EP0553998B1 - Dispositif de perforation de puits - Google Patents

Dispositif de perforation de puits Download PDF

Info

Publication number
EP0553998B1
EP0553998B1 EP93300368A EP93300368A EP0553998B1 EP 0553998 B1 EP0553998 B1 EP 0553998B1 EP 93300368 A EP93300368 A EP 93300368A EP 93300368 A EP93300368 A EP 93300368A EP 0553998 B1 EP0553998 B1 EP 0553998B1
Authority
EP
European Patent Office
Prior art keywords
housing assembly
detonation
firing
movable
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93300368A
Other languages
German (de)
English (en)
Other versions
EP0553998A1 (fr
Inventor
John D. Burleson
Dieter Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Co filed Critical Halliburton Co
Publication of EP0553998A1 publication Critical patent/EP0553998A1/fr
Application granted granted Critical
Publication of EP0553998B1 publication Critical patent/EP0553998B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • E21B43/11852Ignition systems hydraulically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • E21B43/11855Ignition systems mechanically actuated, e.g. by movement of a wireline or a drop-bar

Definitions

  • the present invention relates to a well perforating system and, more particularly, to such a system which includes a safety device to prevent premature firing of the gun.
  • a perforating gun is utilized to perforate well casing, or other oil field tubular members, and the surrounding environment, to facilitate the flow of fluids from external to the casing to the interior of the casing.
  • the environment surrounding the casing will typically include a layer of concrete as well as the earth formation itself.
  • the perforating is typically performed through detonation of explosive shaped charges.
  • Downhole explosive devices such as a perforating gun
  • firing heads which are responsive to either mechanical forces or fluid pressure.
  • mechanically actuated firing heads are typically responsive to an impact such as may be provided by the dropping of a detonating bar through the tubing to impact an actuation piston in the firing head.
  • Hydraulically-actuated firing heads are responsive to a source of fluid pressure, such as in either the well tubing or the well annulus, which will move an actuation piston in the firing head to initiate detonation of the perforating gun.
  • some hybrid systems exist, wherein a mechanical impact will be used to release the firing head, while an actuation piston will actually be moved by fluid pressure. An example of this type system is disclosed in U.S.
  • one company has proposed the use of an eutectic alloy placed beneath the head of the impact piston and the body of the firing head. Upon melting, the alloy will flow from beneath the piston in the firing head. The expectation is that the alloy, which forms a restraining block, will prevent substantial movement of the impact piston when the alloy is in a solid state, but will allow movement of the firing pin when the alloy is in a liquid state.
  • the alloy is selected to change state from solid to liquid at a temperature which is less than the temperatures to which the perforating assembly will be exposed within the wellbore.
  • the firing pin upon temperatures exceeding the threshold temperature, or "melting temperature,” at which the change of state occurs, the firing pin would be moveable in response to a mechanical impact.
  • a paper describing the system is that identified as "SPE #22556 Three New Systems which Prevent Firing of Perforating Guns and String Shots On or Near the Surface", presented for SPE publication July 1991, by J.V. Carisella, Sc.D. and R.B. Cook, High Pressure Integrity, Inc., and J.E. Beardmore, Jr., Marathon Oil Company.
  • a problem with such system is that design compromises must be evaluated relative to providing a large enough block to prevent a movement of the impact piston which would be sufficient to detonate the ignition charge, but which is not so large as to provide either an unrealistic barrier to movement of the firing pin even when in the liquid state or which would take an unreasonably large amount of time to change state to a degree sufficient to allow movement of the firing pin.
  • a perforating system for perforating a well comprising:
  • the invention also provides a detonation interruption apparatus, said apparatus comprising:
  • the invention further includes an explosive system for use in a well, said system comprising:
  • the invention further provides a firing head apparatus for use in a well, said apparatus comprising:
  • the invention also includes an explosive system for use in a well, said system comprising:
  • the detonation interruption apparatus interrupts detonation between the firing head assembly and the perforating gun when the perforating apparatus is not downhole, thereby preventing premature detonation of the perforating gun.
  • One preferred embodiment of the present invention comprises a distinct unit which may be quickly and easily screwed into a tool string between the firing head and the perforating gun.
  • the unit is therefore adaptable to any firing head, regardless of the type of actuation signal to which the firing head is responsive.
  • the embodiment is equally effective with a mechanically-actuated firing head, a hydraulically-actuated firing head or a hybrid mechanically-hydraulically-actuated firing head.
  • Another preferred embodiment herein illustrates the present invention incorporated into a firing head which is responsive to a combination mechanical and hydraulic actuation signal.
  • This embodiment may likewise be adapted for use with any firing head, regardless of the type of actuation signal to which the firing head is responsive.
  • the detonation interruption apparatus comprises an extended annular ring formed around a firing pin.
  • the annular ring is filled with a transition material.
  • a transition material is one which has a high shear strength when the material is in a solid state. However, when the transition material is in a fluid state, it has a relatively low shear strength.
  • the transition material is an eutectic alloy.
  • the eutectic alloy remains in a solid state at ambient surface temperatures. Thus,, at the surface, movement of the firing pin is virtually prevented by the solidified eutectic alloy.
  • the temperature of the eutectic alloy rises above the surface temperature. At a certain depth, the temperature rises above the “melting temperature.”
  • the “melting temperature” is the temperature at which the eutectic alloy changes state from solid to liquid.
  • the eutectic alloy has a low shear strength when it is in a liquid state, movement of the firing pin is substantially inhibited only by shear pins, which will shear when a predetermined detonation force is applied to the firing pin which exceeds the design limits of the shear pins.
  • FIG. 1 schematically depicts a perforating apparatus disposed within a well, illustrated partially in vertical section.
  • the assembly incorporates one illustrative embodiment of detonation interruption apparatus in accordance with the present invention.
  • FIG. 2 depicts a cross-sectional side view of the embodiment of perforating assembly of Fig. 1, including the firing head assembly, the detonation interruption apparatus and a perforating gun.
  • FIG. 3 depicts an enlarged cross-sectional side view of the detonation interruption apparatus of Fig. 2.
  • FIG. 4 depicts a cross-sectional side view of an alternative illustrative embodiment of a detonation interruption apparatus in accordance with the present invention.
  • Fig. 1 therein is schematically depicted one example of a perforating apparatus, shown generally at 10, disposed within a well 12.
  • Perforating apparatus 10 incorporates a detonation interruption apparatus 50 in accordance with the present invention.
  • Well casing 14 lines the bore of well 12 in a manner well known to those skilled in the art.
  • Perforating apparatus 10 is inserted into the bore of well 12 until perforating gun 16 is proximate the oil or gas formation 18 which is to be perforated.
  • Perforating apparatus 10 is said to be "downhole" when it is inserted into the bore of well casing 14.
  • Perforating apparatus 10 comprises a tool string, shown generally at 20.
  • Well annulus 17 is formed between tool string 20 and well casing 14.
  • Tool string 20 is coupled to tubing string 22.
  • Tool string 20 includes a ported sub 30 providing fluid communication between annulus 17 and the interior of tubing string 22.
  • Hydraulically-actuated firing head assembly 34 includes firing head 36 which is threadedly coupled at its lower end to the upper end of detonation interruption apparatus 50.
  • Detonation interruption apparatus 50 is, in turn, threadedly coupled at its lower end to perforating gun 16.
  • firing head assembly 34 including firing head 36 and detonation interruption apparatus 50.
  • one end of detonation interruption apparatus 50 is provided with a threaded male extension and the other end of detonation interruption apparatus 50 is provided with a female cavity similarly threaded, so that detonation interruption apparatus 50 can be quickly and easily screwed into tool string 20 between firing head 36 and perforating gun 16.
  • Firing head 36 includes a housing 37, which includes a central bore 39. Contained within central bore 39 is a piston 40 which includes a firing pin 44. Hydraulically-responsive piston 40 is held in a first position relative to housing 37 by a plurality of shear pins 42. In one preferred embodiment, piston 40 is retained in place by four shear pins 42. In a manner known to the art, when the fluid pressure in tubing string 22 reaches a predetermined level, established by the yield strength of shear pins 42, shear pins 42 are sheared and piston 40 is urged downward under hydraulic pressure to a second position. Firing pin 44 is designed to strike first initiator 46 as piston 40 moves to this second position.
  • first booster 47 When firing pin 44 strikes first initiator 46, it ignites and detonates first booster 47.
  • First booster 47 detonates first detonating cord 49.
  • second booster 51 When the detonation reaches the lower end of first detonating cord 49, a second booster 51 is detonated.
  • Detonation interruption apparatus 50 includes a housing 53 defining a central bore 57. Housing 53 preferably also defines one or more passageways 55, which provide for fluid communication between mating surface 81 and mating surface 82. Threadably retained within central bore 57 is a firing pin sleeve 59. Firing pin sleeve 59 will preferably be retained within central bore 57 by a threaded coupling, such as at 61. Firing pin sleeve 59 includes a central bore therethrough having sections of varying diameters. Firing pin sleeve 59 includes a first bore section 62 of a first, relatively large, diameter.
  • Firing pin sleeve 59 includes an apertured section 67 sized to allow passage of firing pin 56 of firing pin piston assembly 48 therethrough. Finally, a relatively enlarged section 68 of firing pin sleeve 59 houses a second initiator 60.
  • Firing pin piston assembly 48 includes, as previously discussed, lower piston section 73. Additionally, firing pin piston assembly 48 includes an upper piston section 75 adapted to sealingly engage a recess 70 in retention block 65. Firing pin piston assembly 48 includes a piston shaft 74 intermediate lower piston section 73 and upper piston section 75. Piston shaft 74 will preferably be hollow to reduce the mass of firing pin piston assembly 48. Piston shaft 74 will preferably be of a relatively reduced diameter relative to lower piston section 73 and upper piston section 75. Upper piston section 75 and lower piston section 73 are preferably of equal diameters. Passageways 55 provide fluid communication between mating surface 81 and mating surface 82, as has already been described.
  • Firing pin piston assembly 48 further includes an extension portion 72 having one or more apertures 78 therein. Apertures 78 are oriented to align with complimentary apertures 77 in retention block 65 such that shear pins 54 may be inserted therethrough to retain firing pin piston assembly 48 in a first, unactuated, position relative to retention block 65.
  • Piston shaft 74 and bore section 63 cooperatively define an annular chamber 76.
  • This annular chamber 76 is filled with a transition material to form a solid annular ring 52.
  • the transition material has an increased shear strength when it is in a solid state.
  • the transition material has a substantially decreased shear strength when it is in a fluid state.
  • it will not significantly inhibit the movement of firing pin piston assembly 48.
  • the transition material is selected to be in a solid state when the material is at ambient surface temperatures. That is, when the transition material is at a temperature below the "melting temperature" (i.e., when the perforating apparatus is not downhole), the transition material will be in a solid state. However, when the transition material is at a temperature above the "melting temperature” (i.e., when the perforating apparatus is downhole), the transition material will be in a fluid (typically liquid) state.
  • An eutectic alloy is a composition which changes state from solid to liquid when the temperature of the material is increased above a predetermined temperature and which changes state from liquid to solid when the temperature of the material is decreased below the same predetermined temperature. This predetermined temperature is referred to herein as the "melting temperature" of the eutectic alloy.
  • Eutectic alloys characteristically have increased shear strength when the alloy is in a solid state and have decreased shear strength when the alloy is in a liquid state.
  • Eutectic alloys suitable for use with the present invention are available through Belmont Metals Inc., and are sold under the designations "Belmont Alloy 2451” and “Belmont Alloy 2581.”
  • Eutectic alloys available consist of compositions of varying percentages of bismuth, lead, tin and cadmium, as well as other elements. Eutectic alloys are available which have "melting temperatures” ranging anywhere from about 47°C (117°F) to about 138°C (281°F).
  • the eutectic alloy selected for a given application will depend on a variety of factors, including the highest potential ambient surface temperature (i.e., an alloy having a lower "melting temperature” may be used in Alaska in winter whereas an alloy having a higher “melting temperature” is preferable in Saudi Arabia in summer) and the depth downhole at which perforating apparatus 10 is to be operated (generally, the greater the depth downhole, the higher the temperature to which the apparatus will be exposed, meaning an alloy having a higher "melting temperature” may be used).
  • annular ring 52 When the perforating gun 16 is at the surface or at a reduced depth downhole, the increased shear strength of the solid eutectic alloy in annular ring 52 serves to prevent detonation of the perforating gun 16 by preventing downward movement of firing pin piston assembly 48.
  • Annular ring 52 preferably extends about 5.1cm (2 inches) along the length of piston shaft 74 when an eutectic alloy is used as the transition material. Without losing any downhole performance, annular ring 52 may be extended to whatever length is found to be necessary to prevent detonation at the surface.
  • the temperature will rise past the "melting temperature" and the eutectic alloy in annular ring 52 will change phase from a solid state to a fluid state.
  • the eutectic alloy is in a liquid state.
  • firing pin piston assembly 48 when the eutectic alloy in annular ring 52 is in a liquid state, the primary resistance to the downward movement of firing pin piston assembly 48 is provided by shear pins 54. Shear pins 54 will hold firing pin piston assembly 48 in place up to their design limits. When firing pin 44 strikes first initiator 46, it detonates first booster 47, first detonating cord 49 and second booster 51. If the eutectic alloy is in a liquid state, the pressure acting on firing pin piston assembly 48 will exceed the design limits of shear pins 54, causing shear pins 54 to shear. Firing pin piston assembly 48 moves downward until firing pin 56 contacts second initiator 60, thereby detonating third booster 58 which, in turn, detonates the upper end of second detonating cord 71.
  • the eutectic alloy will be melted and poured into position in annular chamber 76 prior to placement of retention block 65. The eutectic alloy will then be allowed to harden to form annular ring 52 in chamber 76.
  • the eutectic alloy may be molded as a solid, such as in "clamshell” form and placed in solid form around firing pin piston assembly 48 during assembly.
  • Initiators 46, 60 are of a type known to those skilled in the art. When boosters 47, 51, 58 detonate, they preferably yield between 482 to 827 MPa (70,000.-120,000. p.s.i.). Boosters 47,51,58 also are of a type known to those skilled in the art. Boosters which may be used include PYX, HMX and RDX standard boosters.
  • boosters 47, 51, 58 are bi-directional boosters.
  • Detonating cords 49 and 71 are likewise of a type known to those skilled in the art as "primacord.” One detonating cord which may be used is available through Ensign-Bickford Company. Detonating cord 71 combusts along its length to the lower end of the detonating cord 71, where it detonates perforating gun 16 in a manner well known to the art. Perforating gun 16 then perforates the well casing 14 and formation 18.
  • perforating apparatus 10 The operation of perforating apparatus 10 is as follows. perforating apparatus 10 is assembled on the surface as has been hereinbefore described. Perforating apparatus 10 is, therefore, at the ambient surface temperature. Thus, the eutectic alloy in annular ring 52 is in a solid state. On the surface, the increased shear strength of the solidified eutectic alloy in annular ring 52 serves to prevent the issuance of a detonation signal to the perforating gun 16 by inhibiting any downward movement of firing pin piston assembly 48. Once assembled, perforating apparatus 10 is inserted down the bore of well casing 14 until perforating gun 16 is proximate the oil or gas formation 18 desired to be perforated.
  • the temperature of the apparatus rises and, as a result, the temperature of the eutectic alloy in annular ring 52 also rises.
  • the temperature of the eutectic alloy rises above the "melting temperature.”
  • the eutectic alloy then changes state from a solid to a liquid. Even though the liquified eutectic alloy in annular ring 52 does not significantly inhibit movement of firing pin piston assembly 48, firing pin piston assembly 48 continues to be held in place by shear pins 54.
  • the liquified eutectic alloy has low shear strength and offers little resistance to the downward movement of firing pin piston assembly 48.
  • the primary resistance to the downward movement of firing pin piston assembly 48 is provided by shear pins 54.
  • Shear pins 54 will hold firing pin piston assembly 48 in place up to their design limits (preferably approximately 7570N force (1700 lbs. force) double shear per pin for many applications).
  • the pressure generated by the detonation of second booster 51 exceeds the design limits of shear pins 54, causing shear pins 54 to shear.
  • Firing pin 56 strikes second initiator 60, thereby detonating third booster 58.
  • Third booster 58 in turn detonates the upper end of second detonating cord 71, which combusts along its length to detonate the shaped charges 69 in perforating gun 16, resulting in perforation of the well casing 14 and formation 18 in a conventional manner.
  • apparatus 50 when an actuation signal is received by detonation interruption apparatus 50 at depth, apparatus 50 will pass on a detonation signal to the perforating gun or other detonating device. However, when an actuation signal is received by detonation interruption apparatus 50 when it is not downhole, apparatus 50 will not issue a detonation signal to the perforating gun or other detonating device.
  • the specific eutectic alloy selected to be used in a given firing head assembly 34 depends on the highest potential ambient surface temperature as well as the depth downhole at which perforating apparatus 10 is to be operated.
  • Various eutectic alloys having "melting temperatures” ranging from about 47°C (117°F) to about 138°C (281°F) are available.
  • the shear strengths of these eutectic alloys in a solid state range from 37.2 -55.1 MPa (5,400.-8,000. p.s.i.).
  • perforating apparatus 10 it is sometimes desirable to retrieve perforating apparatus 10 from downhole even though perforating gun 16 has not yet been detonated.
  • perforating apparatus 10 As perforating apparatus 10 is raised, the temperature of the eutectic alloy in annular ring 52 drops. At a certain depth, the temperature of the eutectic alloy drops below the "melting temperature.” The eutectic alloy in annular ring 52 changes state from a liquid to a solid. The resolidified eutectic alloy will now again prevent movement of firing pin piston assembly 48.
  • detonation interruption apparatus 50 renders perforating gun 16 inoperative for all intents and purposes whenever the equipment is exposed to ambient surface temperatures.
  • the detonation interruption apparatus has only been illustrated herein as being used downhole in a substantially upright and vertical orientation, it is important to note that it is not limited to such applications. As will be understood by those skilled in the art, the detonation interruption apparatus will be equally effective no matter what its orientation is when it is downhole. Thus, when a redundant, or secondary, firing system is desired, the detonation interruption apparatus will remain effective when it is used under the perforating gun, between the gun and the secondary firing head assembly, in an upside-down orientation. Similarly, the detonation interruption may be effectively used in a deviated well, even where the wellbore proximate the formation is substantially horizontal.
  • Firing head assembly 90 is hybrid-type system wherein a mechanical impact is used to release an actuation piston 100, while a hydraulically-responsive piston 101 is moved downward to strike an initiator 120.
  • Firing head assembly 90 includes a housing assembly, indicated generally at 92.
  • Housing assembly 92 includes a lower housing member 94, which defines a firing pin bore 96.
  • Housing assembly 92 also includes an upper housing cap 98 which receives actuation piston 100.
  • Firing pin assembly 102 Contained within housing assembly 92 is a firing pin assembly 102.
  • Firing pin assembly 102 includes both a firing pin 104 proximate a first, lower, end; and a retention section 106 proximate a second, upper, end. Firing pin assembly 102 is retained in a first, unactuated, position relative to housing assembly 92 through the action of retention section 106.
  • Retention section 106 forms a cup, which includes a radially inwardly facing groove 108. This cup extends around a lower extension 110 of upper housing cap 98.
  • This extension 110 includes a plurality of radial apertures into which a plurality of latching segments 112 are inserted. These latching segments 112 are retained in a first, engaged, position, as shown in FIG. 4A, by a relatively enlarged extension 114 of actuation piston 100. When latching segments 112 are in this first position, they engage both upper housing cap 98 and retention section 106 of firing pin assembly 102 to retain the two
  • lower extension 116 of firing pin assembly 102 is hollow, and is in fluid communication, through ports 118, with firing pin bore 96. Adjacent a lower end of firing pin bore 96 is a conventional initiator 120, which is designed to ignite upon impact by firing pin 104.
  • a volume of a transition material 122 such as an eutectic alloy as described above herein, is placed within firing pin bore 96 between firing pin 104 (when firing pin assembly 102 is in the first, unactuated, position), and initiator 120.
  • transition material 122 when transition material 122 is in a solid state, it will preclude the impact of firing pin 104 upon initiator 120.
  • transition material 122 when transition material 122 is in a liquid state, movement of firing pin assembly 102 will be facilitated, with transition material 122 flowing around firing pin 104, through ports 118, and into hollow cavity 124 within firing pin assembly 102.
  • actuation piston 100 When firing head assembly 90 is to be actuated, actuation piston 100 will be moved downwardly, such as through an impact from a detonation bar, in a conventional manner. At such time, enlarged extension 114 of actuation piston 100 will be moved out of adjacent registry with latching segments 112, whereby latching segments 112 will be free to move inwardly, thereby releasing retention section 106 of firing pin assembly 102. Thereafter, fluid pressure, transmitted through ports 126 and 128 in lower housing member 94 will drive firing pin assembly 102 downwardly. Transition material 122 will then flow in the manner described above, allowing firing pin 104 to strike initiator 120. This ignition will then cause actuation of an attached perforating gun or other explosive device in a conventional manner.
  • the detonation interruption apparatus has been illustrated herein as being used in conjunction with a perforating apparatus, it will be clear to one skilled in the art that it may be utilized in any application requiring a firing head or an analogous assembly.
  • a cutter is used to cut the pipe above the lodged section in order to retrieve as much of the pipe as is possible.
  • the detonation interruption apparatus of the present invention may be used between the actuation assembly and the pipe cutter to prevent accidental detonation of the pipe cutter on the surface.
  • the same detonation interruption apparatus can be quickly and easily screwed into a tool string adjacent a firing assembly anytime a firing assembly is required.
  • the detonation interruption apparatus can also be adapted for use with a string shot or any other ballistic devices used for oil well completion or workover.
  • the detonation interruption apparatus as depicted in FIG. 3 is an independent unit, and can therefore be installed in conjunction with any downhole firing system.
  • the detonation interruption apparatus may also be constructed as an integral portion of a detonation assembly.
  • detonation interruption apparatus Some of the embodiments of detonation interruption apparatus illustrated herein have been described in conjunction with a hydraulically-actuated firing head. Others have been described in conjunction with a mechanically-actuated firing head. It will be understood by those skilled in the art that each of the various embodiments may be adapted for use with any firing head, regardless of the type of actuation signal, whether mechanical, hydraulic or electrical, to which the firing head or other firing assembly is designed to be responsive.
  • eutectic alloy has been used as the transition material in the present invention for illustrative purposes only. It will be obvious to one skilled in the art that other materials having the requisite properties and characteristics of a transition material may be used in lieu of the eutectic alloy disclosed herein. In addition, it has been assumed herein that the downhole temperature proximate formation 18 is well above the "melting temperature" of the transition material being used. Thus, after perforating gun 16 is positioned proximate formation 18, no period of waiting is required before perforating gun 16 may be detonated.
  • annular ring containing the transition material could be formed around hydraulically-actuated piston 40 instead of around firing pin piston assembly 48.
  • Many additional modifications and variations may be made to the techniques and structures described and illustrated herein.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Claims (10)

  1. Un système de perforation pour la perforation d'un puits. Ce système comprend :
    (a) Une tête de mise à feu (36) comprenant un premier organe combustible (46). Cette tête fonctionne de manière à recevoir un signal d'actionnement et à provoquer une premier détonation par l'emploi du premier organe combustible lorsque le signal d'actionnement est reçu ;
    (b) un appareil d'interruption de détonation (50) qui comprend un logement d'appareil (53), un organe mobile (48), un organe de retenue (52) et un deuxième organe combustible (60). Le logement (53) fonctionne de manière à être accouplé à la tête de mise à feu (36), l'organe mobile (48) et l'organe de retenue (52) étant contenus à l'intérieur du logement (53). La deuxième chambre de combustion (60) est au moins partiellement contenue à l'intérieur du logement (53). L'organe (52) est réalisé dans un matériau de transition susceptible de se transformer de l'état solide à l'état liquide en fonction de la température, l'organe de retenue (52) retenant l'organe mobile (48) dans une position première et non actionnée dans laquelle l'organe de retenue (52) est à l'état solide. L'appareil (50) fonctionne de manière à recevoir un premier signal de détonation. L'organe mobile (48) peut se déplacer d'une première position non actionnée à une deuxième position actionnée en réponse au premier signal de détonation lorsque l'organe de retenue (52) est à l'état fluide. L'appareil (50) appareil fonctionne de manière à établir un deuxième signal de détonation par l'emploi du deuxième organe combustible (60) lorsque l'organe mobile (48) passe à la deuxième position, qui est la position actionnée;
    (c) un perforateur à balle (16) accouplé à l'appareil d'interruption de détonation (50) fonctionnant de manière à recevoir le deuxième signal de détonation et de détoner lorsque ce signal est reçu.
  2. Un système selon la revendication 1 dans lequel l'organe mobile (48) comprend un piston de mise à feu et où le logement (53) et le piston de mise à feu sont disposés d'une manière coopérative afin de définir une chambre (76) dans laquelle l'organe de retenue (52) est logée;
  3. Un système selon la revendication 2 dans lequel le piston de mise à feu comprend sur sa longueur une première région (73), une deuxième région (74) et une troisième région (75). La première région (73) et la troisième région (75) ont une largeur accrue par rapport à la deuxième région (74), la chambre (76) étant définie au moins partiellement entre la première région (73) et la troisième région (75).
  4. Un système selon la revendication 3 dans lequel la première région (73), la deuxième région (74) et la troisième région (75) sont de forme généralement cylindrique, et dans lequel le logement (53) définit un alésage cylindrique (63) à travers les trois régions, le diamètre de la première région (73) étant approximativement égal au diamètre de la troisième région (75), le diamètre de la première région (73) étant supérieur au diamètre de la deuxième région (74).
  5. Un système selon la revendication 3 ou 4 dans lequel le piston de mise à feu comporte une première extrémité et une deuxième extrémité et où la première région (73) du piston de mise à feu est située près la première extrémité et où la troisième région (75) du piston de mise à feu est située près de la deuxième extrémité.
  6. Un système selon la revendication 5 dans lequel le piston de mise à feu comporte en outre un percuteur (56), lequel s'étend à partir de la première extrémité du piston de mise à feu et où l'appareil d'interruption de détonation (50) comprend le deuxième organe combustible (60) qui est une amorce, le piston de mise à feu dans la première position non actionnée étant en relation spatiale avec l'amorce ; le piston de mise à feu dans la deuxième position, la position actionnée, étant proche de l'amorce, le percuteur étant en contact avec celle-ci.
  7. Un appareil d'interruption de détonation (50) qui comprend :
    (a) un logement d'appareil (53) ;
    (b) un organe mobile (48) contenu à l'intérieur du logement (53) ;
    (c) un organe retenu (52) contenu à l'intérieur de la chambre (53), qui est formé d'un matériau de transition, lequel peut se transformer de l'état solide à l'état fluide en fonction de la température. Cet organe de retenue (52) retient l'organe mobile dans une première position non actionnée quand l'organe de retenue (52) se trouve à l'état solide, l'appareil d'interruption de détonation étant prêt pour recevoir un premier signal de détonation et l'organe mobile (48) étant prêt pour se déplacer de la première position non actionnée vers une deuxième position actionnée en réponse au premier signal de détonation lorsque l'organe de retenue est à l'état fluide. L'appareil d'interruption de détonation est agencé de manière à provoquer un deuxième signal de détonation par l'emploi d'un organe combustible lorsque l'organe mobile (48) passe à la deuxième position qui est la position actionnée.
  8. Un système explosif devant servir dans un puits et comprenant les éléments suivants :
    (a) un appareil à tête de mise à feu comprenant un logement d'appareil (53), un organe mobile (48) contenu à l'intérieur du logement (53), un organe de retenue (52) contenu à l'intérieur du logement (53) et un organe combustible (60) contenu au moins partiellement à l'intérieur du logement (53), cet organe de retenue (52) étant constitué d'un matériau de transition se transformant de l'état solide à l'état liquide en fonction de la température. Cet organe de retenue (52) retient l'organe mobile (48) dans une première position non actionnée lorsque l'organe de retenue (52) se trouve à l'état solide. L'appareil à tête de mise à feu fonctionne de manière à recevoir un signal d'actionnement et l'organe mobile (48) peut se déplacer de la première position non actionnée à une deuxième position actionnée en réponse au signal d'actionnement lorsque l'organe de retenue (52) et à l'état liquide. L'appareil à tête de mise à feu fonctionne de manière à produire un signal de détonation par l'emploi de l'organe combustible (60) lorsque l'organe mobile (48) est déplacé à la deuxième position qui est la position actionnée ;
    (b) un explosif agencé de manière à être accouplé au logement (53) et qui reçoit le signal de détonation et qui détone lorsque ce signal est reçu.
  9. Un appareil à tête de mise à feu destiné à servir dans un puits et comprenant les éléments suivants :
    (a) un logement d'appareil (53) ;
    (b) un organe mobile (48) contenu dans le logement (53) ;
    (c) un organe de fixation au moins partiellement contenu à l'intérieur du logement (53) ;
    (d) un organe de retenue (52) contenu à l'intérieur du logement (53) ; (e) un organe combustible (60) au moins partiellement contenu à l'intérieur du logement (53) ;
    (f) et l'organe de retenue (52) est constitué d'un matériau de transition qui est transformable entre l'état solide et l'état liquide en fonction de la température ; l'organe de fixation se déplace entre une première position de fixation dans laquelle l'organe de fixation maintient l'organe mobile (48) dans une première position, non actionnée, vers une deuxième position de déclenchement dans laquelle l'organe de fixation ne maintient plus l'organe mobile (48) dans la première position non actionnée. L'organe de retenue (52) retient l'organe mobile (48) dans la première position non actionnée lorsque l'organe de retenue (52) se trouve à l'état solide. L'organe de fixation est agencé de manière à recevoir un signal d'actionnement mécanique et se déplace de la première position, de fixation, à la deuxième position, de déclenchement, en réponse à ce signal d'actionnement mécanique. L'organe mobile (48) est agencé de manière à recevoir un signal d'actionnement hydraulique et se déplace de la première position non actionnée à la deuxième position actionnée en réponse à ce signal d'actionnement hydraulique lorsque l'organe de fixation se trouve à la deuxième position de déclenchement et lorsque l'organe de retenue se trouve à l'état fluide, l'appareil étant agencé de manière à produire un signal de détonation par l'emploi de l'organe combustible lorsque l'organe mobile (48) est déplacé à la deuxième position, qui est la position actionnée.
  10. Un système explosif destine à servir dans un puits et comprenant les éléments suivants :
    (a) une tête de mise à feu (36) comprenant un premier organe combustible (46) cette tête de mise à feu étant agencée de manière à recevoir un signal d'actionnement et à établir un premier signal de détonation par l'emploi du dit premier organe combustible lorsque le signal d'actionnement est reçu ;
    (b) un appareil d'interruption de détonation (50) qui comprend un logement (53), un organe mobile (48), un organe de retenue (52) et un deuxième organe combustible (60), le logement (53) étant accouplé à la tête de mise à feu (36), l'organe mobile (48) étant contenu à l'intérieur du logement (53), l'organe de retenue (52) étant contenu à l'intérieur du logement (53) et le deuxième organe combustible étant au moins partiellement contenu à l'intérieur du logement (53), le dit organe de retenu (52) étant constitué d'un matériau de transition qui peut se transformer de l'état solide à l'état fluide en fonction de la température. L'organe de retenue (52) retient l'organe mobile (48) dans une première position non actionnée où l'organe de retenue (52) se trouve à l'état solide. L'appareil est agencé de manière à recevoir le premier signal de détonation, l'organe mobile (48) pouvant se déplacer de la première position non actionnée à une deuxième position actionnée en réponse au premier signal de détonation lorsque l'organe de retenue se trouve à l'état fluide. L'appareil (50) est agencé de manière à établir un deuxième signal de détonation par l'emploi du deuxième organe combustible lorsque l'organe mobile (48) est déplacé à la deuxième position qui est la position actionnée ;
    (c) un explosif accouplé à l'appareil d'interruption de détonation (50) et qui est agencé de manière à recevoir le deuxième signal de détonation et à détoner lorsque ce deuxième signal de détonation est reçu.
EP93300368A 1992-01-21 1993-01-20 Dispositif de perforation de puits Expired - Lifetime EP0553998B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/823,370 US5223665A (en) 1992-01-21 1992-01-21 Method and apparatus for disabling detonation system for a downhole explosive assembly
US823370 1992-01-21

Publications (2)

Publication Number Publication Date
EP0553998A1 EP0553998A1 (fr) 1993-08-04
EP0553998B1 true EP0553998B1 (fr) 1996-08-28

Family

ID=25238563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93300368A Expired - Lifetime EP0553998B1 (fr) 1992-01-21 1993-01-20 Dispositif de perforation de puits

Country Status (7)

Country Link
US (1) US5223665A (fr)
EP (1) EP0553998B1 (fr)
AU (1) AU654225B2 (fr)
CA (1) CA2087628A1 (fr)
DE (1) DE69304216D1 (fr)
DK (1) DK0553998T3 (fr)
NO (1) NO305326B1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221808A (en) * 1991-10-16 1993-06-22 Schlumberger Technology Corporation Shaped charge liner including bismuth
US5680905A (en) * 1995-01-04 1997-10-28 Baker Hughes Incorporated Apparatus and method for perforating wellbores
US5700968A (en) * 1996-09-30 1997-12-23 Blimke; Ross Arthur Perforating gun brake
US6675896B2 (en) * 2001-03-08 2004-01-13 Halliburton Energy Services, Inc. Detonation transfer subassembly and method for use of same
US20030047312A1 (en) * 2001-09-10 2003-03-13 Bell William T. Drill pipe explosive severing tool
US8770301B2 (en) 2001-09-10 2014-07-08 William T. Bell Explosive well tool firing head
US8136439B2 (en) * 2001-09-10 2012-03-20 Bell William T Explosive well tool firing head
US7428922B2 (en) * 2002-03-01 2008-09-30 Halliburton Energy Services Valve and position control using magnetorheological fluids
US20040216632A1 (en) * 2003-04-10 2004-11-04 Finsterwald Mark A. Detonating cord interrupt device and method for transporting an explosive device
US8079296B2 (en) * 2005-03-01 2011-12-20 Owen Oil Tools Lp Device and methods for firing perforating guns
US7387156B2 (en) * 2005-11-14 2008-06-17 Halliburton Energy Services, Inc. Perforating safety system
US7487833B2 (en) * 2006-05-18 2009-02-10 Schlumberger Technology Corporation Safety apparatus for perforating system
GB2444069B (en) * 2006-11-23 2010-01-20 Halliburton Energy Serv Inc Perforating safety system
US8056632B2 (en) * 2007-12-21 2011-11-15 Schlumberger Technology Corporation Downhole initiator for an explosive end device
US8317614B2 (en) * 2008-04-15 2012-11-27 Activision Publishing, Inc. System and method for playing a music video game with a drum system game controller
US8113119B2 (en) * 2008-07-11 2012-02-14 Halliburton Energy Services, Inc. Surface safe explosive tool
US7934558B2 (en) * 2009-03-13 2011-05-03 Halliburton Energy Services, Inc. System and method for dynamically adjusting the center of gravity of a perforating apparatus
US8596378B2 (en) 2010-12-01 2013-12-03 Halliburton Energy Services, Inc. Perforating safety system and assembly
US9157718B2 (en) 2012-02-07 2015-10-13 Baker Hughes Incorporated Interruptor sub, perforating gun having the same, and method of blocking ballistic transfer
US9890619B2 (en) 2013-08-26 2018-02-13 Dynaenergetics Gmbh & Co.Kg Ballistic transfer module
US11293736B2 (en) 2015-03-18 2022-04-05 DynaEnergetics Europe GmbH Electrical connector
US9784549B2 (en) 2015-03-18 2017-10-10 Dynaenergetics Gmbh & Co. Kg Bulkhead assembly having a pivotable electric contact component and integrated ground apparatus
RU2612170C1 (ru) * 2015-12-29 2017-03-02 Общество с ограниченной ответственностью "Промперфоратор" Устройство для возбуждения детонации в скважинных кумулятивных перфораторах
US10914145B2 (en) 2019-04-01 2021-02-09 PerfX Wireline Services, LLC Bulkhead assembly for a tandem sub, and an improved tandem sub
US10961827B2 (en) * 2017-08-02 2021-03-30 Expro Americas, Llc Tubing conveyed perforating system with safety feature
US10036236B1 (en) * 2017-08-09 2018-07-31 Geodynamics, Inc. Setting tool igniter system and method
US10920544B2 (en) * 2017-08-09 2021-02-16 Geodynamics, Inc. Setting tool igniter system and method
US10794159B2 (en) 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11906278B2 (en) 2019-04-01 2024-02-20 XConnect, LLC Bridged bulkheads for perforating gun assembly
US11940261B2 (en) 2019-05-09 2024-03-26 XConnect, LLC Bulkhead for a perforating gun assembly
CN114174632A (zh) 2019-07-19 2022-03-11 德力能欧洲有限公司 弹道致动的井筒工具
US11441373B2 (en) 2019-08-08 2022-09-13 Expro Americas, Llc Well string tool and method for using the same
US11559875B2 (en) 2019-08-22 2023-01-24 XConnect, LLC Socket driver, and method of connecting perforating guns
USD904475S1 (en) 2020-04-29 2020-12-08 DynaEnergetics Europe GmbH Tandem sub
USD908754S1 (en) 2020-04-30 2021-01-26 DynaEnergetics Europe GmbH Tandem sub
US11814934B2 (en) 2020-07-15 2023-11-14 G&H Diversified Manufacturing Lp Detonator assemblies for perforating gun systems
US12000267B2 (en) 2021-09-24 2024-06-04 DynaEnergetics Europe GmbH Communication and location system for an autonomous frack system
GB202213291D0 (en) * 2022-09-12 2022-10-26 Psp Ip Limmited Safe firing head for downhole tools

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313234A (en) * 1966-03-28 1967-04-11 Petroleum Tool Res Inc Explosive well stimulation apparatus
US4614156A (en) * 1984-03-08 1986-09-30 Halliburton Company Pressure responsive explosion initiator with time delay and method of use
US4616718A (en) * 1985-08-05 1986-10-14 Hughes Tool Company Firing head for a tubing conveyed perforating gun
US4862964A (en) * 1987-04-20 1989-09-05 Halliburton Company Method and apparatus for perforating well bores using differential pressure
US4901802A (en) * 1987-04-20 1990-02-20 George Flint R Method and apparatus for perforating formations in response to tubing pressure
US5061485A (en) * 1987-05-12 1991-10-29 Ecolab Inc. Disinfectant polymeric coatings for hard surfaces
US4911251A (en) * 1987-12-03 1990-03-27 Halliburton Company Method and apparatus for actuating a tubing conveyed perforating gun
US4917189A (en) * 1988-01-25 1990-04-17 Halliburton Company Method and apparatus for perforating a well
US4836109A (en) * 1988-09-20 1989-06-06 Halliburton Company Control line differential firing head
US5062485A (en) * 1989-03-09 1991-11-05 Halliburton Company Variable time delay firing head
US4945984A (en) * 1989-03-16 1990-08-07 Price Ernest H Igniter for detonating an explosive gas mixture within a well

Also Published As

Publication number Publication date
CA2087628A1 (fr) 1993-07-22
NO930184L (no) 1993-07-22
AU3186793A (en) 1993-07-22
AU654225B2 (en) 1994-10-27
DE69304216D1 (de) 1996-10-02
NO930184D0 (no) 1993-01-20
DK0553998T3 (da) 1996-09-16
NO305326B1 (no) 1999-05-10
US5223665A (en) 1993-06-29
EP0553998A1 (fr) 1993-08-04

Similar Documents

Publication Publication Date Title
EP0553998B1 (fr) Dispositif de perforation de puits
CA2378518C (fr) Outils d'ancrage de fond achemines par des porteurs non rigides
US7455104B2 (en) Expandable elements
CA2751524C (fr) Tete de mise a feu perforatrice actionnee par cycle de pression
EP0721051B1 (fr) Mise en marche d'une tête de détonation
RU2175379C2 (ru) Универсальная головка-детонатор скважинного перфоратора (варианты)
CA2157120C (fr) Element bloquant d'allumage active par la chaleur
US5052489A (en) Apparatus for selectively actuating well tools
US6651747B2 (en) Downhole anchoring tools conveyed by non-rigid carriers
US5046567A (en) Adiabatically induced ignition of combustible materials
US5078210A (en) Time delay perforating apparatus
EP0713954A2 (fr) Actuateur pour un perforateur
US4650010A (en) Borehole devices actuated by fluid pressure
US5386780A (en) Method and apparatus for extended time delay of the detonation of a downhole explosive assembly
US3491841A (en) Method and apparatus for the explosive drilling of boreholes
US20030019384A1 (en) Detonator
AU2015203768B2 (en) Pressure cycle operated perforating firing head
CA2668533C (fr) Outils d'ancrage de fonds de puits a elements non rigides de transmission

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB NL

17P Request for examination filed

Effective date: 19931210

17Q First examination report despatched

Effective date: 19950308

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960828

Ref country code: FR

Effective date: 19960828

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 69304216

Country of ref document: DE

Date of ref document: 19961002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961129

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19990113

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000120

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101215

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130119