
- a useful method for making the emulsions of the invention comprises the steps of (1) mixing water, inorganic oxidizer salts (e.g., ammonium nitrate) and, in certain cases, some of the supplemental water-soluble compounds, in a first premix, (2) mixing the carbonaceous fuel, the emulsifier of the invention and any other optional oil-soluble compounds, in a second premix and (3) adding the first premix to the second premix in a suitable mixing apparatus, to form a water-in-oil emulsion.
- the first premix is heated until all the salts are completely dissolved and the solution may be filtered if needed in order to remove any insoluble residue.
- the second premix is also heated to liquefy the ingredients.
- any type of apparatus capable of either low or high shear mixing can be used to prepare these water-in-oil emulsions.
- Closed-cell, void containing materials, gas-generating materials, solid self-explosive ingredients such as particulate TNT, particulate-solid oxygen-supplying salts such as ammonium nitrate prills and ANFO, solid fuels such as aluminum or sulfur, inert materials such as barytes or sodium chloride, undissolved solid oxidizer salts and other optional materials, if employed, are added to the emulsion and simply blended until homogeneously dispersed throughout the composition.
- the water-in-oil explosive emulsions of the invention can also be prepared by adding the second premix liquefied organic solution phase to the first premix hot aqueous solution phase with sufficient stirring to invert the phases.
- this method usually requires substantially more energy to obtain the desired dispersion than does the preferred reverse procedure.
- these water-in-oil explosive emulsions are particularly adaptable to preparation by a continuous mixing process where the two separately prepared liquid phases are pumped through a mixing device wherein they are combined and emulsified.
- the emulsifiers of this invention can be added directly to the inventive emulsions. They can also be diluted with a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene, to form an additive concentrate. These concentrates usually contain from about 10% to about 90% by weight of the emulsifier composition of this invention and may contain, in addition, one or more other additives known in the art or described hereinabove.
- a substantially inert, normally liquid organic diluent such as mineral oil, naphtha, benzene, toluene or xylene
- Examples I-IX are directed to explosive emulsions using the emulsifier prepared in accordance with the teachings of Example A.
- the formulations for these explosive emulsions are indicated below in Table I (all numerical amounts being in grams).
- the procedure for making these emulsions involves the following steps.
- the ammonium nitrate is mixed with the water at a temperature of 82°C.
- the emulsifier is mixed with the mineral oil at a temperature of 52°C.
- the mixture of ammonium nitrate and water is added to the mixture of oil and emulsifier to form a water-in-oil emulsion.
- the glass microballoons are then added.
- Each of these explosive emulsions are useful as blasting agents.
- the following emulsion is prepared using Columbia KT ammonium nitrate prills (a product of Columbia Nitrogen identified as ammonium nitrate prills made using the Kaltenbach-Thoring process employing a crystal growth modifier and a surfactant, each of which is available under the trade designation Galoryl).
- the formulation for this emulsion is provided in Table II (all numerical amounts being in grams).
- the emulsion in Table II is prepared by mixing the ammonium nitrate with the water and then melting the Columbia KT prills in the ammonium nitrate and water.
- the emulsifier from Example A is mixed with the 40 Neutral oil.
- the mixture of ammonium nitrate, water and Columbia KT prills is added to the mixture of oil and emulsifier.
- the resulting emulsion is creamy (no graininess) three months after it is made.
- Examples XI-XIX are directed to explosive compositions consisting of mixtures of the emulsions from Examples I-III and ANFO.
- the ANFO is a mixture of ammonium nitrate solids (94% by weight) and diesel fuel oil (6% by weight). The formulations are indicated in Table III (all numerical amounts being in grams).
- TABLE III Example No. XI XII XIII XIV XV XVI XVII XVIII XIX Emulsion from Ex. I 300 --- --- 500 --- --- 750 --- --- Emulsion from Ex. II --- 300 --- 500 --- --- 750 --- Emulsion from Ex. III --- 300 --- 500 --- --- 750 --- Emulsion from Ex. III --- 300 --- 500 --- --- 750 --- Emulsion from Ex. III --- 300 --- 500 --- --- 750 --- Emulsion from Ex. III --- 300 --- 500 --- --- 750 ANFO
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Colloid Chemistry (AREA)
- Edible Oils And Fats (AREA)
- Cosmetics (AREA)
- Seasonings (AREA)
- General Preparation And Processing Of Foods (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85285992A | 1992-03-17 | 1992-03-17 | |
US852859 | 1992-03-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0561600A2 true EP0561600A2 (de) | 1993-09-22 |
EP0561600A3 EP0561600A3 (de) | 1995-05-17 |
EP0561600B1 EP0561600B1 (de) | 2000-09-13 |
Family
ID=25314418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93301965A Expired - Lifetime EP0561600B1 (de) | 1992-03-17 | 1993-03-16 | Wasser-in-Öl Emulsionen und Verfahren zur deren Herstellung |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0561600B1 (de) |
CN (1) | CN1076437A (de) |
AT (1) | ATE196286T1 (de) |
AU (1) | AU667076B2 (de) |
BR (1) | BR9300850A (de) |
CA (1) | CA2091405C (de) |
DE (1) | DE69329402T2 (de) |
ES (1) | ES2152239T3 (de) |
FI (1) | FI931162A (de) |
MX (1) | MX9301440A (de) |
NO (1) | NO930949L (de) |
RU (1) | RU2127239C1 (de) |
ZA (1) | ZA931865B (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512079A (en) * | 1994-11-14 | 1996-04-30 | The Lubrizol Corporation | Water-in-oil emulsifiers for slow release fertilizers using tertiary alkanol amines |
EP0711740A1 (de) | 1994-11-14 | 1996-05-15 | The Lubrizol Corporation | Düngemittel in Form einer Wasser-in-Öl Emulsion |
US5936194A (en) * | 1998-02-18 | 1999-08-10 | The Lubrizol Corporation | Thickened emulsion compositions for use as propellants and explosives |
WO2000015740A1 (en) * | 1998-09-14 | 2000-03-23 | The Lubrizol Corporation | Water fuel emulsified compositions |
EP0994087A2 (de) * | 1998-10-16 | 2000-04-19 | Clariant GmbH | Sprengstoffe, enthaltend modifizierte Copolymere aus Polyisobutylen und Maleinsäureanhydrid als Emulgatoren |
US6054493A (en) * | 1998-12-30 | 2000-04-25 | The Lubrizol Corporation | Emulsion compositions |
WO2000040522A2 (en) * | 1998-12-30 | 2000-07-13 | The Lubrizol Corporation | Emulsion explosive compositions |
US6176893B1 (en) | 1998-12-30 | 2001-01-23 | The Lubrizol Corporation | Controlled release emulsion fertilizer compositions |
WO2001055059A1 (de) * | 2000-01-27 | 2001-08-02 | Clariant Gmbh | Sprengstoffe, enthaltend modifizierte copolymere aus polyisobutylen, vinylestern und maleinsäureanhydrid als emulgatoren |
WO2001055058A2 (en) * | 2000-01-25 | 2001-08-02 | The Lubrizol Corporation | Water in oil explosive emulsions |
WO2003002487A1 (en) * | 2001-06-29 | 2003-01-09 | Exxonmobil Chemical Patents, Inc. | Explosive emulsion compositions containing modified copolymers of isoprene, butadiene, and/or styrene |
WO2003027046A2 (en) * | 2000-11-02 | 2003-04-03 | The Lubrizol Corporation | Stabilized energetic water in oil emulsion composition |
US6606856B1 (en) | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US6725653B2 (en) | 2000-06-20 | 2004-04-27 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine using a water diesel fuel in combination with exhaust after-treatments |
US7176174B2 (en) | 2003-03-06 | 2007-02-13 | The Lubrizol Corporation | Water-in-oil emulsion |
US7309684B2 (en) | 2005-05-12 | 2007-12-18 | The Lubrizol Corporation | Oil-in-water emulsified remover comprising an ethoxylated alcohol surfactant |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPP600098A0 (en) * | 1998-09-17 | 1998-10-08 | Dyno Nobel Asia Pacific Limited | Explosive emulsion composition |
US7413583B2 (en) | 2003-08-22 | 2008-08-19 | The Lubrizol Corporation | Emulsified fuels and engine oil synergy |
US20130139716A1 (en) * | 2010-06-25 | 2013-06-06 | The Lubrizol Corporation | Salt compositions and explosives using the same |
RU2561105C2 (ru) * | 2014-01-24 | 2015-08-20 | Закрытое акционерное общество "Научно-производственное предприятие "Алтайспецпродукт" | Эмульгирующий состав |
EP3737656A4 (de) | 2018-01-09 | 2021-09-15 | Dyno Nobel Asia Pacific Pty Limited | Explosive zusammensetzungen zur verwendung in reaktivem boden und verwandte verfahren |
RU2696433C1 (ru) * | 2018-07-17 | 2019-08-01 | Максим Николаевич Судаков | Композиционный эмульгатор для производства эмульсионных взрывчатых веществ и способ его получения |
RU2744232C1 (ru) * | 2020-08-24 | 2021-03-03 | Санан Мехман оглы Тагиев | Промышленное эмульсионное взрывчатое вещество и способ изготовления углеродно-водородной фазы |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
WO1987003613A2 (en) * | 1985-12-06 | 1987-06-18 | The Lubrizol Corporation | Water-in-oil emulsions |
WO1988003522A1 (en) * | 1986-11-14 | 1988-05-19 | The Lubrizol Corporation | Explosive compositions |
WO1989005848A1 (en) * | 1987-12-23 | 1989-06-29 | The Lubrizol Corporation | Water-in-oil emulsions |
US5034071A (en) * | 1990-06-14 | 1991-07-23 | Atlas Powder Company | Prill for emulsion explosives |
US5074939A (en) * | 1989-09-05 | 1991-12-24 | Ici Australia Operations Proprietary Limited | Explosive composition |
US5076867A (en) * | 1990-11-19 | 1991-12-31 | Mckenzie Lee F | Stabilized emulsion explosive and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4708753A (en) * | 1985-12-06 | 1987-11-24 | The Lubrizol Corporation | Water-in-oil emulsions |
US4956028A (en) * | 1986-11-14 | 1990-09-11 | Explosive compositions | |
US4919178A (en) * | 1986-11-14 | 1990-04-24 | The Lubrizol Corporation | Explosive emulsion |
US4931110A (en) * | 1989-03-03 | 1990-06-05 | Ireco Incorporated | Emulsion explosives containing a polymeric emulsifier |
CA2061049C (en) * | 1992-02-12 | 2001-09-04 | William B. Evans | Cap-sensitive packaged emulsion explosive having modified partition between shock and gas energy |
-
1993
- 1993-03-10 CA CA002091405A patent/CA2091405C/en not_active Expired - Lifetime
- 1993-03-16 AU AU35220/93A patent/AU667076B2/en not_active Expired
- 1993-03-16 ZA ZA931865A patent/ZA931865B/xx unknown
- 1993-03-16 EP EP93301965A patent/EP0561600B1/de not_active Expired - Lifetime
- 1993-03-16 CN CN93102654A patent/CN1076437A/zh active Pending
- 1993-03-16 DE DE69329402T patent/DE69329402T2/de not_active Expired - Lifetime
- 1993-03-16 AT AT93301965T patent/ATE196286T1/de not_active IP Right Cessation
- 1993-03-16 FI FI931162A patent/FI931162A/fi unknown
- 1993-03-16 ES ES93301965T patent/ES2152239T3/es not_active Expired - Lifetime
- 1993-03-16 MX MX9301440A patent/MX9301440A/es not_active IP Right Cessation
- 1993-03-16 NO NO93930949A patent/NO930949L/no unknown
- 1993-03-17 BR BR9300850A patent/BR9300850A/pt not_active IP Right Cessation
- 1993-03-17 RU RU93004840A patent/RU2127239C1/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
WO1987003613A2 (en) * | 1985-12-06 | 1987-06-18 | The Lubrizol Corporation | Water-in-oil emulsions |
WO1988003522A1 (en) * | 1986-11-14 | 1988-05-19 | The Lubrizol Corporation | Explosive compositions |
WO1989005848A1 (en) * | 1987-12-23 | 1989-06-29 | The Lubrizol Corporation | Water-in-oil emulsions |
US5074939A (en) * | 1989-09-05 | 1991-12-24 | Ici Australia Operations Proprietary Limited | Explosive composition |
US5034071A (en) * | 1990-06-14 | 1991-07-23 | Atlas Powder Company | Prill for emulsion explosives |
US5076867A (en) * | 1990-11-19 | 1991-12-31 | Mckenzie Lee F | Stabilized emulsion explosive and method |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0711741A1 (de) | 1994-11-14 | 1996-05-15 | The Lubrizol Corporation | Wasser-in-Öl Emulgatoren aus tertiären Alkanolaminen für Düngemittel mit langsamer Abgabe |
EP0711740A1 (de) | 1994-11-14 | 1996-05-15 | The Lubrizol Corporation | Düngemittel in Form einer Wasser-in-Öl Emulsion |
US5518517A (en) * | 1994-11-14 | 1996-05-21 | The Lubrizol Corporation | Water-in-oil emulsion fertilizer compositions |
US5512079A (en) * | 1994-11-14 | 1996-04-30 | The Lubrizol Corporation | Water-in-oil emulsifiers for slow release fertilizers using tertiary alkanol amines |
US5936194A (en) * | 1998-02-18 | 1999-08-10 | The Lubrizol Corporation | Thickened emulsion compositions for use as propellants and explosives |
US6648929B1 (en) | 1998-09-14 | 2003-11-18 | The Lubrizol Corporation | Emulsified water-blended fuel compositions |
WO2000015740A1 (en) * | 1998-09-14 | 2000-03-23 | The Lubrizol Corporation | Water fuel emulsified compositions |
US6280485B1 (en) | 1998-09-14 | 2001-08-28 | The Lubrizol Corporation | Emulsified water-blended fuel compositions |
US6858046B2 (en) | 1998-09-14 | 2005-02-22 | The Lubrizol Corporation | Emulsified water-blended fuel compositions |
EP0994087A2 (de) * | 1998-10-16 | 2000-04-19 | Clariant GmbH | Sprengstoffe, enthaltend modifizierte Copolymere aus Polyisobutylen und Maleinsäureanhydrid als Emulgatoren |
US6719861B2 (en) | 1998-10-16 | 2004-04-13 | Clariant Gmbh | Explosives comprising modified copolymers of polyisobutylene and maleic anhydride as emulsifiers |
US6516840B1 (en) | 1998-10-16 | 2003-02-11 | Clariant Gmbh | Explosives comprising modified copolymers of polyisobutylene and maleic anhydride as emulsifiers |
EP0994087A3 (de) * | 1998-10-16 | 2002-08-14 | Clariant GmbH | Sprengstoffe, enthaltend modifizierte Copolymere aus Polyisobutylen und Maleinsäureanhydrid als Emulgatoren |
WO2000040522A2 (en) * | 1998-12-30 | 2000-07-13 | The Lubrizol Corporation | Emulsion explosive compositions |
US6176893B1 (en) | 1998-12-30 | 2001-01-23 | The Lubrizol Corporation | Controlled release emulsion fertilizer compositions |
US6054493A (en) * | 1998-12-30 | 2000-04-25 | The Lubrizol Corporation | Emulsion compositions |
US6200398B1 (en) | 1998-12-30 | 2001-03-13 | The Lubrizol Corporation | Emulsion explosive compositions |
WO2000040522A3 (en) * | 1998-12-30 | 2000-11-02 | Lubrizol Corp | Emulsion explosive compositions |
WO2001055058A3 (en) * | 2000-01-25 | 2002-03-07 | Lubrizol Corp | Water in oil explosive emulsions |
US6951589B2 (en) | 2000-01-25 | 2005-10-04 | The Lubrizol Corporation | Water in oil explosive emulsions |
WO2001055058A2 (en) * | 2000-01-25 | 2001-08-02 | The Lubrizol Corporation | Water in oil explosive emulsions |
US6706838B2 (en) | 2000-01-27 | 2004-03-16 | Clariant Gmbh | Terpolymers obtained by polymer-analogous reaction |
US6527885B2 (en) | 2000-01-27 | 2003-03-04 | Clariant Gmbh | Explosives comprising modified copolymers of polyisobutylene, vinyl esters and maleic anhydride as emulsifiers |
WO2001055059A1 (de) * | 2000-01-27 | 2001-08-02 | Clariant Gmbh | Sprengstoffe, enthaltend modifizierte copolymere aus polyisobutylen, vinylestern und maleinsäureanhydrid als emulgatoren |
US6606856B1 (en) | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US6949235B2 (en) | 2000-03-03 | 2005-09-27 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US7028468B2 (en) | 2000-03-03 | 2006-04-18 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
US6725653B2 (en) | 2000-06-20 | 2004-04-27 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine using a water diesel fuel in combination with exhaust after-treatments |
WO2003027046A3 (en) * | 2000-11-02 | 2003-11-06 | Lubrizol Corp | Stabilized energetic water in oil emulsion composition |
WO2003027046A2 (en) * | 2000-11-02 | 2003-04-03 | The Lubrizol Corporation | Stabilized energetic water in oil emulsion composition |
US6929707B2 (en) | 2000-11-02 | 2005-08-16 | The Lubrizol Corporation | Stabilized energetic water-in-oil emulsion composition |
WO2003002487A1 (en) * | 2001-06-29 | 2003-01-09 | Exxonmobil Chemical Patents, Inc. | Explosive emulsion compositions containing modified copolymers of isoprene, butadiene, and/or styrene |
US7176174B2 (en) | 2003-03-06 | 2007-02-13 | The Lubrizol Corporation | Water-in-oil emulsion |
US7309684B2 (en) | 2005-05-12 | 2007-12-18 | The Lubrizol Corporation | Oil-in-water emulsified remover comprising an ethoxylated alcohol surfactant |
Also Published As
Publication number | Publication date |
---|---|
DE69329402D1 (de) | 2000-10-19 |
CA2091405A1 (en) | 1993-09-18 |
ATE196286T1 (de) | 2000-09-15 |
EP0561600B1 (de) | 2000-09-13 |
ZA931865B (en) | 1993-10-05 |
DE69329402T2 (de) | 2001-03-15 |
BR9300850A (pt) | 1993-09-21 |
AU3522093A (en) | 1993-09-23 |
CN1076437A (zh) | 1993-09-22 |
EP0561600A3 (de) | 1995-05-17 |
CA2091405C (en) | 2004-05-18 |
MX9301440A (es) | 1993-09-01 |
FI931162A0 (fi) | 1993-03-16 |
FI931162A (fi) | 1993-09-18 |
RU2127239C1 (ru) | 1999-03-10 |
ES2152239T3 (es) | 2001-02-01 |
NO930949L (no) | 1993-09-20 |
NO930949D0 (no) | 1993-03-16 |
AU667076B2 (en) | 1996-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU667076B2 (en) | Water-in-oil emulsions | |
US5920031A (en) | Water-in-oil emulsions | |
US4828633A (en) | Salt compositions for explosives | |
EP0333754B1 (de) | Explosive zusammensetzungen | |
EP0352314B1 (de) | Explosivgemische unter verwendung einer kombination von emulgiersalzen | |
US5047175A (en) | Salt composition and explosives using same | |
EP0408838B1 (de) | Emulgatoren und diese enthaltende Explosivstoffemulsionen | |
US7044988B2 (en) | Partially dehydrated reaction product, process for making same, and emulsion containing same | |
US5129972A (en) | Emulsifiers and explosive emulsions containing same | |
US6800154B1 (en) | Emulsion compositions | |
US6951589B2 (en) | Water in oil explosive emulsions | |
EP0937695A1 (de) | Verdickte Emulsionszusammensetzungen zur Verwendung als Treibladung und Sprengstoff | |
US20130139716A1 (en) | Salt compositions and explosives using the same | |
US6514361B1 (en) | Preparation of emulsions | |
US5527491A (en) | Emulsifiers and explosive emulsions containing same | |
AU617753B2 (en) | Explosive compositions using a combination of emulsifying salts | |
CA2380289A1 (en) | Emulsion compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RHK1 | Main classification (correction) |
Ipc: C06B 47/00 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19951114 |
|
17Q | First examination report despatched |
Effective date: 19960522 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RTI1 | Title (correction) |
Free format text: WATER-IN-OIL EMULSIONS AND PROCESS FOR THE PREPARATION THEREOF |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000913 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000913 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000913 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000913 |
|
REF | Corresponds to: |
Ref document number: 196286 Country of ref document: AT Date of ref document: 20000915 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69329402 Country of ref document: DE Date of ref document: 20001019 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001213 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001213 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2152239 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010316 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040229 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040511 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050331 |
|
BERE | Be: lapsed |
Owner name: THE *LUBRIZOL CORP. Effective date: 20050331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20051001 |
|
BERE | Be: lapsed |
Owner name: THE *LUBRIZOL CORP. Effective date: 20050331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100326 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100406 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100326 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100329 Year of fee payment: 18 Ref country code: DE Payment date: 20100329 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100329 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110316 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110316 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110316 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69329402 Country of ref document: DE Effective date: 20111001 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110317 |