EP0552207A1 - Dna, dna-konstruktionen, zellen und der davon abgeleiteten pflanzen - Google Patents

Dna, dna-konstruktionen, zellen und der davon abgeleiteten pflanzen

Info

Publication number
EP0552207A1
EP0552207A1 EP19910917509 EP91917509A EP0552207A1 EP 0552207 A1 EP0552207 A1 EP 0552207A1 EP 19910917509 EP19910917509 EP 19910917509 EP 91917509 A EP91917509 A EP 91917509A EP 0552207 A1 EP0552207 A1 EP 0552207A1
Authority
EP
European Patent Office
Prior art keywords
dna
plants
ptom99
gene
dna constructs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19910917509
Other languages
English (en)
French (fr)
Inventor
Colin Roger Bird
Donald 6 Tyler Court Grierson
John Anthony 30 Sylvanus Ray
Wolfgang Walter 14 Greenfinch Close Schuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Ltd
Original Assignee
Zeneca Ltd
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeneca Ltd, Imperial Chemical Industries Ltd filed Critical Zeneca Ltd
Publication of EP0552207A1 publication Critical patent/EP0552207A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8249Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life

Definitions

  • This application relates to novel DNA constructs, plant cells containing the constructs and plants derived therefrom.
  • it involves the use of antisense or sense RNA technology to control gene expression in plants.
  • a cell manufactures protein by transcribing the DNA of the gene for that protein to produce messenger RNA (mRNA), which is then processed (e.g. by the removal of introns) and finally translated by ribosomes into protein.
  • mRNA messenger RNA
  • antisense RNA an RNA sequence which is complementary to a sequence of bases in the mRNA in question: complementary in the sense that each base (or the majority of bases) in the antisense sequence (read in the 3' to 5' sense) is capable of pairing with the corresponding base (G with C, A with U) in the mRNA sequence read in the 5' to 3' sense.
  • RNA Ribonucleic acid
  • RNA Ribonucleic acid
  • Such antisense RNA may be produced in the cell by transformation with an appropriate DNA construct arranged to transcribe backwards part of the coding strand (as opposed to the template strand) of the relevant gene (or of a DNA sequence showing substantial homology therewith).
  • the use of this technology to downregulate the expression of specific plant genes has been described, in for example European Patent publication no 271988 to ICI (corresponding to US serial 119614).
  • antisen RNA has been proven to be useful in achieving downregulation of gene expression in plants.
  • DNA constructs comprising a DNA sequence homologous to some all of the gene encoded by the clone pTOM99, preceded by transcriptional initiation region operative in plants, s that the construct can generate RNA in plant cells.
  • the invention provides DNA constructs comprising a transcriptional initiation region operative in plants positioned for transcription of a DNA sequence encoding RNA complementary to a substantial run of bases showing substantial homology to an mRNA encoding the enzyme produced by the gene for the pTOM99 cDNA.
  • the invention also includes plant cells containing such constructs; plants derived therefrom showing modified ripening characteristics; and seeds of such plants.
  • the constructs of the invention may be inserted into plants to regulate the production of enzymes encoded by genes homologous to pTOM99.
  • the production of the enzymes may be increased, or reduced, either throughout or at particular stages in the life of the plant.
  • production of the enzyme is enhanced only by constructs which express RNA homologous to the substantially complete endogenous pTOM99 mRNA.
  • plants to which the present invention can be applied include commercially important f uit-bearing plants, in particular tomato.
  • plants can be generated which have modified expression levels of the pTOM99 gene and which may have one or more of the following characteristics :
  • Novel flavour and aroma due to changes in the concentrations and ratios of the many aromatic compounds that contribute to the tomato flavour.
  • Sweeter tomatoes due tc decrease in the accumulation of acids (e.g. citric or malic acid) thereby allowing the flavour of the sugars to dominate.
  • acids e.g. citric or malic acid
  • Modified colour due to inhibition of the pathways of pigment biosynthesis e.g. lycopene, ⁇ -carotene.
  • DNA constructs according to the invention preferably comprise a base sequence at least 10 bases in length for transcription into antisense RNA. -There is no theoretical upper limit to the base sequence - it may be as long as the relevant mRNA produced by the cell - but for convenience it will generally be found suitable to use sequences between 100 and 1000 bases in length. The preparation of such constructs is described in more detail below.
  • the preferred DNA for use in the present invention is DNA derived from the clone pTOM99.
  • the required antisense DNA can be obtained in several ways: by cutting with restriction enzymes an appropriate sequence of such DNA; by ⁇ _
  • the DNA is then cloned into a vector containing upstream promoter and downstream terminator sequences, the cloning being carried out that the cut DNA sequence is inverted with respect to its orientation in the strand from which i was cut.
  • RNA in a base sequence which is complementary to the sequence of pTOM99 mRNA will thus encode RNA in a base sequence which is complementary to the sequence of pTOM99 mRNA.
  • the two RNA strands are complementary not only in their base sequence but also in their orientations (5' to 3' ).
  • cDNA clones such as pTOM99.
  • the base sequence of pTOM99 is set out in Figure 1. Searches in DNA data bases have revealed 100% homology to a known ethylene-responsive fruit ripening gene from tomato known as E8 (Lincoln et al, Proceedings of the National Academy of Sciences USA, 84, 2793, 1987; Diekman and Fischer ,1988, cited above). The function of the E8 gene is not known.
  • pTOM99 has been deposited on 14 September 1990 with the National Collections of Industrial and Marine Bacteria, Aberdeen, under Accession No. NCIB 40317.
  • cDNA clones similar to pTOM99 may be obtained from the mRN of ripening tomatoes by the method described by Slater et al, Plant Molecular Biology 5, 137- 147, 1985. In this wa may be obtained sequences coding for the whole, or substantially the whole, of the mRNA produced by pTOM99. Suitable lengths of the cDNA so obtained may be cut out for use by-- means of restriction enzymes.
  • RNA for use in the present invention is DNA showing homology to the gene encoded by the clone pTOM99.
  • pTOM99 was derived from a cDNA library isolated from ripe tomato. RNA (Slater et al Plant Molecular Biology 5, 137-147, 1985). Seven other clones (pTOM9 , 29, 44, 60, 61, 93 and 103) from the same library cross-hybridise to pTOM99 and probably contain related sequences. DNA sequence analysis has demonstrated that the cDNA insert of pTOM99 is 1166 bases long.
  • An alternative source of DNA for the base sequence for transcription is a suitable gene encoding the pTOM99 protein.
  • This gene may differ from the cDNA of, e.g. pTOM99 in that intron ⁇ may be present.
  • the introns are not transcribed into mRNA (or, if so transcribed, are subsequently cut out).
  • intron or exon regions When using such a gene as the source of the base sequence for transcription it is possible to use either intron or exon regions.
  • a further way of obtaining a suitable DNA base sequence for transcription is to synthesise it ab initio from the appropriate bases, for example using Figure 1 as guide.
  • Recombinant DNA and vectors according to the presen invention may be made as follows.
  • a suitable vector containing the desired base sequence for transcription (fo example pTOM99) is treated with restriction enzymes to cut the sequence out.
  • the DNA strand so obtained is cloned (i desired, in reverse orientation) into a second vector containing the desired promoter sequence (for example cauliflower mosaic virus 35s RNA promoter or the tomato oolygalacturonase gene promoter sequence - Bird et al., Plant Molecular Biology, 11, 651-662, 1988) and the desire terminator sequence (for example the 3' of the desired promoter sequence
  • the desired promoter sequence for example cauliflower mosaic virus 35s RNA promoter or the tomato oolygalacturonase gene promoter sequence - Bird et al., Plant Molecular Biology, 11, 651-662, 1988
  • the desire terminator sequence for example the 3' of the 3' of the desired promoter sequence
  • Agrobacterium tumefaciens nopaline synthase gene the nos 3' end).
  • constitutive promoters such as cauliflower mosaic virus 35S RNA
  • inducible or developmentally regulated - promoters such as the ripe-fruit-specific polygalacturonase promoter
  • Use of a constitutive promoter will tend to affect functions i all parts of the plant: while by using a tissue specific promoter, functions may be controlled more selectively.
  • the promoter of the PG gene it may be found convenient to use the promoter of the PG gene (Bird et al , 1988, cited above).
  • Use of this promoter, at least in tomatoes has the advantage that the production o antisense RNA is under the control of a ripening- specific promoter.
  • the antisense RNA is only produced in the organ in which its action is required.
  • Other ripening-specific promoters that could be used include the E8 promoter (Diekman & Fischer, 1988 cited above).
  • Vectors according to the invention may be used to transform plants as desired, to make plants according to the invention.
  • Dicotyledonous plants such as tomato and melon, may be transformed by Agrobacterium Ti plasmid technology, for example as described by Bevan (1984)
  • the degree of production of antisense RNA in the plant cells can be controlled by suitable choice of promoter sequences, or by selecting the number of copies, or the site of integration, of the DNA sequences according to the invention that are introduced into the plant genome. In this way it may be possible to modify ripening or senescence to a greater or lesser extent.
  • the constructs of our invention may be used to transform cells of both monocotyledonous and dicotyledonous plants in various ways known to the art. In many cases such plant cells (particularly when they are cells of dicotyledonous plants) may be cultured to regenerate whole plants which subsequently reproduce to give successive generations of genetically modified plants. Examples of genetically modified plants according to the present invention include, as well as tomatoes, fruits of such as mangoes, peaches, apples, pears, strawberries, bananas, melons and citrus fruit.
  • Figure 1 shows the base sequence cf the clones pTOM99
  • Figure 2 shows the method of construction of pJRl99A.
  • the vector pJRl99A was constructed using the sequences corresponding to bases 1 to 776 of pTOM99 (Fig 2) . This fragment was synthesised by polymerase chain reaction using synthetic primers. The fragment was cloned into the vector pJRI which had previously been cut with Smal.
  • pJRI Smith et al Nature 334, 724- 726, 1988
  • Binl9 Bevan, Nucleic Acids Research, 12, 8711- 8721, 1984
  • This vector includes a nopaline synthase (nos) 3' end termination sequence.
  • pJR2 is a Binl9 based vector, which permits the expression of the antisense RNA under the control of the tomato polygalacturonase promoter.
  • This vector includes a nopaline synthase (nos) 3' end termination sequence.
  • vectors with the correct orientation ⁇ f pTOM99 sequences are identified by DNA sequence analysis.
  • Vectors from Example 1 were transferred to Agrobacterium tumefacien ⁇ LBA4404 (a micro-organism widely available to plant biotechnologists ) and were used to transform Ailsa Craig tomato plants. Transformation of tomato stem segments followed standard protocols (e.g. Bird et al Plant Molecular Biology 11, 6.51-662, 1988). Transformed plants were identified by their ability to grow on media containing the antibiotic kanamycin. 36 transformed plants were grown to maturity. Northern blot analysis of ripe fruit mRNA from 9 of these transformants showed that in 8 of the plants the abundance of the 1.45kb pTOM99 gene transcript is greatly reduced. Ripening fruit from the transformed plants were observed for modifications to their ripening characteristics. Some of them exhibited slow fruit coloration.
  • Selfed progeny from 5 of the primary transformant identified were germinated. Genomic Southern analysis of the progeny from one such primary transformant has confirmed that the pTOM99 antisense gene is inherited. The selfed progeny are being grown to maturity so that their fruit can be observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
EP19910917509 1990-10-09 1991-10-04 Dna, dna-konstruktionen, zellen und der davon abgeleiteten pflanzen Withdrawn EP0552207A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9021923 1990-10-09
GB909021923A GB9021923D0 (en) 1990-10-09 1990-10-09 Dna,dna constructs,cells and plants derived therefrom

Publications (1)

Publication Number Publication Date
EP0552207A1 true EP0552207A1 (de) 1993-07-28

Family

ID=10683427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910917509 Withdrawn EP0552207A1 (de) 1990-10-09 1991-10-04 Dna, dna-konstruktionen, zellen und der davon abgeleiteten pflanzen

Country Status (4)

Country Link
EP (1) EP0552207A1 (de)
AU (1) AU8641391A (de)
GB (1) GB9021923D0 (de)
WO (1) WO1992006206A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545815A (en) * 1991-10-08 1996-08-13 The Regents Of The University Of California Control of fruit ripening in plants
US5686649A (en) * 1994-03-22 1997-11-11 The Rockefeller University Suppression of plant gene expression using processing-defective RNA constructs
US5539093A (en) * 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
WO1997015584A2 (en) * 1995-10-12 1997-05-01 The Regents Of The University Of Michigan Use of linalool synthase in genetic engineering of scent production
US5705624A (en) * 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8626879D0 (en) * 1986-11-11 1986-12-10 Ici Plc Dna
GB8811115D0 (en) * 1988-05-11 1988-06-15 Ici Plc Tomatoes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9206206A1 *

Also Published As

Publication number Publication date
GB9021923D0 (en) 1990-11-21
AU8641391A (en) 1992-04-28
WO1992006206A1 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US5304478A (en) Modification of carotenoid production in tomatoes using pTOM5
US5254800A (en) Tomato plants and cells containing pTOM36 antisense constructs
AU652362B2 (en) DNA, DNA constructs, cells and plants derived therefrom
US5908973A (en) DNA encoding fruit-ripening-related proteins, DNA constructs, cells and plants derived therefrom
EP0618975A1 (de) Dna-konstruktionen, pflanzen und davon abgeleitete zellen
US5484906A (en) DNA clone encoding an ethylene-forming enzyme, constructs, plant cells and plants based thereon
US5304490A (en) DNA constructs containing fruit-ripening genes
US5886164A (en) DNA encoding enzymes related to ethylene biosynthesis and ripening from banana
EP0606323A1 (de) DNA, DNA Konstruktionen, Zellen und davon abgeleitete Pflanzen.
US5824873A (en) Tomato ripening TOM41 compositions and methods of use
EP0552207A1 (de) Dna, dna-konstruktionen, zellen und der davon abgeleiteten pflanzen
US5659121A (en) DNA, DNA constructs, cells and plants derived therefrom
US5744364A (en) PTOM36 constructs and tomato cells transformed therewith
US5569829A (en) Transformed tomato plants
WO1993014212A1 (en) Transgenic plants with increased solids content
WO1995014092A1 (en) Dna, dna constructs, cells and plants derived therefrom
WO1994028180A2 (en) Fruit with modified nadp-linked malic enzyme activity
EP0746617A1 (de) Pektin esterase kodierende dna und davon abgeleitete zellen und pflanzen
WO1994021803A2 (en) Fruit ripening-related tomato dna, dna constructs, cells and plants derived therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZENECA LIMITED

17Q First examination report despatched

Effective date: 19951024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960305