EP0549778A1 - Method of stabilizing proteins during optical tests - Google Patents

Method of stabilizing proteins during optical tests

Info

Publication number
EP0549778A1
EP0549778A1 EP92916184A EP92916184A EP0549778A1 EP 0549778 A1 EP0549778 A1 EP 0549778A1 EP 92916184 A EP92916184 A EP 92916184A EP 92916184 A EP92916184 A EP 92916184A EP 0549778 A1 EP0549778 A1 EP 0549778A1
Authority
EP
European Patent Office
Prior art keywords
protein
chaperonin
groel
proteins
coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92916184A
Other languages
German (de)
French (fr)
Inventor
Rainer Rudolph
Bärbel HÖLL-NEUGEBAUER
Johannes Buchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Boehringer Mannheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics GmbH, Boehringer Mannheim GmbH filed Critical Roche Diagnostics GmbH
Publication of EP0549778A1 publication Critical patent/EP0549778A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • GroEL protein from E. coli other members of the family of "chaperonin 60" proteins are suitable for the process according to the invention, e.g. proteins from other types of bacteria which are homologous to GroEL or "cpn 60" proteins from eukaryotes such as the hsp 60 protein which occurs in mitochondria, the "Rubisco subunit binding protein” from chloroplasts and / or analogous cytosolic proteins which are ubiquitous in eukaryotic - occur in organisms.
  • Listings of "cpn 60" proteins can be found e.g. in Hallberg (1990), Semin.Cell Biol. 1, 37-45 and Hemmingsen (1990), Semin.Cell.Biol. 1, 47-54.
  • GroEL protein from E. coli is particularly preferably used for the method according to the invention.
  • ⁇ -Glucosidase (10 ⁇ g / ml) is incubated in the presence of 1.5-fold GroEL excess for 60 minutes at 47 ° C. in 0.1 mol / 1 Tris buffer, pH 7.6. After the protein mixture has cooled to 25 ° C., 2 mmol / 1 ATP, 10 mmol / 1 MgCl 2 , 10 mmol / 1 KCl and 0.146 ⁇ mol / 1 GroES are added (D) no additives. The reactivation of the ⁇ -glucosidase is followed using an activity test with p-nitrophenol- ⁇ -D-glucopyranoside as the ⁇ -glucosidase substrate (Fig. 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

L'invention concerne un procédé destiné à assurer un maintien constant de la sensibilité lors d'essais optiques effectués dans des solutions protéiniques, au cours desquels des perturbations peuvent se produire en raison d'une faible stabilité des composants protéiniques présents dans la solution d'essai, caractérisé en ce qu'on ajoute au réactif d'essai ou/et à la solution d'essai, une ou plusieurs protéines appartenant à la classe de substances des protéines du type "Chaperonine 60", ainsi qu'un réactif pour essai optique renfermant une ou plusieurs protéines "Chaperonine 60".The invention relates to a method for ensuring constant maintenance of sensitivity in optical tests performed in protein solutions, in which disturbances may occur due to poor stability of the protein components present in the solution of. test, characterized in that one or more proteins belonging to the class of substances of proteins of the type "Chaperonin 60" are added to the test reagent and / and to the test solution, as well as a test reagent optic containing one or more "Chaperonin 60" proteins.

Description

Verfahren zur Stabilisierung von Proteinen bei optischen Tests Process for stabilizing proteins in optical tests
B e s c h r e i b u n gDescription
Die vorliegende Erfindung betrifft ein Verfahren zur Kon¬ stanthaltung der Empfindlichkeit bei optischen Tests in pro- teinhaltigen Lösungen, bei dem Störungen durch eine geringe Stabilität von in der Testlösung vorhandenen Proteinkomponen¬ ten auftreten können.The present invention relates to a method for keeping the sensitivity constant in optical tests in protein-containing solutions, in which disturbances can occur due to low stability of protein components present in the test solution.
Der in prokaryontischen Organismen vorkommende GroE-Komplex, bestehend aus den Proteinen GroEL und GroES, ist sowohl in vitro als auch in vivo bei der Rekonstitution und Assoziie¬ rung von Proteinen beteiligt (Goloubinoff et al., Nature 337 (1989), 44-47; Goloubinoff et al., Nature 342 (1989), 884-889 und Viitanen et al., Bioche istry 29 (1990), 5665-5671). GroEL gehört zu der Gruppe der "Chaperonin 60"-Proteine, während GroES der "Chaperonin 10"-Gruppe zugeordnet wird. Beide Proteingruppen werden der in jüngster Zeit beschriebe¬ nen, meist ATP-abhängigen Proteinfamilie der "Chaperone" zugeordnet, welche aktiv bei Faltungs-, Assoziierungs- und Translokationsprozessen in der Zelle beteiligt sind (Landry und Gierasch, TIBS 16 (1991), 159-163, Ellis und van der Vies, Ann.Rev.Biochem. 60 (1991), 321-347). Diesen Artikeln zufolge besteht der GroEL-Komplex aus 14 Untereinheiten und. unterstützt die Translokation und Faltung von Proteinen. Weitere mit GroEL verwandte Heatshock-Proteine sind aus Mito- chondrien (Mc ullin und Hallberg (1988), Molec.Cell.Biol. 8, 371-380), Chloroplasten (Hemmingsen et al. (1988), Nature 333, 330-334) und verschiedenen Bakterienarten (Vodkin und Williams (1988), J.Bact. 170, 1227-1234; Mehra et al. (1986), Proc.Natl.Acad.Sci. USA 83, 7013-7017 und Torres-Ruiz und McFadden (1989), Arch.Biochem. Biophys. 261, 196-204) be¬ kannt.The GroE complex occurring in prokaryotic organisms, consisting of the proteins GroEL and GroES, is involved both in vitro and in vivo in the reconstitution and association of proteins (Goloubinoff et al., Nature 337 (1989), 44-47 ; Goloubinoff et al., Nature 342 (1989), 884-889 and Viitanen et al., Bioche istry 29 (1990), 5665-5671). GroEL belongs to the group of "chaperonin 60" proteins, while GroES belongs to the "chaperonin 10" group. Both protein groups are assigned to the most recently described, mostly ATP-dependent protein family of "chaperones", which are actively involved in folding, association and translocation processes in the cell (Landry and Gierasch, TIBS 16 (1991), 159- 163, Ellis and van der Vies, Ann. Rev. Biochem. 60 (1991), 321-347). According to these articles, the GroEL complex consists of 14 subunits and. supports the translocation and folding of proteins. Other heatshock proteins related to GroEL are from mitochondria (Mcullin and Hallberg (1988), Molec.Cell.Biol. 8, 371-380), chloroplasts (Hemmingsen et al. (1988), Nature 333, 330-334 ) and various types of bacteria (Vodkin and Williams (1988), J.Bact. 170, 1227-1234; Mehra et al. (1986), Proc.Natl.Acad.Sci. USA 83, 7013-7017 and Torres-Ruiz and McFadden (1989) Arch.Biochem. Biophys. 261, 196-204).
Die Wechselwirkung von Chaperonen mit neu synthetisierten oder denaturierten Proteinen zur Erhöhung der Ausbeute an aktivem Protein bei Renaturierung in vitro bzw. bei Coexpres- sion in vivo ist bereits bekannt und wurde in mehreren Publi¬ kationen beschrieben. Am Beispiel der in vitro Renaturierung von Citratsynthase konnte durch Lichtstreuungsmessung gezeigt werden, daß der GroE-Komplex bzw. das GroEL-Protein das Ent¬ stehen der bei Renaturierung auftretenden Aggregationsprozes¬ se verhindern kann (Buchner et al., Biochemistry 30 (1991), 1586-1591). Ferner ist bekannt, daß das DnaK-Protein aus E.coli, ein weiteres Chaperon, die RNA-Polymerase vor Inak- tivierung durch Hitze schützt und eine bereits durch Hitze inaktivierte RNA-Polymerase ATP-abhängig renaturieren kann (Skowyra et al., Cell 62 (1990), 939-944). Zu diesem Zweck ist jedoch ein sehr großer Überschuß an DnaK-Protein gegen¬ über der RNA-Polymerase erforderlich.The interaction of chaperones with newly synthesized or denatured proteins to increase the yield of active protein in renaturation in vitro or in co-expression in vivo is already known and has been described in several publications. Using the example of in vitro renaturation of citrate synthase, light scattering measurements have shown that the GroE complex or GroEL protein can prevent the formation of the aggregation processes that occur during renaturation (Buchner et al., Biochemistry 30 (1991), 1586-1591). Furthermore, it is known that the DnaK protein from E. coli, another chaperone, protects the RNA polymerase from inactivation by heat and that an RNA polymerase which has already been inactivated by heat can renaturate depending on ATP (Skowyra et al., Cell 62: 939-944 (1990)). For this purpose, however, a very large excess of DnaK protein over the RNA polymerase is required.
Die Genauigkeit optischer Tests, insbesondere enzymatischer Tests hängt oft von ihrer Empfindlichkeit ab. Diese Empfind¬ lichkeit verringert sich oft bei längerer Lagerungsdauer, wenn instabile bzw. labile Proteinkomponenten in den Testlö¬ sungen vorhanden sind. So wurde beispielsweise bei Untersu¬ chungen zur Stabilität von α-Glucosidase aus Bäckerhefe gefunden, daß dieses Protein sehr temperatursensitiv ist. Oberhalb von 40°C erfolgt Entfaltung des Proteins, gefolgt von Aggregation. Die so gebildeten Präzipitate, die auch mit geringerer Geschwindigkeit bei 37°C auftreten können, behin¬ dern den Einsatz dieses Proteins in photometrischen Testsy¬ stemen, z.B. bei der Bestimmung von α-Amylase.The accuracy of optical tests, especially enzymatic tests, often depends on their sensitivity. This sensitivity is often reduced with a longer storage period if unstable or unstable protein components are present in the test solutions. For example, in studies of the stability of α-glucosidase from baker's yeast, it was found that this protein is very temperature sensitive. The protein unfolds above 40 ° C, followed by aggregation. The precipitates formed in this way, which can also occur at a slower rate at 37 ° C., hinder the use of this protein in photometric test systems, e.g. in the determination of α-amylase.
Es sind bereits Möglichkeiten bekannt, die Empfindlichkeit bei optischen Tests über einen gewissen Zeitraum konstant zu halten, indem man die Stabilität von labilen Proteinkomponen¬ ten erhöht. So kann man beispielsweise der Testlösung Rinder¬ serumalbumin oder bestimmte Detergenzien in geringer Konzen¬ tration zusetzen. Ein Nachteil von bekannten Verfahren ist jedoch, daß die Stabilisierung oft nicht ausreichend ist und daß störende Wechselwirkungen des Stabilisators mit anderen Komponenten des Testsystems auftreten können.There are already known ways of constantly increasing the sensitivity in optical tests over a certain period of time hold by increasing the stability of unstable protein components. For example, bovine serum albumin or certain detergents can be added to the test solution in a low concentration. A disadvantage of known methods, however, is that the stabilization is often insufficient and that interfering interactions of the stabilizer with other components of the test system can occur.
Aufgabe der vorliegenden Erfindung war es somit, ein Verfah¬ ren zur Erhöhung der Stabilität von labilen Proteinkompo¬ nenten bei optischen Tests, insbesondere enzymatischen Tests, bereitzustellen, bei dem die Nachteile des Standes der Tech¬ nik mindestens teilweise beseitigt sind.The object of the present invention was therefore to provide a method for increasing the stability of unstable protein components in optical tests, in particular enzymatic tests, in which the disadvantages of the prior art are at least partially eliminated.
Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Konstanthaltung der Empfindlichkeit bei optischen Tests in proteinhaltigen Lösungen, bei dem Störungen durch eine geringe Stabilität von in der Testlösung vorhandenen Protein¬ komponenten auftreten können, welches dadurch gekennzeichnet ist, daß man dem Testreagenz oder/und der Testlösung ein oder mehrere Proteine aus der Substanzklasse der "Chaperonin 60"- Proteine zusetzt.The object of the invention is achieved by a method for keeping the sensitivity constant in optical tests in protein-containing solutions, in which disturbances can occur due to a low stability of protein components present in the test solution, which is characterized in that the test reagent or / and the Test solution adds one or more proteins from the class of "Chaperonin 60" proteins.
Es wurde überraschenderweise festgestellt, daß die Aggrega¬ tion der α-Glucosidase aus Bäckerhefe bei thermischer Bela¬ stung durch Anwesenheit von GroEL-Protein aus E.coli voll¬ ständig unterdrückt werden kann. Ein weiterer Zusatz von g-^ ATP, GroES-Protein und Kaliumionen zu einer α-Glucosidase und GroEL-Protein enthaltenden Lösung bewirkt bei höheren Tempe¬ raturen eine Präzipitation, bei niedrigen Temperaturen eine Reaktivierung der α-Glucosidase.It was surprisingly found that the aggregation of the α-glucosidase from baker's yeast under thermal stress can be completely suppressed by the presence of GroEL protein from E. coli. A further addition of g- ^ ATP, GroES protein and potassium ions to a solution containing α-glucosidase and GroEL protein causes precipitation at higher temperatures and reactivation of the α-glucosidase at low temperatures.
Die Gewinnung von GroEL-Protein wird in dem Artikel von Georgopoulos, Mol.Gen.Genet. (1986), 202 beschrieben. Die Aufreinigung von GroEL-Protein ist in dem Artikel von Buchner et al. (Biochemistry 30 (1991), 1586-1591) beschrieben.GroEL protein recovery is described in the article by Georgopoulos, Mol.Gen.Genet. (1986), 202. The Purification of GroEL protein is described in the article by Buchner et al. (Biochemistry 30 (1991), 1586-1591).
Neben GroEL-Protein aus E.coli sind für das erfindungsgemäße Verfahren weitere Mitglieder der Familie der "Chaperonin 60"- Proteine geeignet, z.B. zu GroEL homologe Proteine aus ande¬ ren Bakterienarten oder "cpn 60"-Proteine aus Eukaryonten wie etwa das in Mitochondrien vorkommende hsp 60-Protein, das "Rubisco Subunit binding-Protein" aus Chloroplasten oder/und analoge cytosolische Proteine, die ubiguitär in eukaryonti- schen Organismen vorkommen. Auflistungen von "cpn 60"-Protei¬ nen finden sich z.B. bei Hallberg (1990), Semin.Cell Biol. 1, 37-45 und Hemmingsen (1990), Semin.Cell.Biol. 1, 47-54. Be¬ sonders bevorzugt wird für das erfindungsgemäße Verfahren GroEL-Protein aus E.coli verwendet.In addition to GroEL protein from E. coli, other members of the family of "chaperonin 60" proteins are suitable for the process according to the invention, e.g. proteins from other types of bacteria which are homologous to GroEL or "cpn 60" proteins from eukaryotes such as the hsp 60 protein which occurs in mitochondria, the "Rubisco subunit binding protein" from chloroplasts and / or analogous cytosolic proteins which are ubiquitous in eukaryotic - occur in organisms. Listings of "cpn 60" proteins can be found e.g. in Hallberg (1990), Semin.Cell Biol. 1, 37-45 and Hemmingsen (1990), Semin.Cell.Biol. 1, 47-54. GroEL protein from E. coli is particularly preferably used for the method according to the invention.
Das molare Verhältnis zwischen dem zugesetzten "Chaperonin 60"-Protein und der zu stabilisierenden Proteinkomponente beträgt bei dem erfindungsgemäßen Verfahren vorzugsweise 0,0001 : 1 bis 20 : 1. Dieses molare Verhältnis bezieht sich dabei auf den 14 Untereinheiten aufweisenden "Chaperonin 60"- Komplex. Besonders bevorzugt wird das "Chaperonin 60"-Protein in einem molaren Verhältnis von 0,001 : 1 bis 10 : 1 bezüg¬ lich der zu stabilisierenden Proteinkomponenten und am mei¬ sten bevorzugt in einem molaren Verhältnis von 0,1 : 1 bis 5 : 1 bezüglich der zu stabilisierenden Proteinkomponenten zugesetzt.The molar ratio between the added "chaperonin 60" protein and the protein component to be stabilized is preferably 0.0001: 1 to 20: 1 in the process according to the invention. This molar ratio relates to the "chaperonin 60" complex having 14 subunits . The "chaperonin 60" protein is particularly preferred in a molar ratio of 0.001: 1 to 10: 1 in relation to the protein components to be stabilized and most preferably in a molar ratio of 0.1: 1 to 5: 1 in relation added to the protein components to be stabilized.
In Fällen, bei denen nur ein geringer Teil der zu stabilisie¬ renden Proteinkomponente zur Aggregation neigt, reicht es aus, das "Chaperonin 60"-Protein in molarem Unterschuß zuzu¬ geben, da jeweils nur eine relativ geringe Proteinmenge der Auf altung unterliegt. Dies ist jedoch in solchen Fällen anders, bei denen durch äußere Umstände, insbesondere durch thermische Belastung damit zu rechnen ist, daß der größte Teil der zu stabilisierenden Proteinkomponente einer Entfal¬ tung und damit letztlich einer Aggregation unterliegen wird. In diesem Fall muß das Chaperon wenigstens in äquimolarer Menge, besser noch im Überschuß zugesetzt werden.In cases in which only a small part of the protein component to be stabilized tends to aggregate, it is sufficient to add the "chaperonin 60" protein in molar deficit, since only a relatively small amount of protein is subject to aging. However, this is different in those cases in which, due to external circumstances, in particular due to thermal stress, it can be expected that the largest Part of the protein component to be stabilized will be subject to unfolding and thus ultimately to aggregation. In this case, the chaperone must be added at least in an equimolar amount, better still in excess.
Das erfindungsgemäße Verfahren kann in jedem optischen Test angewandt werden, bei dem Störungen durch eine geringe Stabi¬ lität von in der Testlösung vorhandenen Proteinkomponenten auftreten können. Üblicherweise beinhalten solche Testverfah¬ ren eine enzymatische Reaktion. Ein "optischer Test" im Sinne der vorliegenden Erfindung ist eine Bestimmung, bei der eine optische Größe oder die Änderung einer optischen Größe, z.B. Absorption, Transmission, Streulicht etc. gemessen wird.The method according to the invention can be used in any optical test in which disturbances due to low stability of protein components present in the test solution can occur. Such test methods usually involve an enzymatic reaction. An "optical test" in the sense of the present invention is a determination in which an optical variable or the change in an optical variable, e.g. Absorption, transmission, stray light etc. is measured.
Durch den erfindungsgemäßen Zusatz eines oder mehrerer "Cha¬ peronin 60"-Proteine wird die Stabilität der Proteinkom¬ ponenten in einer Testlösung erhöht, so daß das Auftreten einer Trübung in der Lösung verhindert wird. Dies führt zu einer erheblichen Verbesserung in der Konstanthaltung der Empfindlichkeit, die sich in geringen Leerwerten des Tests äußert. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, daß durch die Verhinderung einer Aggregation Meßfehler verhindert werden, die durch Verschleppung von Proteinaggre¬ gaten auftreten.The stability of the protein components in a test solution is increased by the addition of one or more "chaperonin 60" proteins according to the invention, so that the occurrence of turbidity in the solution is prevented. This leads to a significant improvement in keeping the sensitivity constant, which is reflected in the low blank values of the test. Another advantage of the method according to the invention is that the prevention of aggregation prevents measurement errors which occur due to the carryover of protein aggregates.
Ein bevorzugtes Beispiel für eine mit "Chaperonin 60"-Protei¬ nen, z.B. mit GroEL zu stabilisierende Proteinkomponente ist die α-Glucosidase PI aus Bäckerhefe. Das erfindungsgemäße Verfahren ist jedoch nicht auf dieses Protein beschränkt.A preferred example of a with "Chaperonin 60" proteins, e.g. Protein component to be stabilized with GroEL is the α-glucosidase PI from baker's yeast. However, the method according to the invention is not restricted to this protein.
Bei dem erfindungsgemäßen Verfahren wird üblicherweise kein "Chaperonin 10" bzw. GroES-Protein zugesetzt, da das "Chape¬ ronin 60"-Protein bereits alleine durch Verhinderung von Aggregatbildung eine Stabilisierung der labilen Proteinkompo¬ nente bewirkt. Der Zusatz von "Chaperonin 10"-Proteinen, d.h. von Proteinen, die zusammen mit "Chaperonin 60"-Proteinen und Mg-ATP einen Komplex bilden, ist nur erforderlich, wenn eine Reaktivierung von denaturierten Proteinkomponenten erfolgen soll. Vorzugsweise verwendet man in diesem Fall als "Chapero¬ nin 10"-Protein das GroES-Protein aus E.coli.In the process according to the invention, no "chaperonin 10" or GroES protein is usually added, since the "chaperonin 60" protein alone stabilizes the labile protein component by preventing aggregate formation. The addition of "chaperonin 10" proteins, ie of proteins which form a complex together with "chaperonin 60" proteins and Mg-ATP is only required if reactivation of denatured protein components is to take place. In this case, the GroES protein from E. coli is preferably used as the "chaperone 10" protein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist auch ein Reagenz für einen optischen Test, das fest oder flüssig sein kann und ein oder mehrere Proteine aus der Substanzklas¬ se der "Chaperonin 60"-Proteine, insbesondere das GroEL-Pro¬ tein aus E.coli, das hsp 60-Protein aus Mitochondrien, das "Rubisco Subunit binding-Protein" aus Chloroplasten oder/und ein analoges Protein aus dem Cytosol prokaryontischer oder eukaryontischer Zellen enthält. Ein erfindungsgemäßes Reagenz kann beispielsweise das "Chaperonin 60"-Protein in gelöster Form oder/und als Lyophilisat enthalten. Vorzugsweise ist das "Chaperonin 60"-Protein das GroEL-Protein aus E.coli.The present invention also relates to a reagent for an optical test, which can be solid or liquid, and one or more proteins from the substance class of the "chaperonin 60" proteins, in particular the GroEL protein from E. coli , the hsp 60 protein from mitochondria, the "Rubisco Subunit binding protein" from chloroplasts and / or an analog protein from the cytosol of prokaryotic or eukaryotic cells. A reagent according to the invention can contain, for example, the "chaperonin 60" protein in dissolved form and / or as a lyophilisate. Preferably the "chaperonin 60" protein is the GroEL protein from E. coli.
Die vorliegende Erfindung betrifft schließlich auch die Ver¬ wendung von "Chaperonin 60"-Proteinen, insbesondere GroEL- Protein zur Stabilisierung von Proteinkomponenten für einen optischen Test.Finally, the present invention also relates to the use of "chaperonin 60" proteins, in particular GroEL protein, for stabilizing protein components for an optical test.
Die Erfindung soll weiterhin durch die folgenden Beispiele in Verbindung mit der Zeichnung erläutert werden. Es zeigt:The invention is further illustrated by the following examples in conjunction with the drawing. It shows:
Abb. 1: die Aggregation von α-Glucosidase bei 46,3°C inFig. 1: the aggregation of α-glucosidase at 46.3 ° C in
Abwesenheit bzw. in Gegenwart von 1,5-fach molarem Überschuß an GroEL-Protein,Absence or in the presence of a 1.5-fold molar excess of GroEL protein,
Abb. 2 die Aggregation von α-Glucosidase in Gegenwart unterschiedlicher Mengen GroEL-Protein, Abb. 3 die Dissoziation des α-Glucosidase-GroEL-Komplexes durch Zugabe von ATP, MgCl2 , K+ und GroES-Protein, undFig. 2 the aggregation of α-glucosidase in the presence of different amounts of GroEL protein, Fig. 3 shows the dissociation of the α-glucosidase-GroEL complex by adding ATP, MgCl 2 , K + and GroES protein, and
Abb. 4 die Reaktivierung von α-Glucosidase bei Raumtempe¬ ratur nach thermischer Denaturierung in Anwesenheit von GroEL-Protein durch Zugabe von ATP, MgCl2 , K+ und GroES-Protein.Fig. 4 the reactivation of α-glucosidase at room temperature after thermal denaturation in the presence of GroEL protein by adding ATP, MgCl 2 , K + and GroES protein.
BeispieleExamples
Materialien: α-Glucosidase PI wurde in Hefe (Stamm ABYSMAL81, transfor¬ miert mit dem Plasmid YEp/5c6b3) exprimiert (Kopetzki et al. (1989), EP 0 323 838, Kopetzki et al., Yeast 5 (1989), 11-24) und mit den üblichen Methoden der Ionenaustausch- und hydro¬ phoben Interaktionschromatographie gereinigt.Materials: α-glucosidase PI was expressed in yeast (strain ABYSMAL81, transformed with the plasmid YEp / 5c6b3) (Kopetzki et al. (1989), EP 0 323 838, Kopetzki et al., Yeast 5 (1989), 11 -24) and purified with the usual methods of ion exchange and hydrophobic interaction chromatography.
GroEL und GroES wurden aus einem überexprimierenden E.coli- Stamm (Fayet et al., Mol.Gen.Genet. 202 (1986), 435-445) mittels Molekularsieb- und Ionenaustauschchromatographie gereinigt (Buchner et al., Biochem. 30 (1991), 1587-1591). Adenosintriphosphat (ATP) und p-Nitrophenyl-α-D-glucopyrano- sid (pNPG) stammten von Boehringer Mannheim GmbH.GroEL and GroES were purified from an overexpressing E. coli strain (Fayet et al., Mol. Gen. Genet. 202 (1986), 435-445) by means of molecular sieve and ion exchange chromatography (Buchner et al., Biochem. 30 (1991 ), 1587-1591). Adenosine triphosphate (ATP) and p-nitrophenyl-α-D-glucopyranoside (pNPG) were from Boehringer Mannheim GmbH.
Beispiel 1example 1
Unterdrückung der Aggregation von α-Glucosidase PI bei ther¬ mischer Belastung durch GroELSuppression of the aggregation of α-glucosidase PI under thermal stress by GroEL
Eine Küvette mit 0,1 mol/1 Tris-Puffer, pH 7,6 wird 15 Minu¬ ten im Küvettenhalter des Fluoreszenzspektrophotometers auf ca. 46,5°C temperiert. Die Temperatur in der Küvette wird mit einem Thermofühler kontrolliert.' α-Glucosidase PI wird zuge¬ geben (Endkonzentration 10 μg/ml = 0,146 μmol/1); die Aggre¬ gation des Enzyms wird durch Lichtstreuungsmessung in einem Hitachi Fluoreszenzspektrophotometer F 4000 bei folgender Geräteeinstellung verfolgt:A cuvette with 0.1 mol / 1 Tris buffer, pH 7.6 is heated to approx. 46.5 ° C. in the cuvette holder of the fluorescence spectrophotometer for 15 minutes. The temperature in the cuvette is checked with a thermal sensor. 'Α-glucosidase PI is zuge¬ give (final concentration 10 ug / ml = 0.146 mol / 1); the aggregation of the enzyme is measured by light scattering in one Hitachi F 4000 fluorescence spectrophotometer tracked with the following device settings:
Time ScanTime scan
Excitationswellenlänge: 360 nExcitation wavelength: 360 n
Emissionswellenlänge: 360 nmEmission wavelength: 360 nm
Spaltbreite Excitation: 5 nmGap width excitation: 5 nm
Spaltbreite Emission: 5 nm Das Fluorimeter hat einen temperierbaren Küvettenhalter mit Magnetrührer. Bei den Experimenten zur Aggregationsunter¬ drückung wird zuerst GroEL mit dem Puffer vermischt und an¬ schließend die α-Glucosidase zugegeben.Gap width emission: 5 nm The fluorimeter has a temperature-controlled cuvette holder with magnetic stirrer. In the experiments to suppress aggregation, GroEL is first mixed with the buffer and then the α-glucosidase is added.
α-Glucosidase ist ein sehr temperatursensitives Enzym. Bei einer Temperatur von 46°C und in Abwesenheit von GroEL-Pro¬ tein (O) ist bereits innerhalb von 10 Minuten sehr starke Aggregation (LichtStreuung) zu erkennen (Abb. 1).α-Glucosidase is a very temperature sensitive enzyme. At a temperature of 46 ° C and in the absence of GroEL protein (O) very strong aggregation (light scattering) can be seen within 10 minutes (Fig. 1).
Wird α-Glucosidase jedoch in Gegenwart eines 1,5-fachen mola¬ ren Überschusses an GroEL-Protein (#) bezogen auf den GroEL- Komplex mit 14 Untereinheiten bei 46°C thermisch belastet, so kann die Aggregatbildung vollständig unterdrückt werden (Abb. I. ¬However, if α-glucosidase is thermally stressed in the presence of a 1.5-fold molar excess of GroEL protein (#) based on the GroEL complex with 14 subunits at 46 ° C., the aggregate formation can be completely suppressed (Fig. I. ¬
Versuche, bei denen das Verhältnis α-Glucosidase : GroEL variiert wird (α-Glucosidase : GroEL = 1 : 0,25 (Q) , 1 : 0,5 (1) , 1 : 1 (O) . : 1.5 (#) bzw. 1 : 2 «>) bei einer α-Gluco- sidase-Konzentration von 10 μg/ml = 0,146 μmol/1) , zeigen, daß bereits geringe Mengen an GroEL die Aggregatbildung ver¬ langsamen; ein Überschuß an GroEL unterdrückt die Aggregation vollständig (Abb. 2). Beispiel 2Experiments in which the ratio of α-glucosidase: GroEL is varied (α-glucosidase: GroEL = 1: 0.25 (Q), 1: 0.5 (1), 1: 1 (O). 1 5 (. #) or 1: 2 “>) at an α-glucosidase concentration of 10 μg / ml = 0.146 μmol / 1), show that even small amounts of GroEL slow the formation of aggregates; an excess of GroEL completely suppresses aggregation (Fig. 2). Example 2
Dissoziation des α-Glucosidase-GroEL-Komplexes durch Zugabe von ATP, GroES und K+ Dissociation of the α-glucosidase-GroEL complex by adding ATP, GroES and K +
α-Glucosidase (10 μg/ml, 0,146 μmol/1) wird mit 1,5-fachem Überschuß an GroEL (0,219 μmol/1 bezogen auf 14-mer) in 0,1 mol/1 Tris, 10 mmol/1 KCl, pH 7,6 wie oben beschrieben bei 46°C inkubiert. Nach 20 Minuten werden 2 mmol/1 ATP, 10 mmol/1 MgCl2 sowie 0,146 μmol/1 GroES zugegeben.α-glucosidase (10 μg / ml, 0.146 μmol / 1) is mixed with a 1.5-fold excess of GroEL (0.219 μmol / 1 based on 14-mer) in 0.1 mol / 1 Tris, 10 mmol / 1 KCl, pH 7.6 incubated at 46 ° C as described above. After 20 minutes, 2 mmol / 1 ATP, 10 mmol / 1 MgCl 2 and 0.146 μmol / 1 GroES are added.
Bei gleichzeitiger Zugabe von ATP/MgCl2 und GroES (o) wird die Bindung zwischen GroEL und der α-Glucosidase gelöst, die freigesetzten Enzymmoleküle aggregieren (Abb. 3). 2 mmol/1 ATP und 10 mmol/1 MgCl2 (ohne GroES) führen eben¬ falls zu einer Dissoziation des α-Glucosidase-GroEL-Komple- xes; allerdings zeigt die Lichtstreuung einen flacheren Anstieg als im vorherigen Versuch; die nachträgliche Zugabe von GroES (φ) führt zu rascher vollständiger Dissoziation des Komplexes bzw. Aggregation der freigesetzten α-Glucosidase.If ATP / MgCl 2 and GroES (o) are added at the same time, the bond between GroEL and the α-glucosidase is released, and the enzyme molecules released aggregate (Fig. 3). 2 mmol / 1 ATP and 10 mmol / 1 MgCl 2 (without GroES) also lead to a dissociation of the α-glucosidase-GroEL complex; however, the light scatter shows a flatter rise than in the previous experiment; the subsequent addition of GroES (φ) leads to rapid complete dissociation of the complex or aggregation of the released α-glucosidase.
Beispiel 3Example 3
Reaktivierung thermisch denaturierter α-Glucosidase PIReactivation of thermally denatured α-glucosidase PI
α-Glucosidase (10 μg/ml) wird in Gegenwart von 1,5-fachem GroEL-Überschuß 60 Minuten bei 47°C in 0,1 mol/1 Tris-Puffer, pH 7,6 inkubiert. Nachdem das Proteingemisch auf 25°C abge¬ kühlt ist, gibt man 2 mmol/1 ATP, 10 mmol/1 MgCl2 , 10 mmol/1 KCl sowie 0,146 μmol/1 GroES zu (D) • Bei der Kontrolle (■) erfolgen keine Zusätze. Die Reaktivierung der α-Glucosidase wird anhand eines Aktivitätstests mit p-Nitrophenol-α-D-glu- copyranosid als α-Glucosidase-Substrat verfolgt (Abb. 4). α-Glucosidase (10 μg / ml) is incubated in the presence of 1.5-fold GroEL excess for 60 minutes at 47 ° C. in 0.1 mol / 1 Tris buffer, pH 7.6. After the protein mixture has cooled to 25 ° C., 2 mmol / 1 ATP, 10 mmol / 1 MgCl 2 , 10 mmol / 1 KCl and 0.146 μmol / 1 GroES are added (D) no additives. The reactivation of the α-glucosidase is followed using an activity test with p-nitrophenol-α-D-glucopyranoside as the α-glucosidase substrate (Fig. 4).

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Konstanthaltung der Empfindlichkeit bei optischen Tests in proteinhaltigen Lösungen, bei dem Störungen durch eine geringe Stabilität von in der Test¬ lösung vorhandenen Proteinkomponenten auftreten können, d a d u r c h g e k e n n z e i c h n e t , daß man dem Testreagenz oder/und der Testlösung ein oder mehrere Proteine aus der Substanzklasse der "Chaperonin 60"-Proteine zusetzt.1. A method for keeping the sensitivity constant in optical tests in protein-containing solutions, in which disturbances can occur due to low stability of protein components present in the test solution, characterized in that one or more proteins from the substance class are added to the test reagent and / or the test solution the "chaperonin 60" protein.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß man das "Chaperonin 60"-Protein in einem molaren Verhältnis von 0,0001 : 1 bis 20 : 1 bezüglich der zu stabilisierenden Proteinkomponenten zusetzt.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that the "chaperonin 60" protein is added in a molar ratio of 0.0001: 1 to 20: 1 with respect to the protein components to be stabilized.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß man das "Chaperonin 60"-Protein in einem molaren Verhältnis von 0,001 : 1 bis 10 : 1 bezüglich der zu stabilisierenden Proteinkomponenten zusetzt.3. The method of claim 2, d a d u r c h g e k e n n z e i c h n e t that the "chaperonin 60" protein is added in a molar ratio of 0.001: 1 to 10: 1 with respect to the protein components to be stabilized.
4. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß man das "Chaperonin 60"-Protein in einem molaren Verhältnis von 0,1 : 1 bis 5 : 1 bezüglich der zu stabi¬ lisierenden Proteinkomponenten zusetzt.4. The method of claim 3, d a d u r c h g e k e n n z e i c h n e t that the "chaperonin 60" protein is added in a molar ratio of 0.1: 1 to 5: 1 with respect to the protein components to be stabilized.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß der optische Test eine enzymatische Reaktion bein¬ haltet. 5. The method according to any one of the preceding claims, characterized in that the optical test includes an enzymatic reaction.
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß die zu stabilisierende Proteinkomponente α-Glucosi¬ dase PI ist.6. The method of claim 5, d a d u r c h g e k e n n z e i c h n e t that the protein component to be stabilized is α-Glucosi¬ dase PI.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß man als "Chaperonin 60"-Protein das GroEL-Protein aus E.coli, das hsp60-Protein aus Mitochondrien, das "Rubisco Subunit binding-Protein" aus Chloroplasten oder/und ein analoges Protein aus dem Cytosol prokaryon- tischer oder eukaryontischer Zellen verwendet.7. The method according to any one of the preceding claims, characterized in that the GroEL protein from E. coli, the hsp60 protein from mitochondria, the "Rubisco subunit binding protein" from chloroplasts and / or as a "chaperonin 60" protein analog protein from the cytosol of prokaryotic or eukaryotic cells is used.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß man das GroEL-Protein aus E.coli verwendet.8. The method of claim 7, d a d u r c h g e k e n n z e i c h n e t that the GroEL protein from E. coli is used.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß man weiterhin ein "Chaperonin 10"-Protein, insbeson¬ dere das GroES-Protein aus E.coli zur Renaturierung von denaturierten Proteinkomponenten zusetzt.9. The method according to any one of the preceding claims, that the addition of a "chaperonin 10" protein, in particular the GroES protein from E. coli, for the renaturation of denatured protein components is added.
10. Reagenz für einen optischen Test, d a d u r c h g e k e n n z e i c h n e t , daß es ein oder mehrere Proteine aus der Substanzklasse der "Chaperonin 60"-Proteine enthält.10. Reagent for an optical test, so that it contains one or more proteins from the class of "chaperonin 60" proteins.
11. Reagenz nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß das "Chaperonin 60"-Protein in gelöster oder/und lyophilisierter Form vorliegt. 11. Reagent according to claim 10, characterized in that the "chaperonin 60" protein is present in dissolved or / and lyophilized form.
12. Reagenz nach Anspruch 9 oder 10, d a d u r c h g e k e n n z e i c h n e t , daß das "Chaperonin 60"-Protein das GroEL-Protein aus E.coli, das hsp60-Protein aus Mitochondrien, das "Rubisco Subunit binding-Protein" aus Chloroplasten oder/und ein analoges Protein aus dem Cytosol prokaryon- tischer oder eukaryontischer Zellen ist.12. Reagent according to claim 9 or 10, characterized in that the "chaperonin 60" protein, the GroEL protein from E. coli, the hsp60 protein from mitochondria, the "Rubisco subunit binding protein" from chloroplasts and / or an analog Protein from the cytosol of prokaryotic or eukaryotic cells.
13. Reagenz nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , daß das "Chaperonin 60 "-Protein das GroEL-Protein aus E.coli ist.13. Reagent according to claim 12, so that the "chaperonin 60" protein is the GroEL protein from E. coli.
14. Verwendung von "Chaperonin 60"-Proteinen zur Stabilisie¬ rung von Proteinkomponenten für einen optischen Test.14. Use of "Chaperonin 60" proteins for stabilizing protein components for an optical test.
15. Verwendung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , daß man GroEL aus E.coli als "Chaperonin 60 "-Protein einsetzt. 15. Use according to claim 14, that the use of GroEL from E. coli as a "chaperonin 60" protein is used.
EP92916184A 1991-07-22 1992-07-22 Method of stabilizing proteins during optical tests Withdrawn EP0549778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4124286 1991-07-22
DE4124286A DE4124286A1 (en) 1991-07-22 1991-07-22 METHOD FOR STABILIZING PROTEINS IN OPTICAL TESTS

Publications (1)

Publication Number Publication Date
EP0549778A1 true EP0549778A1 (en) 1993-07-07

Family

ID=6436753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92916184A Withdrawn EP0549778A1 (en) 1991-07-22 1992-07-22 Method of stabilizing proteins during optical tests

Country Status (9)

Country Link
EP (1) EP0549778A1 (en)
JP (1) JPH06500705A (en)
KR (1) KR930702537A (en)
AU (1) AU646759B2 (en)
CA (1) CA2092098A1 (en)
DE (1) DE4124286A1 (en)
IL (1) IL102561A0 (en)
WO (1) WO1993002211A1 (en)
ZA (1) ZA925458B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646249A (en) * 1994-02-28 1997-07-08 The United States Of America As Represented By The Department Of Health And Human Services Isolation and characterization of a novel chaperone protein
US6013488A (en) * 1996-07-25 2000-01-11 The Institute Of Physical And Chemical Research Method for reverse transcription
WO2015090168A1 (en) * 2013-12-16 2015-06-25 顾晋元 Biocarrier and application thereof in detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598157C3 (en) * 1966-12-12 1973-11-22 Boehringer Mannheim Gmbh, 6800 Mannheim Stabilizing agent for enzymatic test reagents
US4956274A (en) * 1987-04-06 1990-09-11 Microgenics Corporation Reagent stabilization in enzyme-donor and acceptor assay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9302211A1 *

Also Published As

Publication number Publication date
ZA925458B (en) 1994-03-09
IL102561A0 (en) 1993-01-14
AU646759B2 (en) 1994-03-03
KR930702537A (en) 1993-09-09
JPH06500705A (en) 1994-01-27
DE4124286A1 (en) 1993-01-28
AU2349892A (en) 1993-02-23
WO1993002211A1 (en) 1993-02-04
CA2092098A1 (en) 1993-01-23

Similar Documents

Publication Publication Date Title
EP2245152B1 (en) Stabilisation of dehydrogenases with stable coenzymes
DE60002424T2 (en) COLOR COMPENSATION OF CHANGES DUE TO TEMPERATURE AND ELECTRONIC PHENOMENON
EP0521941A1 (en) Cmp-activated fluorescent sialinic acids and process for producing them
EP0510658B1 (en) Improvement of the secretion yield of proteins with a disulfide bridge
EP0364926A2 (en) Activation of recombinant antibodies expressed in prokaryotes
EP2195431A1 (en) Methods for increasing protein titers
EP0222380B1 (en) Method for stabilizing creatine kinase
EP0551916A2 (en) Process for stabilisation of proteins
EP0549778A1 (en) Method of stabilizing proteins during optical tests
EP0917568B1 (en) Method for producing complex multienzymatical, storage resistant reaction mixtures and use thereof
EP0300487B1 (en) Enzymatically inactive, immunologically active beta-galactosidase muteins
DE602004011228T2 (en) METHOD AND COMPOSITIONS FOR DETERMINING GLYCATED PROTEINS
EP0599344B1 (en) Process for the stabilization of proteins
EP0704536B1 (en) Method for the isolation and purification of nucleotid-activated sugars from biological sources
DE10309169B4 (en) Recombinant, FAD-dependent sulfhydryl oxidases, process for their preparation and their use
WO2002016635A2 (en) Method for marking chemical substances
EP0556726A1 (en) Process for stabilisation of proteins
DE69934272T2 (en) Lyophilized tubulins
DE60317481T2 (en) PRODUCTION OF A UGPPASE
DE602004003489T2 (en) HYBRID TOPOISOMERASES AND ITS USE
WO2003025116A2 (en) Method for increasing the solubility, expression rate and the activity of proteins during recombinant production
DE69936359T2 (en) Reagent for the assay of amylase isoenzyme activity
Yamaguchi et al. Evaluation of surface hydrophobicity of immobilized protein with a surface plasmon resonance sensor
DE10336177B4 (en) Use of cell organelles for the stabilization of nucleic acids and cells
JPH05304997A (en) Determination of 1,5-anhydroglucitol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950731

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19951212