EP0535815A1 - Générateur d'impulsion de pression pour un instrument de mesure pendant le forage - Google Patents

Générateur d'impulsion de pression pour un instrument de mesure pendant le forage Download PDF

Info

Publication number
EP0535815A1
EP0535815A1 EP92308277A EP92308277A EP0535815A1 EP 0535815 A1 EP0535815 A1 EP 0535815A1 EP 92308277 A EP92308277 A EP 92308277A EP 92308277 A EP92308277 A EP 92308277A EP 0535815 A1 EP0535815 A1 EP 0535815A1
Authority
EP
European Patent Office
Prior art keywords
sections
blade
tool according
blade sections
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92308277A
Other languages
German (de)
English (en)
Other versions
EP0535815B1 (fr
Inventor
Frank A.S. Innes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Halliburton Logging Services Inc
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Logging Services Inc, Halliburton Co filed Critical Halliburton Logging Services Inc
Publication of EP0535815A1 publication Critical patent/EP0535815A1/fr
Application granted granted Critical
Publication of EP0535815B1 publication Critical patent/EP0535815B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/20Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by modulation of mud waves, e.g. by continuous modulation

Definitions

  • the invention relates to a downhole tool such as a well-logging tool, and more particularly to a tool of the measure-while-drilling (MWD) type.
  • a downhole tool such as a well-logging tool
  • MWD measure-while-drilling
  • One method of obtaining at the surface the data taken at the bottom of the borehole is to withdraw the drill string from the hole, and to lower the instrumentation including an electronic memory system down the hole.
  • the relevant information is encoded in the memory to be read when the instrumentation is raised to the surface.
  • disadvantages of this method are the considerable time, effort and expense involved in withdrawing and replacing the drill string. Furthermore, updated information on the drilling parameters is not available while drilling is in progress.
  • a much-favoured alternative is to use a measure-while-drilling tool, wherein sensors or transducers positioned at the lower end of the drill string continuously or intermittently monitor predetermined drilling parameters and the tool transmits the appropriate information to a surface detector while drilling is in progress.
  • MWD tools are positioned in a cylindrical drill collar close to the drill bit, and use a system of telemetry in which the information is transmitted to the surface detector in the form of pressure pulses through the drilling mud or fluid which is circulated under pressure through the drill string during drilling operations. Digital information is transmitted by suitably timing the pressure pulses. The information is received and decoded by a pressure transducer and computer at the surface.
  • the drilling mud or fluid is used to cool the drill bit, to carry chippings from the base of the bore to the surface and to balance the pressure in the rock formations.
  • Drilling fluid is pumped at high pressure down the centre of the drill pipe and through nozzles in the drill bit. It returns to the surface via the annulus between the exterior of the drill pipe and the wall of the borehole.
  • a negative pressure pulse is created in the fluid by temporarily opening a valve in the drill collar to partially bypass the flow through the bit, the open valve allowing direct communication between the high pressure fluid inside the drill string and the fluid at lower pressure returning to the surface via the exterior of the string.
  • the high pressure fluid causes serious wear on the valve, and often pulse rates of only up to about 1 pulse per second can be achieved by this method.
  • a positive pressure pulse can be created by temporarily restricting the flow through the downpath within the drill string by partially blocking the downpath.
  • US-A-4914637 discloses a number of embodiments of MWD tool having a pressure modulator for generating positive pressure pulses.
  • the tool has a number of blades equally spaced about a central body, the blades being split in a plane normal to the longitudinal axis of the body to provide a set of stationary half-blades and a set of rotary half-blades.
  • a temporary restriction in the fluid flow is caused by allowing the rotary half-blades to rotate through a limited angle, so that they are out of alignment with the stationary half-blades, the rotation being controlled by a solenoid-actuated latching means.
  • the drilling fluid is directed through angled vanes in front of the split blades in order to impart continuous torque to the rotary half-blades, such that the rotary half-blades rotate through a predetermined angle in the same direction each time the latch is released, thus being rotated successively into and out of alignment with the stationary half-blades.
  • the rotary blades are mechanically linked to a rotatable cylindrical housing via a central shaft.
  • the latching or escapement means comprises an axially slidable actuator rod having detent means extending perpendicularly thereto, the detent means engaging successive pins protruding from the interior of the cylindrical housing as the rod slides between two axial positions, allowing the housing to rotate through a predetermined angle.
  • the present invention aims to overcome this disadvantage, by providing a means of moving the either one or both of the two sets of half blades such that each successive incremental rotation of one set of half blades relative to the other set of half blades occurs in the opposite direction to the previous incremental rotation relative to the other set of half blades.
  • the latching means of US-A-4914637 is actuated by movement of the detent means in the axial direction only, and the pins and the detent means are subject to considerable torque as the housing reaches the end of its rotation and the detent means engages the next successive pin. Accordingly, the detent means requires a substantial support on the slidable actuator rod to withstand the torque, and the pins and the detent means are susceptible to significant wear and stress.
  • An embodiment of the present invention provides an escapement means which is actuated by radial movement of the detent means, such that the torque exerted on the escapement means is considerably reduced, and the escapement means does not require such a bulky and substantial support on the actuator rod.
  • the mechanical linkage between the rotary blades and the latching means in US-A-4914637 is complex and includes a number of torque transfer points where stress and ultimate failure of the device may occur.
  • the present invention aims to provide a much more direct linkage between the latching or escapement means and the rotary blades.
  • EP-A-0325047 (Russell et al) describes a measure-while-drilling tool employing a turbine with curved impeller blades, wherein the impeller rotates continuously under the action of the high pressure downward flow. Each impeller blade is split into two portions in a plane normal to the axis of rotation of the impeller. An electric generator is driven by the impeller assembly and one portion of the impeller blade is capable of limited angular displacement relative to the other portion about the axis of rotation in response to a change in the load of the generator.
  • the restoring force for returning the one portion of the impeller blades to normal alignment with the other portion is provided by a spring or an elastomeric seal: if the restoring force is too weak a large pressure pulse can be developed, but there is a long delay before the portions are realigned so that the pressure pulse rate can only be very low. If the restraining force is too great the pulse rate can be sufficiently rapid for efficient data transmission, but the pressure pulses will be much weaker. Furthermore, the blades cannot be retained in the non-aligned position for long as there will be a natural tendency for the blade portions to realign.
  • a downhole tool for generating pressure pulses in a drilling fluid comprising an elongate body for positioning in a drill collar of a drill string; a plurality of blades spaced around said body, each blade being divided into an independent front section and rear section, forming a set of front sections and a set of rear sections, at least one of said sets being mounted for rotation such that said front and rear sections are angularly displaceable relative to one another between a first position in which the sections are aligned and a second position in which the rear blade sections obstruct the fluid flow between the front sections to generate a pressure pulse; means whereby a torque is developed on the blade sections; and escapement means to permit stepwise rotation of the blade sections between said first and second positions; characterised in that each successive stepwise rotation of one of said sets of blade sections relative to the other of said sets of blade sections occurs in the opposite direction to the immediately preceding stepwise rotation of the said one set of blade sections relative to the said other set of blade sections.
  • both the set of front blade sections and the set of rear blade sections are mounted for rotation such that said rear sections are rotatable in one direction from the first to the second position, and said front sections are subsequently rotatable in said one direction from said second to said first position.
  • the blade sections are mounted on a rotatable member and the escapement means are radially movable to alternately engage and disengage with teeth on the rotatable member; and the movement may be in response to camming means.
  • the escapement means are preferably supported in longitudinal slots in a stationary sleeve positioned within the rotatable member.
  • the escapement means comprise at least one pin, disposed in each said slot, the pin being radially movable in response to the camming means, the camming means preferably being operable by an electric actuator such as a solenoid.
  • the torque may be developed by means of the front and rear blades, which may be curved to act as lifting sections.
  • the rear blade sections preferably each have a generally planar forward end surface extending generally normal to the direction of fluid flow.
  • the rotatable sleeve 107 has formed thereon a number of blades 116, each blade comprising a front blade section 116a and a rear blade section 116b.
  • the rotatable sleeve is split in a plane normal to the longitudinal axis of the tool such that the rear portion 107b of the rotatable sleeve and the front portion 107a of the rotatable sleeve can rotate relative to each other, and thus the rear blade section 116b and the front blade section 116a can rotate relative to each other.
  • the front and rear blade sections When the front and rear blade sections are aligned they form a set of curved streamlined blades, between which the drilling fluid can flow with a low drag coefficient.
  • each aligned blade can be seen more clearly in Figure 2.
  • the drag coefficient is greatly increased, and a pressure pulse is transmitted through the drilling fluid.
  • the blades 116 are curved relative to the direction of flow of the drilling fluid, such that the resulting lift component acting on the blades tends to rotate sleeve 107 on its bearings about the inner sleeve 124.
  • a continuous torque is supplied to the blade sections 116a and 116b, and the main driving force for creating the pressure pulses is derived directly from the energy in the drilling fluid, so that the additional energy requirement from downhole batteries or a turbine is very low.
  • Each front blade section has a generally planar rear end layer 112 extending generally normal to the direction of fluid flow and each rear blade section has a generally planar forward end layer 115 extending generally normal to the direction of fluid flow.
  • These rear and forward end layers 112 and 115 form adjacent faces of the blade sections when the blade sections are aligned, and comprise a wear resistant material which reduces abrasion of the faces of the blade sections. They also retain lip seals in the sleeves 107.
  • Additional needle roller bearings 109 support the front and rear blade sections of the rotatable sleeve on the inner sleeve 124, and a rubber collar 125 is provided in an annular recess on the inner sleeve in longitudinal alignment with the split in the rotatable sleeve, to withstand erosion due to turbulence in that area.
  • a cam shaft 111 is received within the inner sleeve 124 such that it can rotate coaxially within the inner sleeve on needle roller bearings 108 at the forward end of the cam shaft and on deep groove ball bearings 128 at the downstream end of the cam shaft.
  • the ball bearings 128 are mounted between the cam shaft and a retaining nut 123 which supports the escapement housing 127 on the inner sleeve 124.
  • Two additional sets of needle roller bearings 126a and 126b are provided along the length of the cam shaft 111, one of these sets of needle roller bearings 126a being longitudinally aligned with the collar 125.
  • Figure 3 shows a cross-section of the tool taken on line C-C.
  • the second set of needle roller bearings is shown more clearly in Figure 4.
  • An escapement mechanism 129 is provided on the downstream end of the cam shaft.
  • the escapement mechanism is held on the cam shaft by means of a nut 130 and is locked to the camshaft by means of a key 131.
  • the escapement mechanism comprises a ratchet 132 and a pawl 133, the pawl being operable to move longitudinally backward and forward into and out of engagement with the ratchet 132.
  • the pawl is linked to a plunger 138 of a tubular solenoid 121, and a return spring 134 also acts on the pawl, such that the solenoid pulls the plunger and hence the pawl in one direction, and the spring 134 provides the return force in the opposite direction.
  • the solenoid is held within a solenoid canister 136, which is provided with a free adjustment ring 137 and a fixed adjustment ring 139.
  • a pin 140 sets the relative position of the adjustment rings, and a fixing pin 141 secures the fixed ring to the housing wall.
  • Figures 5 and 6 are cross-sectional views of the tool taken on line A-A and line B-B respectively.
  • the rotatable sleeve 107 has been shown without the blades 116 in Figures 5 and 6.
  • the cam shaft 111 is provided with three lugs 113 spaced equi-angularly around its circumference.
  • the inner sleeve 124 has two diametrically opposed longitudinal slots 114 in each of which are positioned two escapement rollers 110.
  • the front portion 107a of the rotatable sleeve has internally projecting teeth 142.
  • a lug 113 engages an inner roller 110a and cams it outwards, thus also camming outer roller 110b outwards such that it protrudes beyond the outer edge of inner sleeve 124 and into the path of internal teeth 142 on rotatable sleeve 107a.
  • an internal tooth 142 engages outer roller 110b and further rotation is prevented until the cam shaft is moved on.
  • FIG. 6 a similar arrangement is provided to control the movement of the rear portion 107b of the rotatable sleeve.
  • Escapement rollers 143 are positioned in longitudinal slots 147 in the inner sleeve 124.
  • the cam shaft is provided with three equi-spaced lugs 145, and the rotatable sleeve has internally projecting teeth 146.
  • the slots 147 in the rear portion of the rotatable sleeve are circumferentially displaced through an angle of 90 o with respect to the slots 114 in the front portion of the rotatable sleeve.
  • the camshaft escapement mechanism is then operated to release the cam shaft, as will be described in more detail hereinafter.
  • the rear portion 107b of the rotatable sleeve trying to rotate clockwise, exerts a torque on the cam shaft by means of the escapement rollers 143, as can be seen in Figure 6.
  • the cam shaft when the cam shaft is freed, it rotates clockwise through an angle of approximately 30 o , and as the rollers 143 move inwards the rear portion of the rotatable sleeve is free to rotate until an internal tooth 146 engages with the other, diametrically opposed set of escapement rollers 143.
  • the cam shaft is then held stationary: in this resultant position front portion 107a, in trying to rotate clockwise, is exerting a torque on the cam shaft by means of the escapement rollers 110.
  • front portion 107a in trying to rotate clockwise, is exerting a torque on the cam shaft by means of the escapement rollers 110.
  • escapement mechanism 129 When the cam shaft is released by means of escapement mechanism 129, it again rotates clockwise through an angle of approximately 30 o , and as the rollers 110 move inwards, the front portion of the rotatable sleeve is free to rotate until an internal tooth 142 engages the other set of rollers 110.
  • the cam shaft is locked in a stationary position once more.
  • Controlling the movement of the cam shaft to rotations in steps of 30 o controls the movement of the rotatable sleeve to incremental steps of rotation.
  • the rear portion 107b moves clockwise through a predetermined angle and then the front portion 107a moves through that angle in the same direction, such that rear blade portions 116b move from a position where they are aligned with the front blade portions to a position of maximum misalignment, and then the front blade portions 116a move from the misaligned position back into alignment with the rear blade portions, i.e. the rear blade portions move out of alignment when the cam shaft is released and then the front blade portions move to catch them up the next time the camshaft is released.
  • the ratchet 132 comprises a front toothed ratchet wheel 151 and a rear toothed ratchet wheel 152.
  • Each ratchet wheel has six equi-spaced teeth on its circumference, and the rear wheel is held with respect to the front wheel with its teeth 30 o out of alignment with the teeth of the front wheel.
  • the front and rear ratchet wheels may be formed as an integral unit. In the position shown in Figures 1 and 7, the pawl 133 engages teeth on the front ratchet wheel 151 and the cam shaft is held stationary.
  • the solenoid When the solenoid operates to retract the plunger 138, and the pawl 133, the front ratchet wheel is released and the cam shaft is free to rotate through 30 o until the next successive tooth of the rear ratchet wheel engages with the pawl 133.
  • the solenoid When the solenoid is deactivated, the spring 134 acts to return the plunger 138 to its original position, so that the cam shaft is free to rotate through a further 30 o until the next successive tooth of the front ratchet wheel engages with the pawl 133.
  • the cam shaft is controlled to rotate stepwise in incremental angles of 30 o .
  • the pawl 133 is prevented from turning and is slidably guided by pins 135 which are attached to the solenoid canister 136.
  • Figure 9 shows a means for adjusting the assembly so that the fail-safe position, where the blade portions are aligned, is achieved.
  • the fixed and free adjusting rings 139 and 137 have holes drilled to allow +/- 5 o of adjustment.
  • the holes 153 in the free ring are 25 o apart, and the holes 154 in the fixed ring are 24 o apart.
  • the adjustment pin 140 sets the position of the free ring 137 with respect to the fixed ring 139.
  • means are provided for reducing torsional vibration of the rotatable sleeve by a damping fluid such as oil contained within the rotatable sleeve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
EP92308277A 1991-10-01 1992-09-11 Générateur d'impulsion de pression pour un instrument de mesure pendant le forage Expired - Lifetime EP0535815B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB919120854A GB9120854D0 (en) 1991-10-01 1991-10-01 Downhole tool
GB9120854 1991-10-01

Publications (2)

Publication Number Publication Date
EP0535815A1 true EP0535815A1 (fr) 1993-04-07
EP0535815B1 EP0535815B1 (fr) 1996-04-24

Family

ID=10702253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92308277A Expired - Lifetime EP0535815B1 (fr) 1991-10-01 1992-09-11 Générateur d'impulsion de pression pour un instrument de mesure pendant le forage

Country Status (4)

Country Link
EP (1) EP0535815B1 (fr)
DE (1) DE69210155T2 (fr)
GB (1) GB9120854D0 (fr)
NO (1) NO306221B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970398B2 (en) 2003-02-07 2005-11-29 Schlumberger Technology Corporation Pressure pulse generator for downhole tool
US10508496B2 (en) 2016-12-14 2019-12-17 Directional Vibration Systems Inc. Downhole vibration tool
US11499420B2 (en) 2019-12-18 2022-11-15 Baker Hughes Oilfield Operations Llc Oscillating shear valve for mud pulse telemetry and operation thereof
US11753932B2 (en) 2020-06-02 2023-09-12 Baker Hughes Oilfield Operations Llc Angle-depending valve release unit for shear valve pulser

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000939B2 (en) 2011-09-27 2015-04-07 Halliburton Energy Services, Inc. Mud powered inertia drive oscillating pulser
CN102562035B (zh) * 2012-01-12 2015-09-30 中国海洋石油总公司 井下工程参数随钻测量装置
CN103410500B (zh) * 2013-07-26 2016-02-10 西南石油大学 一种井下钻柱振动随钻监测装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309030A1 (fr) * 1987-09-22 1989-03-29 Anadrill International SA Générateur d'impulsion sinusoidale de pression pour un instrument de mesure pendant le forage
EP0325047A2 (fr) * 1988-01-19 1989-07-26 Michael King Russell Dispositifs de transmission de signaux
US4914637A (en) * 1986-01-29 1990-04-03 Positec Drilling Controls (Canada) Ltd. Measure while drilling system
US5119344A (en) * 1991-01-24 1992-06-02 Halliburton Logging Services, Inc. Downhole tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914637A (en) * 1986-01-29 1990-04-03 Positec Drilling Controls (Canada) Ltd. Measure while drilling system
EP0309030A1 (fr) * 1987-09-22 1989-03-29 Anadrill International SA Générateur d'impulsion sinusoidale de pression pour un instrument de mesure pendant le forage
EP0325047A2 (fr) * 1988-01-19 1989-07-26 Michael King Russell Dispositifs de transmission de signaux
US5119344A (en) * 1991-01-24 1992-06-02 Halliburton Logging Services, Inc. Downhole tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970398B2 (en) 2003-02-07 2005-11-29 Schlumberger Technology Corporation Pressure pulse generator for downhole tool
US10508496B2 (en) 2016-12-14 2019-12-17 Directional Vibration Systems Inc. Downhole vibration tool
US11499420B2 (en) 2019-12-18 2022-11-15 Baker Hughes Oilfield Operations Llc Oscillating shear valve for mud pulse telemetry and operation thereof
US11753932B2 (en) 2020-06-02 2023-09-12 Baker Hughes Oilfield Operations Llc Angle-depending valve release unit for shear valve pulser

Also Published As

Publication number Publication date
EP0535815B1 (fr) 1996-04-24
GB9120854D0 (en) 1991-11-13
DE69210155D1 (de) 1996-05-30
DE69210155T2 (de) 1996-09-19
NO923797L (no) 1993-04-02
NO923797D0 (no) 1992-09-30
NO306221B1 (no) 1999-10-04

Similar Documents

Publication Publication Date Title
US5189645A (en) Downhole tool
US5357483A (en) Downhole tool
US5941323A (en) Steerable directional drilling tool
US6216802B1 (en) Gravity oriented directional drilling apparatus and method
EP0497422B1 (fr) Stabilisateur réglable
EP2195506B1 (fr) Système de forage à ensemble de fond de puits double
US5119344A (en) Downhole tool
EP3611332B1 (fr) Dispositif de guidage rotatif hybride
US5450914A (en) Fluid powered stepping motor for rotating a downhole assembly relative to a supporting pipe string
EP0502084B1 (fr) Appareil servant a orienter la partie avant d'une tige de sondage
US20150247403A1 (en) Measurement while drilling fluid pressure pulse generator
EP0535815B1 (fr) Générateur d'impulsion de pression pour un instrument de mesure pendant le forage
WO1997026436A1 (fr) Mecanisme d'extension et de retraction pour equipement de forage souterrain
NO20200550A1 (en) Steering System for Use with a Drill String
US6978850B2 (en) Smart clutch
US5735357A (en) Apparatus for and method of directional drilling
GB2271790A (en) Mud pulse telemetry tool
WO1999058807A1 (fr) Dispositif de guidage
US20050247489A1 (en) Drilling apparatus
GB2252992A (en) Downhole tool
AU2021203534A1 (en) Multi-segmented plug
US11821311B2 (en) Tilting anti-rotation system
WO1998031915A2 (fr) Dispositif conçu pour diriger et piloter la partie la plus a l'avant d'une tige de sonde sur des sites de forage
US20230295988A1 (en) Clutch assembly and related systems and methods
BR112019000724B1 (pt) Conjunto de perfuração orientável rotativo e método para perfurar uma seção desviada de um furo de poço

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB NL SE

17P Request for examination filed

Effective date: 19930319

17Q First examination report despatched

Effective date: 19940525

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HALLIBURTON COMPANY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960424

Ref country code: DK

Effective date: 19960424

REF Corresponds to:

Ref document number: 69210155

Country of ref document: DE

Date of ref document: 19960530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960724

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110901

Year of fee payment: 20

Ref country code: GB

Payment date: 20110826

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69210155

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69210155

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120910

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120912