EP0536548A1 - Compensation arrangement for transmitted sound - Google Patents

Compensation arrangement for transmitted sound Download PDF

Info

Publication number
EP0536548A1
EP0536548A1 EP92115374A EP92115374A EP0536548A1 EP 0536548 A1 EP0536548 A1 EP 0536548A1 EP 92115374 A EP92115374 A EP 92115374A EP 92115374 A EP92115374 A EP 92115374A EP 0536548 A1 EP0536548 A1 EP 0536548A1
Authority
EP
European Patent Office
Prior art keywords
sound
wall
arrangement according
sound generator
borne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92115374A
Other languages
German (de)
French (fr)
Inventor
Oskar Dr. Bschorr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Daimler Benz Aerospace AG filed Critical Deutsche Aerospace AG
Publication of EP0536548A1 publication Critical patent/EP0536548A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17861Methods, e.g. algorithms; Devices using additional means for damping sound, e.g. using sound absorbing panels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17873General system configurations using a reference signal without an error signal, e.g. pure feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17875General system configurations using an error signal without a reference signal, e.g. pure feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • G10K2210/1291Anti-Vibration-Control, e.g. reducing vibrations in panels or beams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3011Single acoustic input
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3212Actuator details, e.g. composition or microstructure
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3214Architectures, e.g. special constructional features or arrangements of features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3216Cancellation means disposed in the vicinity of the source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3217Collocated sensor and cancelling actuator, e.g. "virtual earth" designs

Definitions

  • the invention relates to an arrangement for compensating the passage of sound through a wall, on which at least one structure-borne sound vibration sensor is arranged, which detects the vibrations of the wall perpendicular to the wall surface, a plurality of sound generators at least on the side of the wall opposite the causal sound load the wall surface is arranged in a distributed manner, which changes in their volume can be generated and is controlled by the structure-borne noise transducer in such a way that the volume changes in the air space in the area around the sound generator caused by the vibrating wall are simultaneously compensated for by the volume changes caused by the sound generator in the same area.
  • anti-sound to cancel unwanted airborne sound fields.
  • the principle is based essentially on the fact that the disturbing sound waves are detected in the area to be protected and are extinguished by interference by means of anti-sound transmitters which are connected to the detectors via a control circuit.
  • a simple anti-sound generator in which the sensor membrane and the anti-sound source are identical, is known for example from DE-PS 28 14 093 C2. With such an antisound generator, it is also possible in principle to cancel out the residual sound passing through a partition. Such applications would be e.g. given in a vehicle or aircraft in which there is a high level of noise at the outer cell.
  • the vibrations of the wall which are perpendicular to the wall surface are detected directly by structure-borne sound vibration sensors, and the sound sensors arranged in the immediate vicinity are thus controlled.
  • the amplification and phase shift of the sensor signal is such that the volume changes in the air space in the area around the sound generator caused by the vibrating wall are compensated for by an opposite volume change caused by the sound generator. Due to the natural wall insulation, on the immission side, i.e. the side of the wall that is to be protected from noise, much smaller anti-noise vibrations are necessary. On the one hand, this reduces the required sound generator, on the other hand, the effect of the anti-sound on the wall compared to the sound pressure on the source side can be neglected. This also simplifies the control of the sounder on a simple proportional amplifier with filter correction.
  • the sound transmitters in front of the wall can either be controlled by one or more structure-borne sound vibration sensors.
  • the distance between two adjacent sound generators should not exceed half of the smallest sound wavelength to be compensated; Since the insulation of normal walls significantly decreases at frequencies below approx. 300 Hz, the distance between adjacent sound generators should therefore be a maximum of 50 cm.
  • the sounders can be attached to the wall at the same grid spacing or weighted according to the wall vibration. The smaller the grid spacing in relation to that from sound wavelength to be extinguished, the greater the maximum achievable sound extinction.
  • the individual systems consisting of structure-borne noise transducers and sound generators can be autonomous; However, an improvement in the effect can still be achieved by including the signals from neighboring systems for controlling each sounder.
  • an antisound system 10 is described on the basis of the exemplary embodiment shown in FIG. 1.
  • This consists of a sound generator 11 and a structure-borne sound vibration sensor 12, e.g. an accelerometer.
  • the antisound system 10 is attached to the wall side 14.1 of the wall 14 opposite the sound source 15, so that the space adjoining it is protected from the residual sound passing through the wall.
  • the sound field of the sound source 15 excites the wall to vibrate, the inner wall 14.1 radiating these vibrations.
  • the wall vibrations running perpendicular to the wall surface 14.1 are detected by the structure-borne sound vibration sensor 12 and with its output signal the sound generator 11 is controlled in such a way that it just compensates for the sound radiation from the inner wall 14.1 in its surroundings.
  • FIG. 2 shows the equivalent circuit diagram for an anti-noise system 40, in which the sound generator 41 consists of a resonance oscillator with a piston 45 of mass m and area A, a spring 46 with the spring constant c and a damper 47 with the damping constant k.
  • This equivalent circuit diagram also applies in the simplest way to a loudspeaker or a vibrating plate.
  • a structure-borne sound vibration sensor 42 for example an acceleration sensor, which absorbs the normal wall acceleration s (t).
  • Such a resonant anti-noise system 40 is particularly advantageous for the compensation of periodic noise or with pronounced wall resonances.
  • the resonance frequency ⁇ o of the resonator is matched to the noise frequency to be canceled.
  • s (t) is the normal vibration velocity and s (t) is the vibration deflection of the wall.
  • s (t) and s (t) can be formed from the acceleration s (t) by integration.
  • a plurality of anti-noise systems 40 which are tuned to different resonance frequencies, are to be used, each of these systems only compensating for the near-resonance frequency band.
  • 3 and 4 show different arrangements of anti-noise systems on extensive wall surfaces.
  • the anti-noise systems 50 are distributed over the wall surface in a uniform grid with intervals of less than X / 2 of the smallest sound wavelength to be compensated.
  • the anti-noise systems 60 according to FIG. 4 can also be arranged next to one another at intervals of less than X / 2.
  • FIG. 5 shows an antisound system 70 in a wall edge.
  • This consists of a sound generator 71 and two structure-borne noise transducers 72.1 and 72.2 normally mounted in the colliding wall surfaces 74.1 and 74.2.
  • the weighted sum signal of structure-borne sound vibration sensors 72.1 and 72.2 serves as the control signal for sound generator 71.
  • Double or multiple walls are treated in the same way as single walls.
  • the wall surface of a double or multiple wall facing the side to be protected is provided with anti-noise systems of the type shown above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

The invention relates to an arrangement for compensating for the transmission of sound through a wall (14) by using sound generators (11), by means of which sound-waves transmitted in the opposite phase are superimposed on the sound-waves radiated by the wall. For this purpose, at least one transmitted-sound vibration pick-up (12) is arranged on the wall, which detects the vibrations of the wall perpendicular to the wall surface. A multiplicity of sound generators (11) are arranged distributed over the wall surface at least on the side of the wall opposite to the original sound loading. Each sound generator is constructed in such a manner that it can generate volume changes; it is driven by the transmitted-sound vibration pick-up (12) in such a manner that the volume changes of the air space in the area around the sound generator (11), caused by the vibrating wall, are compensated for at the same time by the volume changes caused in the same area by the sound generator (11). <IMAGE>

Description

Die Erfindung betrifft eine Anordnung zur Kompensation des Schalldurchganges durch eine Wand, an der mindestens ein Körperschallschwingungsaufnehmer angeordnet ist, welcher die Schwingungen der Wand senkrecht zur Wandfläche erfaßt, wobei zumindest auf der Seite der Wand, die der ursächlichen Schallbelastung gegenüberliegt, eine Vielzahl von Schallgebern über die Wandfläche verteilt angeordnet sind, welche Änderungen ihres Volumens erzeugen können und durch den Körperschallschwingungsaufnehmer derart gesteuert wird, daß die durch die schwingende Wand verursachten Volumenänderungen des Luftraumes im Bereich um den Schallgeber durch die von den Schallgeber im gleichen Bereich verursachten Volumenänderungen zeitgleich kompensiert werden.The invention relates to an arrangement for compensating the passage of sound through a wall, on which at least one structure-borne sound vibration sensor is arranged, which detects the vibrations of the wall perpendicular to the wall surface, a plurality of sound generators at least on the side of the wall opposite the causal sound load the wall surface is arranged in a distributed manner, which changes in their volume can be generated and is controlled by the structure-borne noise transducer in such a way that the volume changes in the air space in the area around the sound generator caused by the vibrating wall are simultaneously compensated for by the volume changes caused by the sound generator in the same area.

Die Verwendung von Antischall zur Auslöschung unerwünschter Luftschallfelder ist allgemein bekannt. Das Prinzip beruht im wesentlichen darauf, daß die störenden Schallwellen im Bereich der zu schützenden Umgebung detektiert werden und mittels Antischallgeber, welche über einen Regelkreis mit den Detektoren verbunden sind, durch Interferenz ausgelöscht werden. Ein einfacher Antischallgeber, bei dem die Sensormembran und die Antigeberschallquelle identisch sind, ist beispielsweise aus der DE-PS 28 14 093 C2 bekannt. Mit einem derartigen Antischallgeber ließe sich auch grundsätzlich der durch eine Trennwand hindurchgehende Restschall auslöschen. Derartige Anwendungen wären z.B. in einem Fahr- oder Flugzeug gegeben, bei welchem an der Außenzelle ein hoher Lärmpegel anliegt. Die natürliche Eigendämmung der Wand schirmt davon einen großen Teil bereits ab, wobei im oberen Frequenzbereich die Dämmung aufgrund der Wandmasse im allgemeinen ausreichend ist. Im unteren Frequenzbereich ergeben sich jedoch Defizite. Eine andere Anwendung wäre z.B. in Wohnungen gegeben, wobei die Wohnungswände oder Decken ebenfalls bei tieferen Frequenzen nur eine ungenügende Schalldämmung besitzen. Eine Verbesserung der Schalldämmung durch Erhöhung des Wandgewichtes ist nur begrenzt möglich, zumal eine Verbesserung der Dämmung um 6 dB jeweils eine Verdopplung der Wandmasse erfordert.The use of anti-sound to cancel unwanted airborne sound fields is well known. The principle is based essentially on the fact that the disturbing sound waves are detected in the area to be protected and are extinguished by interference by means of anti-sound transmitters which are connected to the detectors via a control circuit. A simple anti-sound generator, in which the sensor membrane and the anti-sound source are identical, is known for example from DE-PS 28 14 093 C2. With such an antisound generator, it is also possible in principle to cancel out the residual sound passing through a partition. Such applications would be e.g. given in a vehicle or aircraft in which there is a high level of noise at the outer cell. The natural self-insulation of the wall shields a large part of it, although in the upper frequency range the insulation is generally sufficient due to the wall mass. However, there are deficits in the lower frequency range. Another application would be e.g. given in apartments, whereby the apartment walls or ceilings also have insufficient sound insulation at lower frequencies. An improvement in sound insulation by increasing the wall weight is only possible to a limited extent, especially since an improvement of the insulation by 6 dB requires a doubling of the wall mass.

Es gibt auch Vorschläge zur aktiven Steuerung von Wänden, wobei an eine Wand Schwingungserreger angebracht werden, mit denen die an der Wand anliegenden Schalldruckkräfte neutralisiert werden. Nachteilig bei diesem System ist jedoch die große seismische Masse, die zur Abstützung der Reaktionskräfte notwendig ist. Außerdem neigen die dazu notwendigen Regelkreise zu Instabilitäten, da ja die Wandschwingungen auf Null geregelt werden sollen und somit nur eine geringe Eingangsgröße zur Verfügung steht.There are also proposals for active control of walls, whereby vibration exciters are attached to a wall, with which the sound pressure forces applied to the wall are neutralized. A disadvantage of this system, however, is the large seismic mass that is necessary to support the reaction forces. In addition, the control loops required for this tend to be unstable, since the wall vibrations are to be controlled to zero and therefore only a small input variable is available.

Weiterhin ist aus der EP 0 390 560 A2 eine Einrichtung zur Geräuschunterdrückung für einen seismischen Vibrator bekannt, bei der der von einer Vibratorplatte abgestrahlte Luftschall durch Lautsprecher kompensiert wird, die von einer mittels Schwingungsaufnehmer gesteuerten Regelung angesteuert werden. Die Schwingungsaufnehmer sitzen jedoch auf der aktiv erregten Vibratorplatte; eine Übertragung dieser Einrichtung auf passive Wände ist hier weder erwähnt, noch wäre dies mit der aufwendigen Regelung zweckmäßig.Furthermore, from EP 0 390 560 A2 a device for noise suppression for a seismic vibrator is known, in which the airborne sound emitted by a vibrator plate is compensated for by loudspeakers which are controlled by a control system controlled by a vibration sensor. However, the vibration sensors sit on the actively excited vibrator plate; a transfer of this device to passive walls is not mentioned here, nor would this be expedient with the complex regulation.

Es ist Aufgabe der vorliegenden Erfindung, den Schalldurchgang durch eine passive Wand mittels Schallgeber auf einfacher zu steuernde Weise so wirkungsvoll zu kompensieren, daß der hinter der Wand liegende Raum vor einer vor der Wand liegenden Schallquelle abgeschirmt ist.It is an object of the present invention to so effectively compensate for the passage of sound through a passive wall by means of a sounder in a manner that is easier to control that the space behind the wall is shielded from a sound source in front of the wall.

Die Lösung dieser Aufgabe gelingt durch eine nach den Merkmalen des Patentanspruches 1 ausgebildete Anordnung.This object is achieved by an arrangement designed according to the features of claim 1.

Bei dieser Anordnung werden im Gegensatz zu bekannten Antischallsystemen direkt die senkrecht zur Wandfläche verlaufenden Schwingungen der Wand durch Körperschallschwingungsaufnehmer erfaßt und damit die unmittelbar in der Nähe angeordneten Schallgeber angesteuert. Die Verstärkung sowie Phasenverschiebung des Sensorssignals ist dabei so, daß die durch die schwingende Wand verursachten Volumenänderungen des Luftraumes im Bereich um den Schallgeber durch eine entgegengesetzte, von dem Schallgeber verursachte Volumenänderung kompensiert wird. Aufgrund der natürlichen Wanddämmung sind auf der Immissionsseite, d.h. der Seite der Wand, die vor Lärm zu schützen ist, sehr viel kleinere Antischallschwingungen notwendig. Dies verkleinert einmal die erforderlichen Schallgeber, zum anderen kann dadurch die Rückwirkung des Antischalls auf die Wand gegenüber dem Schalldruck auf der Quellenseite vernachlässigt werden. Weiterhin vereinfacht sich dadurch die Steuerung der Schallgeber auf einen einfachen Proportionalverstärker mit Filterkorrektur.In this arrangement, in contrast to known antisound systems, the vibrations of the wall which are perpendicular to the wall surface are detected directly by structure-borne sound vibration sensors, and the sound sensors arranged in the immediate vicinity are thus controlled. The amplification and phase shift of the sensor signal is such that the volume changes in the air space in the area around the sound generator caused by the vibrating wall are compensated for by an opposite volume change caused by the sound generator. Due to the natural wall insulation, on the immission side, i.e. the side of the wall that is to be protected from noise, much smaller anti-noise vibrations are necessary. On the one hand, this reduces the required sound generator, on the other hand, the effect of the anti-sound on the wall compared to the sound pressure on the source side can be neglected. This also simplifies the control of the sounder on a simple proportional amplifier with filter correction.

Je nach Art der Wand und der angeregten Wandschwingungen können die Schallgeber vor der Wand entweder durch einen oder mehrere Körperschallschwingungsaufnehmer angesteuert werden. Der Abstand je zweier benachbarter Schallgeber sollte die Hälfte der kleinsten zu kompensierenden Schallwellenlänge nicht überschreiten; da die Dämmung normaler Wände bei Frequenzen unterhalb von ca. 300 Hz deutlich nachläßt, sollte daher der Abstand benachbarter Schallgeber höchstens 50 cm betragen. Bei ausgedehnten Wandflächen können die Schallgeber in gleichen Rasterabständen oder entsprechend der Wandschwingung gewichtet über die Wand angebracht werden. Je geringer der Rasterabstand im Verhältnis zu der auszulöschenden Schallwellenlänge ist, desto größer ist die maximal erreichbare Schallauslöschung.Depending on the type of wall and the excited wall vibrations, the sound transmitters in front of the wall can either be controlled by one or more structure-borne sound vibration sensors. The distance between two adjacent sound generators should not exceed half of the smallest sound wavelength to be compensated; Since the insulation of normal walls significantly decreases at frequencies below approx. 300 Hz, the distance between adjacent sound generators should therefore be a maximum of 50 cm. In the case of extensive wall surfaces, the sounders can be attached to the wall at the same grid spacing or weighted according to the wall vibration. The smaller the grid spacing in relation to that from sound wavelength to be extinguished, the greater the maximum achievable sound extinction.

Im einfachsten Fall können die einzelnen Systeme aus Körperschallschwingungsaufnehmer und Schallgeber autonom sein; wobei sich eine Verbesserung der Wirkung jedoch noch dadurch erzielen läßt, daß die Signale benachbarter Systeme zur Steuerung jedes Schallgebers mit einbezogen werden.In the simplest case, the individual systems consisting of structure-borne noise transducers and sound generators can be autonomous; However, an improvement in the effect can still be achieved by including the signals from neighboring systems for controlling each sounder.

Da die Abstrahlung von Schallwellen in Ecken oder Kanten von einander zulaufenden Wänden schwierig vorausberechenbar ist, kann es zweckmäßig sein, einen in einer Ecke oder Kante angebrachten Schallgeber durch mehrere, an jeder der benachbarten Wände angeordnete Körperschallschwingungsaufnehmer zu steuern, wozu deren gewichtetes Summensignal herangezogen wird.Since the radiation of sound waves in corners or edges of converging walls is difficult to predict, it may be advisable to control a sound generator installed in a corner or edge by several structure-borne noise transducers arranged on each of the adjacent walls, for which their weighted sum signal is used.

Es ist auch möglich, die Energieversorgung der Schallgeber aus den sich bewegenden Wänden, wie z.B. bei Fahr- oder Flugzeugen zu ziehen. Hierbei kann es sich z.B. um einen analogen Aufzugsmechanismus handeln, wie er bei Armbanduhren realisiert wird. Auch können tieffrequente Schwingungen der Wand dazu verwendet werden, in einem elektrodynamischen System elektrische Leistungen zu erzeugen, die dann gespeichert und zur Energieversorgung des Schallgebersystems verwendet werden. Eine solche Anordnung wäre dann auch energiemäßig völlig autonom.It is also possible to power the sound generator from the moving walls, e.g. to pull on vehicles or planes. This can e.g. are an analog winding mechanism, as it is realized in wristwatches. Low-frequency vibrations of the wall can also be used to generate electrical power in an electrodynamic system, which are then stored and used to supply energy to the sounder system. Such an arrangement would then also be completely autonomous in terms of energy.

Die Erfindung wird im folgenden anhand einiger, in den Figuren teilweise schematisch dargestellter Ausführungsbeispiele näher beschrieben. Es zeigen

  • Fig. 1 ein Antischallsystem für eine passive Wand ,
  • Fig. 2 ein Antischallsystem mit in Resonanz betriebenem Schallgeber,
  • Fig. 3 eine Wandfläche mit gleichmäßig angeordneten Anitschallsystemen,
  • Fig. 4 eine Wandfläche mit linienförmig angeordneten Antischallsystemen und
  • Fig. 5 ein Antischallsystem bei einer Wandkante.
The invention is described in more detail below with the aid of a few exemplary embodiments, which are shown schematically in the figures. Show it
  • 1 shows an anti-noise system for a passive wall,
  • 2 shows an anti-noise system with a sound generator operated in resonance,
  • 3 shows a wall surface with uniformly arranged anti-noise systems,
  • Fig. 4 shows a wall surface with linearly arranged anti-noise systems and
  • Fig. 5 shows an anti-noise system at a wall edge.

Anhand des in Fig. 1 dargestellten Ausführungsbeispieles wird die Funktionsweise eines Antischallsystems 10 beschrieben. Dieses besteht aus einem Schallgeber 11 und aus einem Körperschallschwingungsaufnehmer 12, z.B. einem Beschleunigungsaufnehmer. Das Antischallsystem 10 ist an der, der Schallquelle 15 gegenüberliegenden Wandseite 14.1 der Wand 14 angebracht, so daß der daran angerenzende Raum vor dem durch die Wand hindurchgehenden Restschall geschützt wird. Das Schallfeld der Schallquelle 15 regt die Wand zu Schwingungen an, wobei die Innenwand 14.1 diese Schwingungen abstrahlt. Die senkrecht zur Wandfläche 14.1 verlaufenden Wandschwingungen werden durch den Körperschallschwingungsaufnehmer 12 erfaßt und mit dessen Ausgangssignal der Schallgeber 11 so angesteuert, daß er die Schallabstrahlung der Innenwand 14.1 in seiner Umgebung gerade kompensiert.The functioning of an antisound system 10 is described on the basis of the exemplary embodiment shown in FIG. 1. This consists of a sound generator 11 and a structure-borne sound vibration sensor 12, e.g. an accelerometer. The antisound system 10 is attached to the wall side 14.1 of the wall 14 opposite the sound source 15, so that the space adjoining it is protected from the residual sound passing through the wall. The sound field of the sound source 15 excites the wall to vibrate, the inner wall 14.1 radiating these vibrations. The wall vibrations running perpendicular to the wall surface 14.1 are detected by the structure-borne sound vibration sensor 12 and with its output signal the sound generator 11 is controlled in such a way that it just compensates for the sound radiation from the inner wall 14.1 in its surroundings.

In Fig. 2 ist das Ersatzschaltbild für ein Antischallsystem 40 dargestellt, bei welchem der Schallgeber 41 aus einem Resonanzschwinger mit einem Kolben 45 der Masse m und der Fläche A, einer Feder 46 mit der Federkonstante c und einem Dämpfer 47 der Dämpfungskonstante k besteht. Dieses Ersatzschaltbild gilt in einfachster Weise auch für einen Lautsprecher oder eine schwingende Platte. Der Kolben 45 kann durch einen Kraftgeber 48 mit der Kraft F(t) angetrieben werden (t = Zeit). An der zu kompensierenden Wand 44 sitzt ein Körperschallschwingungsaufnehmer 42, z.B. ein Beschleunigungsaufnehmer, der die normale Wandbeschleunigung s(t) aufnimmt. Ein solches resonantes Antischallsystem 40 ist besonders zur Kompensation von periodischem Lärm oder bei ausgeprägten Wandresonanzen vorteilhaft. Dabei wird die Resonanzfrequenz ωo des Resonators auf die auszulöschende Lärmfrequenz abgestimmt. Um mit minimalem Kraftaufwand F(t) und damit kleineren Baugröße auszukommen, lautet die Steuervorschrift für die Kraft F(t)

Figure imgb0001

wobei y, : y2 : y3 = c : k : m sein soll.2 shows the equivalent circuit diagram for an anti-noise system 40, in which the sound generator 41 consists of a resonance oscillator with a piston 45 of mass m and area A, a spring 46 with the spring constant c and a damper 47 with the damping constant k. This equivalent circuit diagram also applies in the simplest way to a loudspeaker or a vibrating plate. The piston 45 can be driven by a force transmitter 48 with the force F (t) (t = time). On the wall 44 to be compensated there is a structure-borne sound vibration sensor 42, for example an acceleration sensor, which absorbs the normal wall acceleration s (t). Such a resonant anti-noise system 40 is particularly advantageous for the compensation of periodic noise or with pronounced wall resonances. The resonance frequency ω o of the resonator is matched to the noise frequency to be canceled. In order to make do with minimal force F (t) and thus smaller size, the control regulation for the force F (t) is
Figure imgb0001

where y,: y 2 : y 3 = c: k: m should be.

s(t) ist die normale Schwinggeschwindigkeit und s(t) der Schwingungsausschlag der Wand. s(t) und s(t) können durch Integration aus der Beschleunigung s(t) gebildet werden.s (t) is the normal vibration velocity and s (t) is the vibration deflection of the wall. s (t) and s (t) can be formed from the acceleration s (t) by integration.

Um den ganzen Frequenzbereich nach diesem Arbeitsprinzip abzudecken, sind mehrere, auf verschiedene Resonanzfrequenzen abgestimmte Antischallsysteme 40 einzusetzen, wobei jedes dieser Systeme nur das resonanznahe Frequenzband kompensiert.In order to cover the entire frequency range according to this working principle, a plurality of anti-noise systems 40, which are tuned to different resonance frequencies, are to be used, each of these systems only compensating for the near-resonance frequency band.

Die Fig. 3 und 4 zeigen verschiedene Anordnungen von Antischallsystemen an ausgedehnten Wandflächen. In Fig. 3 sind die Antischallsysteme 50 in gleichmäßigem Raster mit Abständen von kleiner X/2 der kleinsten zu kompensierenden Schallwellenlänge über die Wandfläche verteilt. Bei Verwendung von linienförmig angeordneten Schallgebern können die Antischallsysteme 60 gemäß Fig. 4 ebenfalls mit Abständen von kleiner X/2 nebeneinander angeordnet sein.3 and 4 show different arrangements of anti-noise systems on extensive wall surfaces. 3, the anti-noise systems 50 are distributed over the wall surface in a uniform grid with intervals of less than X / 2 of the smallest sound wavelength to be compensated. When using linearly arranged sound generators, the anti-noise systems 60 according to FIG. 4 can also be arranged next to one another at intervals of less than X / 2.

In Fig. 5 ist ein Antischallsystem 70 in einer Wandkante dargestellt. Dieses besteht aus einem Schallgeber 71 und zwei normal in den zusammenstoßenden Wandflächen 74.1 und 74.2 angebrachten Körperschallschwingungsaufnehmern 72.1 und 72.2. Als Steuersignal für den Schallgeber 71 dient das gewichtete Summensignal der Körperschallschwingungsaufnehmer 72.1 und 72.2.5 shows an antisound system 70 in a wall edge. This consists of a sound generator 71 and two structure-borne noise transducers 72.1 and 72.2 normally mounted in the colliding wall surfaces 74.1 and 74.2. The weighted sum signal of structure-borne sound vibration sensors 72.1 and 72.2 serves as the control signal for sound generator 71.

Doppel- oder Mehrfachwände werden in gleicher Weise wie Einfachwände behandelt. Jeweils die der zu schützenden Seite zugewandte Wandfläche einer Doppel- oder Mehrfachwand wird mit Antischallsystemen der oben gezeigten Art versehen.Double or multiple walls are treated in the same way as single walls. The wall surface of a double or multiple wall facing the side to be protected is provided with anti-noise systems of the type shown above.

Claims (8)

1. Anordnung zur Kompensation des Schalldurchganges durch eine Wand, an der mindestens ein Körperschallschwingungsaufnehmer angeordnet ist, welcher die Schwingungen der Wand senkrecht zur Wandfläche erfaßt, wobei zumindest auf der Seite der Wand, die der ursächlichen Schallbelastung gegenüberliegt, eine Vielzahl von Schallgebern über die Wandfläche verteilt angeordnet sind, welche Änderungen ihres Volumens erzeugen können und durch den Körperschallschwingungsaufnehmer derart gesteuert wird, daß die durch die schwingende Wand verursachten Volumenänderungen des Luftraumes im Bereich um den Schallgeber durch die von den Schallgeber im gleichen Bereich verursachten Volumenänderungen zeitgleich kompensiert werden dadurch gekennzeichnet, daß zumindest ein Teil der Schallgeber einer Wand als Resonator (41) mit der Schwingmasse m, der Dämpfung k und der Feder c ausgebildet ist, der entsprechend der normalen Wandbeschleunigung s(t), der Wandschwinggeschwindigkeit s(t) und dem Schwingweg s(t) durch die Steuerkraft F(t) = γ1 s(t) + γ2 s(t) + y3 s(t) angetrieben wird, wobei die Koeffizienten γ1, 'Y3 nach der Relation y1 : y3 = c : m eingestellt sind.1. Arrangement for compensating the passage of sound through a wall, on which at least one structure-borne sound vibration sensor is arranged, which detects the vibrations of the wall perpendicular to the wall surface, with at least on the side of the wall opposite the causal sound load, a plurality of sounders over the wall surface are arranged distributed, which changes in their volume can produce and is controlled by the structure-borne noise transducer in such a way that the volume changes in the air space in the area around the sound generator caused by the vibrating wall are simultaneously compensated by the volume changes caused by the sound generator in the same area, characterized in that at least some of the sound generators of a wall are designed as resonators (41) with the vibration mass m, the damping k and the spring c, which corresponds to the normal wall acceleration s (t), the wall vibration speed s (t) and the Sch wing path s (t) is driven by the control force F (t) = γ1 s (t) + γ2 s (t) + y 3 s (t), the coefficients γ1, 'Y3 according to the relation y1: y3 = c: m are set. 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß je ein Schallgeber (50, 60) im Abstand von maximal X/2 von weiteren Schallgebern gleichmäßig umgeben ist, wobei λ die kleinste der zu kompensierenden Schallwellenlängen ist.2. Arrangement according to claim 1, characterized in that one sound generator (50, 60) at a distance of at most X / 2 is evenly surrounded by further sounders, where λ is the smallest of the sound wavelengths to be compensated. 3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß der Abstand je zweier benachbarter Schallgeber (50, 60) höchstens 50 cm beträgt.3. Arrangement according to claim 2, characterized in that the distance between two adjacent sounders (50, 60) is at most 50 cm. 4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zumindest ein Teil der als Resonatoren (41) ausgebildeten Schallgeber einer Wand eine Resonanzfrequenz aufweist, welche auf eine zu kompensierende Wandresonanz oder eine dominierende Arbeitsfrequenz abgestimmt ist.4. Arrangement according to one of claims 1 to 3, characterized in that at least some of the sounders designed as resonators (41) of a wall have a resonance frequency which is tuned to a wall resonance to be compensated or a dominant working frequency. 5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Resonatoren (41) auf unterschiedliche Frequenzen abgestimmt sind.5. Arrangement according to one of claims 1 to 4, characterized in that the resonators (41) are tuned to different frequencies. 6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mehrere Körperschallschwingungsaufnehmer (72.1, 72.2) einem Schallgeber (71) zugeordnet sowie in dessen Umgebung angeordnet sind und der Schallgeber durch das gewichtete Summensignal der Körperschallschwingungsaufnehmer gesteuert wird.6. Arrangement according to one of claims 1 to 5, characterized in that a plurality of structure-borne sound transducers (72.1, 72.2) are assigned to a sound generator (71) and are arranged in the vicinity thereof and the sound generator is controlled by the weighted sum signal of the structure-borne sound vibration transducer. 7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Körperschallschwingungsaufnehmer (72.1, 72.2) an verschiedenen, in einer Ecke oder einer Kante aufeinanderstoßenden Wänden (74.1, 74.2) angeordnet sind.7. Arrangement according to claim 6, characterized in that the structure-borne noise transducers (72.1, 72.2) are arranged on different walls (74.1, 74.2) abutting in a corner or an edge. 8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Körperschallschwingungsaufnehmer und der Schallgeber eine kompakte Einheit bilden.8. Arrangement according to one of claims 1 to 7, characterized in that the structure-borne sound vibration sensor and the sound generator form a compact unit.
EP92115374A 1991-10-09 1992-09-09 Compensation arrangement for transmitted sound Withdrawn EP0536548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4133407 1991-10-09
DE4133407A DE4133407C2 (en) 1991-10-09 1991-10-09 Arrangement for compensating the sound emitted by a vibrating wall

Publications (1)

Publication Number Publication Date
EP0536548A1 true EP0536548A1 (en) 1993-04-14

Family

ID=6442323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92115374A Withdrawn EP0536548A1 (en) 1991-10-09 1992-09-09 Compensation arrangement for transmitted sound

Country Status (2)

Country Link
EP (1) EP0536548A1 (en)
DE (1) DE4133407C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515498C1 (en) * 1995-04-27 1996-08-14 Daimler Benz Ag Active reducer of vibrations
EP0840285A2 (en) * 1996-11-04 1998-05-06 Tenneco Automotive Inc. Active noise conditioning system
WO2007054798A2 (en) * 2005-11-09 2007-05-18 Brendan Investments Ltd. Bvi Apparatus and method for a noninvasive estimate of the characteristics of a periodic/cyclic bodily sound in a region close to its source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012611A1 (en) * 2007-03-13 2009-01-08 Airbus Deutschland Gmbh Method for active soundproofing in closed inner chamber, involves identifying secondary modulator or transmission path of interfering signal and arranging secondary modulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071364B (en) * 1959-12-17
FR2321163A1 (en) * 1975-08-12 1977-03-11 Westinghouse Electric Corp NOISE SUPPRESSION DEVICE
DE2814093B1 (en) * 1978-04-01 1979-08-23 Messerschmitt Boelkow Blohm Anti-noise
US4215763A (en) * 1978-08-21 1980-08-05 General Electric Company Resonant sound attenuator for transformers
FR2609827A1 (en) * 1987-01-16 1988-07-22 Electricite De France Method and device for reducing the noise radiated by an instrumentation wall at the dominant harmonic component
DE3834853A1 (en) * 1988-10-13 1990-04-26 Bayerische Motoren Werke Ag Arrangement for reducing the noise level in the interior of a motor vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647797A (en) * 1987-06-30 1989-01-11 Bridgestone Corp Sound insulation device
US4930113A (en) * 1989-03-30 1990-05-29 Halliburton Geophysical Services, Inc. Suppression of air-coupled noise produced by seismic vibrators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071364B (en) * 1959-12-17
FR2321163A1 (en) * 1975-08-12 1977-03-11 Westinghouse Electric Corp NOISE SUPPRESSION DEVICE
DE2814093B1 (en) * 1978-04-01 1979-08-23 Messerschmitt Boelkow Blohm Anti-noise
US4215763A (en) * 1978-08-21 1980-08-05 General Electric Company Resonant sound attenuator for transformers
FR2609827A1 (en) * 1987-01-16 1988-07-22 Electricite De France Method and device for reducing the noise radiated by an instrumentation wall at the dominant harmonic component
DE3834853A1 (en) * 1988-10-13 1990-04-26 Bayerische Motoren Werke Ag Arrangement for reducing the noise level in the interior of a motor vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515498C1 (en) * 1995-04-27 1996-08-14 Daimler Benz Ag Active reducer of vibrations
EP0840285A2 (en) * 1996-11-04 1998-05-06 Tenneco Automotive Inc. Active noise conditioning system
EP0840285A3 (en) * 1996-11-04 1999-05-12 Tenneco Automotive Inc. Active noise conditioning system
WO2007054798A2 (en) * 2005-11-09 2007-05-18 Brendan Investments Ltd. Bvi Apparatus and method for a noninvasive estimate of the characteristics of a periodic/cyclic bodily sound in a region close to its source
WO2007054798A3 (en) * 2005-11-09 2007-10-04 Brendan Invest Ltd Bvi Apparatus and method for a noninvasive estimate of the characteristics of a periodic/cyclic bodily sound in a region close to its source
US8574163B2 (en) 2005-11-09 2013-11-05 Luca Longhini Apparatus and method for a noninvasive estimate of the characteristics of a periodic/cyclic bodily sound in a region close to its source

Also Published As

Publication number Publication date
DE4133407C2 (en) 1994-01-20
DE4133407A1 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
DE3144052C2 (en)
DE69330567T2 (en) NOISE COMPENSATION DEVICE FOR A MOTOR VEHICLE
DE102007046031B4 (en) ultrasonic sensor
DE68925434T2 (en) Electroacoustic drive circuit
DE2635453A1 (en) NOISE CANCELLATION DEVICE
DE69231190T2 (en) ACTIVE PANEL WITH HIGH TRANSMISSION DAMPING
DE68907265T2 (en) Active acoustic damping arrangement with differential filtering.
DE3414407C2 (en) Arrangement of sound transducers in a sound guide, in particular for loudspeaker boxes
DE3587217T2 (en) GRADIENT MICROPHONE SECOND ORDER WITH SINGLE-SIDED DIRECTIONAL CHARACTERISTICS.
DE69112259T2 (en) Noise compensation device.
WO2008034789A1 (en) Arrangement having an active noise reduction system
DE69129664T2 (en) DEVICE FOR NOISE REDUCTION
DE69303523T2 (en) Device and method for seismic investigation
DE102004026660A1 (en) Active noise control system
DE3908881A1 (en) ELECTRONIC SOUND ABSORPTION SYSTEM
DE69608963T2 (en) PERSONAL PROCESS AND ARRANGEMENT FOR ACTIVE SOUND ABSORPTION WITH INVARIANTER IMPULSE RESPONSE
DE102005037034A1 (en) Energy-tight control system using a two-dimensional energy density sensor
DE60028654T2 (en) Resonant device such as racket or knocker
EP0898774B1 (en) Reactive sound absorber
DE2814093C2 (en) Anti-noise generator
EP0473095A2 (en) Hybrid sound attenuator
DE69712471T2 (en) ACOUSTIC ELEMENT AND AUDIO PROCESSING METHOD
DE2738773C2 (en) Electroacoustic transducer, in particular for a wristwatch or a pocket watch
DE69904229T2 (en) ARRANGEMENT OF SOUND PLATES AND METHOD FOR CALIBRATING THE SAME
EP0536548A1 (en) Compensation arrangement for transmitted sound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930726

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 19960930

18W Application withdrawn

Withdrawal date: 19961016