EP0530452B1 - Method for controlling or tube bending machine - Google Patents
Method for controlling or tube bending machine Download PDFInfo
- Publication number
- EP0530452B1 EP0530452B1 EP92110316A EP92110316A EP0530452B1 EP 0530452 B1 EP0530452 B1 EP 0530452B1 EP 92110316 A EP92110316 A EP 92110316A EP 92110316 A EP92110316 A EP 92110316A EP 0530452 B1 EP0530452 B1 EP 0530452B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bending
- bending template
- drive
- pipe
- pushing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 title claims description 106
- 238000000034 method Methods 0.000 title claims description 26
- 230000006870 function Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 description 3
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/14—Bending rods, profiles, or tubes combined with measuring of bends or lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/02—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
- B21D7/024—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
- B21D7/025—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member and pulling or pushing the ends of the work
Definitions
- the invention relates to a method for controlling a pipe bending machine according to the preamble of claim 1 and a pipe bending machine for pressure bending a pipe according to the preamble of claim 6.
- the pipe When bending pipes, the pipe is pressed laterally against a bending template using a clamping jaw, which is then rotated, the clamping jaw executing a pivoting movement.
- the tube When turning the bending template, the tube is bent around the bending template.
- pressure bending is used, with the unbent pipe section being pressed in the direction of the bending template by a pressing device during the bending process.
- the pressing device is advanced at a speed that is somewhat greater than the speed of rotation of the bending template corresponds so that the tube is subjected to a slight compression in the longitudinal direction during the bending process.
- the mutual coordination between the rotary movement of the bending template and the feed movement of the pressing device If the pressing device is pushed too quickly or too slowly, cracks, corrugations or areas of different wall thickness can arise on the pipe.
- a method and a pipe bending device are known, in which the feed movement of the pressing device is coordinated with the rotary movement of the bending template.
- transducers are provided which determine the peripheral speed and the upsetting speed from the bending angle of the bending template and from the upsetting path of the pressing device.
- a servo valve is controlled, which is designed as a quantity control valve and changes the return quantity of the hydraulic drive of the pressing device.
- the measured variables that are evaluated are thus speeds and the control signal causes a change in the flow rate, namely the return flow rate of the hydraulic oil from the drive of the pressing device.
- Such a speed control has the disadvantage that an incorrect upsetting pressure which has arisen once is maintained over the entire tube bending process, even if the two speeds are subsequently kept in the correct mutual relationship. This means that errors currently occurring are not corrected by the control system.
- the feed rate of the pressing device is changed by the flow controller.
- such a flow rate control has the disadvantage that it is relatively sluggish and inaccurate and that the flow rate, which is predetermined by the control device, may not be temporarily reached because the resistance of the pressing device and the pipe are too great. In this case there is no subsequent correction and no "catching up".
- the invention has for its object to provide a control method and a pipe bending machine, with which it is possible to achieve a high degree of uniformity of the bending process and the pressing during pressure bending, any deviations being made up for or compensated for immediately.
- the position signals of the bending template and the pressing device are determined and processed to generate the actuating signal without the like from the position signals by integration or the like.
- Speed signals are formed.
- One of the two drives is used as a guide drive and the other of the drives as a tracking drive.
- a position signal of the bending template must correspond to a position signal of the pressing device during the entire bending process.
- the position signal pairs are thus permanently assigned to one another. In the event of a deviation, one will be found immediately Correction takes place so that deviations made earlier do not continue into the future.
- the control signal generated as a function of the position signals controls the delivery pressure of the tracked drive.
- the position signal of the bending template can be determined, for example, by a rotation angle sensor, which responds to the rotation of the bending template.
- the position signal of the pressing device is determined by a displacement sensor.
- the control is carried out in such a way that the feed position over the largest part of the feed length or bending length the pressing device must take is slightly larger than the feed position or rotational position of the bending template.
- the rigidity of the tube prevents the press-on device from actually reaching its respective setpoint based on the guide signal derived from the rotation of the bending template.
- the difference between the actual value and the desired value of the position of the pressing device causes the upset pressure to be maintained, which is proportional to the size of the after-running of the pressing device forced by the pipe.
- the upsetting pressure is thus generated by dictating a position advance in relation to the bending template to the pressing device, which, however, is not achieved and which in turn maintains a certain form in the drive of the pressing device.
- the feed pressure or upsetting pressure is kept at a constant value. It is possible to change this value according to a predetermined program sequence during the bending process.
- position transmitters for determining the positions of the bending template and pressing device are connected to a control device in which the difference in position signals is formed and which, depending on this, controls a controllable pressure regulator for changing the delivery pressure of one of the two drives.
- the control is such that the position of the pressing device must slightly exceed that of the bending template during the major part of the bending process, so that the pressure regulator is constantly commanded to be pressurized.
- a certain difference, by which the position signals must differ, does not necessarily have to be predetermined, but a certain percentage of this difference can also be predetermined. It is only important that the control is carried out in such a way that a higher setpoint is specified for the position signal of the pressing device than for the position signal of the bending template corresponding to this position.
- the pipe bending machine shown schematically in FIG. 1 has a bending template 10 rotatably mounted on a machine table (not shown).
- the bending template 10 arranged with the vertical axis of rotation 11 has essentially the shape of a cylindrical body, on the circumferential surface of which a bending groove 12 is formed, which takes up approximately half of the cross section of the tube 13 to be bent.
- a counter jaw 14 is attached to the bending template 10, with which a jaw 15 cooperates to jointly grip around the tube 13 and clamp it for the bending process.
- the clamping jaw 15 is attached to a pivot arm 16 which can be pivoted about an axis which is arranged coaxially with the axis of rotation 11 of the bending template 10. The clamping jaw 15 can be moved radially on this swivel arm 16 in order to clamp or release the tube.
- the unbent section 13a of the tube 13 is supported by a pressing device 17.
- the pressing device has a slide 18 which can be moved in the direction of the double arrow 19 transversely to the tube section 13a.
- the carriage 18 carries a lower carriage 20 which can be moved in the longitudinal direction to the unbent pipe section 13a, i.e. in the direction of the double arrow 21, and a drive 22 for moving the lower carriage 20.
- the drive 22 is designed as a piston-cylinder unit which is fixed to the carriage 18 is arranged and the piston 23 engages the piston rod 24 on the lower slide 20 to move it.
- the cylinder of the drive 22 has a working chamber 25 and a return stroke chamber 26, which are separated by the piston 23.
- a position transmitter 30 is also mounted on the slide 18 and cooperates with a position measuring bar 31 attached to the lower slide 20.
- the position measuring bar 31 is a toothed rack, which drives a pinion of the position transmitter 30 when the lower carriage 20 is moved longitudinally, in which pulses are generated, the number of which is a measure of the position of the lower carriage 20.
- Another position transmitter 32 is arranged on the bending template 10.
- This position transmitter 32 has, for example, a rotation angle encoder that indicates the rotational position of the bending template 10.
- the bending template 10 is rotated by a hydraulic drive 33.
- a slide rail 34 is attached to the lower slide 20 in the vicinity of the bending template 10 and presses against the tube 13 from the side facing away from the bending template and supports the unbent tube section 13a during the bending process. Furthermore, a thrust element 35 is attached to the lower slide 20, which engages on the rear part of the unbent pipe section 13a.
- the thrust element 35 can have a clamping jaw 36 in order to firmly clamp the pipe section 13a. It is designed so that it engages on the pipe without sliding.
- the straight tube is clamped between the clamping jaw 15 and the counter clamping jaw 14. Then the bending template 10 is rotated according to a predetermined program, whereby the tube is drawn around the bending template 10 and at the same time the straight tube section 13a is moved forward.
- the lower slide 20 is advanced parallel to the pipe section 13a by the hydraulic drive 22. This feed takes place in such a way that the tube 13 is pushed by the thrust element 35, the tube section 13a being compressed.
- the signal from the position transmitter 32 is processed in a processing unit 40, in which the bending radius BR is stored, to form the first position signal PS1.
- the bending radius BR takes into account the radius of the bending template 10 and the diameter of the pipe to be bent.
- the bending radius is the radius by which the pipe center axis is bent and the position signal PS1 indicates the path that the pipe has traveled around the bending template 10 from the beginning of the bending process.
- the second position signal PS2 corresponds to the output signal of the position transmitter 30. It corresponds to the path that the lower slide or the push element 35 has passed through from the start of the pipe bending process.
- the two position signals PS1 and PS2 are fed to a control unit 41 and compared there with one another in a comparator COMP.
- the output signal of the comparator is compared with the signal stored in a functional memory FS and the difference signal between the functional signal stored in the functional memory FS and the output signal of the comparator COMP is processed together with a signal which is taken from a parameter memory PS.
- the parameter memory PS contains parameters which can be entered manually, such as a material parameter MP of the tube 13, a wall thickness parameter WSP of the tube 13, a diameter parameter DP of the tube 13 and a bending radius parameter BRP.
- the signal obtained in this way is amplified by an amplifier V and fed as a control signal SS to a pressure regulator 42, which regulates the delivery pressure in a pressure line 43 leading from a pressure source 44, for example a pump, to the working chamber 25 of the drive 22 to a value which Control signal SS is proportional.
- a pressure regulator 42 which regulates the delivery pressure in a pressure line 43 leading from a pressure source 44, for example a pump, to the working chamber 25 of the drive 22 to a value which Control signal SS is proportional.
- the control of the pipe bending machine works as follows:
- the drive 33 of the bending template is positively controlled, ie it works either at constant speed or according to a program running according to the angle of rotation of the bending template with varying speeds and possibly downtimes.
- the processing circuit 40 taking into account the bending radius BR, generates the position signal PS1, which indicates the path of rotation of the tube 13 around the bending template 10.
- the position signal PS1 forms the reference variable for the control device 41. It is fed to the function memory FS in order to call up the function values which are stored for the individual position values.
- the comparator COMP compares the position signals PS1 and PS2 with one another and delivers a difference signal to the functional memory FS.
- This difference signal is compared with the function value corresponding to the position signal PS1 and the resulting difference signal is processed in the parameter memory PS with the corresponding material parameters MP, DP, WSP and BRP in order to generate the control signal SS.
- This control signal SS sets a corresponding pressure on the pressure regulator 42, which is then applied to the piston 23 of the drive 22.
- the curve 45 indicates the content of the functional memory FS for the individual position signals PS1 with respect to the 45 ° line.
- the position signal PS1 forms the reference variable and the position signal PS2 takes on a value which depends on the feed resistance of the pipe. If the control were carried out in such a way that the values of PS1 and PS2 are equal to one another, then the curve would run along the 45 ° line shown in broken lines. In this case, the thrust element 35 and the clamping jaw 14 would each assume the same travel positions in relation to their initial position, but the pipe would not be pushed with pressure, so that no pressure bending would take place. In order for pressure bending to take place, curve 45 deviates from the 45 ° line. In the initial phase of the bending process, only the bending template 10 is initially rotated, while the drive 22 for the pressing device is initially not yet pressurized.
- the curve 45 runs below the 45 ° line up to a value S 1 of the position signal PS1.
- curve 45 runs over the 45 ° line.
- the difference (PS2 - PS1) is compared with the function signal ⁇ s and the difference ( PS1 + ⁇ s - PS2 ) formed as a control signal.
- the setpoint that the position signal PS2 should have at the position determined by PS1 is made equal (PS1 + ⁇ s).
- the deviation of the actual signal PS2 from this target signal is multiplied in the parameter memory PS by the corresponding parameters and then output as an actuating signal SS. If the position signals PS1 and PS2 were equal to one another, then a desired signal corresponding to the function signal ⁇ s would be generated, which causes the pressure regulator 42 in the working chamber 25 to generate a corresponding feed pressure for the pressing device 17.
- the curve 45 of Fig. 2 shows that in different phases of the bending process, that is, in different Different function signal ⁇ s are generated in areas of the first position signal PS1. These different areas of the position signal PS1 are the areas 0-S1, S1-S2, S2-S3, S3-S4 and S4-S E. S E is the end position at which the bending process is ended.
- the values ⁇ s that is to say the target deviations of the position signal PS2 from the position signal PS1, are stored in the function memory FS as a function of the position signal PS1, for example in a read-only memory or as a function curve or as a cam disk.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Steuerung einer Rohrbiegemaschine gemäß dem Oberbegriff des Anspruchs 1 und eine Rohrbiegemaschine zum Druckbiegen eines Rohres gemäß dem Oberbegriff des Anspruchs 6.The invention relates to a method for controlling a pipe bending machine according to the preamble of claim 1 and a pipe bending machine for pressure bending a pipe according to the preamble of claim 6.
Beim Biegen von Rohren wird das Rohr mit einer Spannbacke seitlich gegen eine Biegeschablone gedrückt, die anschließend gedreht wird, wobei die Spannbacke eine Schwenkbewegung ausführt. Beim Drehen der Biegeschablone wird das Rohr um die Biegeschablone herum gebogen. Bei dünnen Rohrwandungen, kleinen Biegeradien, großen Rohrdurchmessern sowie bei empfindlichen Rohrmaterialien wird das Druckbiegen angewandt, wobei der ungebogene Rohrabschnitt während des Biegevorganges von einer Nachdrückvorrichtung in Richtung auf die Biegeschablone gedrückt wird. Hierbei erfolgt der Vorschub der Nachdrückvorrichtung mit einer Geschwindigkeit, die etwas größer ist als der Drehgeschwindigkeit der Biegeschablone entspricht, so daß das Rohr während des Biegevorgangs einer geringfügigen Stauchung in Längsrichtung ausgesetzt wird. Eine besondere Bedeutung kommt hierbei der gegenseitigen Abstimmung zwischen der Drehbewegung der Biegeschablone und der Vorschubbewegung der Nachdrückvorrichtung zu. Wenn die Nachdrückvorrichtung zu schnell oder zu langsam vorgeschoben wird, können an dem Rohr Risse, Wellungen oder Bereiche unterschiedlicher Wandstärke entstehen.When bending pipes, the pipe is pressed laterally against a bending template using a clamping jaw, which is then rotated, the clamping jaw executing a pivoting movement. When turning the bending template, the tube is bent around the bending template. For thin pipe walls, small bending radii, large pipe diameters and sensitive pipe materials, pressure bending is used, with the unbent pipe section being pressed in the direction of the bending template by a pressing device during the bending process. Here, the pressing device is advanced at a speed that is somewhat greater than the speed of rotation of the bending template corresponds so that the tube is subjected to a slight compression in the longitudinal direction during the bending process. Of particular importance is the mutual coordination between the rotary movement of the bending template and the feed movement of the pressing device. If the pressing device is pushed too quickly or too slowly, cracks, corrugations or areas of different wall thickness can arise on the pipe.
Aus DE-C-23 04 838 sind ein Verfahren und eine Rohrbiegevorrichtung bekannt, bei denen die Vorschubbewegung der Nachdrückvorrichtung auf die Drehbewegung der Biegeschablone abgestimmt wird. Hierzu sind Meßwertgeber vorgesehen, die aus dem Biegewinkel der Biegeschablone sowie aus dem Stauchweg der Nachdrückvorrichtung die Umfangsgeschwindigkeit und die Stauchgeschwindigkeit ermitteln. In einem Vergleich wird die Differenz beider Geschwindigkeiten gebildet und in Abhängigkeit von dieser Differenz wird ein Servoventil gesteuert, das als Mengenregelventil ausgebildet ist und die Rücklaufmenge des hydraulischen Antriebs der Nachdrückvorrichtung verändert. Die Meßgrößen, die ausgewertet werden, sind also Geschwindigkeiten und das Stellsignal bewirkt eine Veränderung der Durchflußmenge, nämlich der Rücklaufmenge des Hydrauliköls von dem Antrieb der Nachdrückvorrichtung. Eine solche Geschwindigkeitsregelung hat den Nachteil, daß ein einmal entstandener falscher Stauchdruck über den gesamten Rohrbiegevorgang aufrechterhalten wird, selbst wenn die beiden Geschwindigkeiten nachfolgend in der richtigen gegenseitigen Relation gehalten werden. Dies bedeutet, daß momentan aufgetretene Fehler durch das Steuersystem nicht korrigiert werden. Die Vorschubgeschwindigkeit der Nachdrückvorrichtung wird durch den Mengenregler verändert. Eine solche Durchflußmengensteuerung hat jedoch den Nachteil, daß sie relativ träge und ungenau ist und daß es vorkommen kann, daß die Durchflußmenge, die von der Steuereinrichtung vorgegeben ist, vorübergehend nicht erreicht wird, weil der Widerstand der Nachdrückvorrichtung und des Rohres zu groß sind. In diesem Fall erfolgt keine nachträgliche Korrektur und kein "Aufholen".From DE-C-23 04 838 a method and a pipe bending device are known, in which the feed movement of the pressing device is coordinated with the rotary movement of the bending template. For this purpose, transducers are provided which determine the peripheral speed and the upsetting speed from the bending angle of the bending template and from the upsetting path of the pressing device. In a comparison, the difference between the two speeds is formed and, depending on this difference, a servo valve is controlled, which is designed as a quantity control valve and changes the return quantity of the hydraulic drive of the pressing device. The measured variables that are evaluated are thus speeds and the control signal causes a change in the flow rate, namely the return flow rate of the hydraulic oil from the drive of the pressing device. Such a speed control has the disadvantage that an incorrect upsetting pressure which has arisen once is maintained over the entire tube bending process, even if the two speeds are subsequently kept in the correct mutual relationship. This means that errors currently occurring are not corrected by the control system. The feed rate of the pressing device is changed by the flow controller. However, such a flow rate control has the disadvantage that it is relatively sluggish and inaccurate and that the flow rate, which is predetermined by the control device, may not be temporarily reached because the resistance of the pressing device and the pipe are too great. In this case there is no subsequent correction and no "catching up".
Der Erfindung liegt die Aufgabe zugrunde, ein Steuerverfahren und eine Rohrbiegemaschine anzugeben, mit denen es möglich ist, beim Druckbiegen eine hohe Gleichmäßigkeit des Biegevorgangs und des Nachdrückens zu erreichen, wobei etwaige Abweichungen unverzüglich nachgeholt bzw. ausgeglichen werden.The invention has for its object to provide a control method and a pipe bending machine, with which it is possible to achieve a high degree of uniformity of the bending process and the pressing during pressure bending, any deviations being made up for or compensated for immediately.
Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 bzw. 6.This object is achieved according to the invention with the features of patent claims 1 and 6.
Bei dem erfindungsgemäßen Steuerungsverfahren für eine Rohrbiegemaschine werden die Positionssignale der Biegeschablone und der Nachdrückvorrichtung ermittelt und zur Erzeugung des Stellsignals verarbeitet, ohne daß aus den Positionssignalen durch Integration o.dgl. Geschwindigkeitssignale gebildet werden. Dabei wird einer der beiden Antriebe als Führungsantrieb und der andere der Antriebe als Nachführantrieb benutzt. Infolge der Verarbeitung der Positionssignale kann erreicht werden, daß beim gesamten Biegevorgang jeweils ein Positionssignal der Biegeschablone einem Positionssignal der Nachdrückvorrichtung entsprechen muß. Die Positionssignalpaare sind also einander fest zugeordnet. Im Falle einer Abweichung findet unverzüglich eine Korrektur statt, so daß früher erfolgte Abweichungen sich nicht in die Zukunft hinein fortsetzen. Das in Abhängigkeit von den Positionssignalen erzeugte Stellsignal steuert den Lieferdruck des nachgeführten Antriebs. Dies bedeutet, daß der Lieferdruck in Abhängigkeit von dem Stellsignal verändert wird, wobei diese Abhängigkeit vorzugsweise linear ist. Es ist aber auch eine andere Regelung, beispielsweise eine PID-Regelung möglich, um Abweichungen schneller zu kompensieren. Die Drucksteuerung ist einfach und präzise durchführbar, da steuerbare Druckregler mit der erforderlichen Genauigkeit verfügbar sind.In the control method according to the invention for a pipe bending machine, the position signals of the bending template and the pressing device are determined and processed to generate the actuating signal without the like from the position signals by integration or the like. Speed signals are formed. One of the two drives is used as a guide drive and the other of the drives as a tracking drive. As a result of the processing of the position signals, it can be achieved that a position signal of the bending template must correspond to a position signal of the pressing device during the entire bending process. The position signal pairs are thus permanently assigned to one another. In the event of a deviation, one will be found immediately Correction takes place so that deviations made earlier do not continue into the future. The control signal generated as a function of the position signals controls the delivery pressure of the tracked drive. This means that the delivery pressure is changed as a function of the control signal, this dependence preferably being linear. However, another regulation, for example a PID regulation, is also possible in order to compensate for deviations more quickly. Pressure control can be carried out simply and precisely, since controllable pressure regulators are available with the required accuracy.
Das Positionssignal der Biegeschablone kann beispielsweise durch einen Drehwinkelgeber ermittelt werden, der auf die Drehung der Biegeschablone anspricht. Das Positionssignal der Nachdrückvorrichtung wird von einem Weggeber ermittelt. Bei der Ermittlung des Positionssignals der Biegeschablone ist natürlich der Durchmesser der Biegeschablone und der Durchmesser des zu biegenden Rohres zu berücksichtigen, da für den Positionsvergleich der Biegeradius der Rohrachse im Biegebereich zugrunde zu legen ist. Daher entsteht das Positionssignal der Biegeschablone, das für die Auswertung zugrundegelegt wird, erst nach Multiplikation des Signalgebersignals mit einem Faktor, der dem mittleren Biegeradius entspricht.The position signal of the bending template can be determined, for example, by a rotation angle sensor, which responds to the rotation of the bending template. The position signal of the pressing device is determined by a displacement sensor. When determining the position signal of the bending template, the diameter of the bending template and the diameter of the pipe to be bent must of course be taken into account, since the bending radius of the pipe axis in the bending area must be used for the position comparison. Therefore, the position signal of the bending template, which is used as the basis for the evaluation, only arises after the signal transmitter signal has been multiplied by a factor that corresponds to the mean bending radius.
Wenn die Positionssteuerung so vorgenommen würde, daß beide Positionssignale stets einander gleich sind, würde die Nachdrückvorrichtung keinen Stauchdruck auf das Rohr ausüben. Aus diesem Grund erfolgt die Steuerung in der Weise, daß über den größten Teil der Vorschublänge bzw. Biegelänge die Vorschubposition, die die Nachdrückvorrichtung einnehmen muß, etwas größer ist als die Vorschubposition bzw. Drehposition der Biegeschablone. Die Steifigkeit des Rohres verhindert, daß die Nachdrückvorrichtung ihren jeweiligen Sollwert bezogen auf das von der Drehung der Biegeschablone abgeleitete Führungssignal tatsächlich erreicht. Die Differenz zwischen Istwert und Sollwert der Position der Nachdrückvorrichtung bewirkt die Aufrechterhaltung des Stauchdruckes, der proportional zur Größe des durch das Rohr erzwungenen Nachlaufs der Nachdrückvorrichtung ist. Der Stauchdruck wird also dadurch erzeugt, daß der Nachdrückvorrichtung ein Positionsvorlauf gegenüber der Biegeschablone diktiert wird, der jedoch nicht erreicht wird und der seinerseits die Aufrechterhaltung eines bestimmten Vordrucks im Antrieb der Nachdrückvorrichtung bewirkt. Auf diese Weise wird der Vorschubdruck bzw. Stauchdruck auf einem konstanten Wert gehalten. Dabei ist es möglich, diesen Wert entsprechend einem vorgegebenen Programmablauf während des Biegevorganges zu verändern.If the position control were carried out in such a way that the two position signals were always the same, the pressing device would not exert any upsetting pressure on the pipe. For this reason, the control is carried out in such a way that the feed position over the largest part of the feed length or bending length the pressing device must take is slightly larger than the feed position or rotational position of the bending template. The rigidity of the tube prevents the press-on device from actually reaching its respective setpoint based on the guide signal derived from the rotation of the bending template. The difference between the actual value and the desired value of the position of the pressing device causes the upset pressure to be maintained, which is proportional to the size of the after-running of the pressing device forced by the pipe. The upsetting pressure is thus generated by dictating a position advance in relation to the bending template to the pressing device, which, however, is not achieved and which in turn maintains a certain form in the drive of the pressing device. In this way, the feed pressure or upsetting pressure is kept at a constant value. It is possible to change this value according to a predetermined program sequence during the bending process.
Bie der erfindungsgemäßen Rohrbiegemaschine zum Druckbiegen eines Rohres sind Positionsgeber zur Ermittlung der Positionen von Biegeschablone und Nachdrückvorrichtung an einer Steuereinrichtung angeschlossen, in der die Differenz der Positionssignale gebildet wird und die in Abhängigkeit hiervon einen steuerbaren Druckregler zur Veränderung des Lieferdruckes einer der beiden Antriebe steuert. Auch hierbei ist die Steuerung so getroffen, daß während des überwiegenden Teils des Biegevorganges die Position der Nachdrückvorrichtung diejenige der Biegeschablone geringfügig übersteigen muß, so daß dem Druckregler ständig eine Druckbeaufschlagung befohlen wird.In the pipe bending machine according to the invention for pressure bending a pipe, position transmitters for determining the positions of the bending template and pressing device are connected to a control device in which the difference in position signals is formed and which, depending on this, controls a controllable pressure regulator for changing the delivery pressure of one of the two drives. Here, too, the control is such that the position of the pressing device must slightly exceed that of the bending template during the major part of the bending process, so that the pressure regulator is constantly commanded to be pressurized.
Es muß nicht notwendigerweise eine bestimmte Differenz vorgegeben sein, um die sich die Positionssignale unterscheiden müssen, sondern es kann auch ein bestimmter prozentualer Anteil dieses Unterschieds vorgegeben sein. Wichtig ist nur, daß die Steuerung so erfolgt, daß für das Positionssignal der Nachdrückvorrichtung ein höherer Sollwert vorgegeben ist als für das dieser Stellung entsprechende Positionssignal der Biegeschablone.A certain difference, by which the position signals must differ, does not necessarily have to be predetermined, but a certain percentage of this difference can also be predetermined. It is only important that the control is carried out in such a way that a higher setpoint is specified for the position signal of the pressing device than for the position signal of the bending template corresponding to this position.
Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.In the following an embodiment of the invention will be explained with reference to the drawings.
Es zeigen:
- Fig. 1
- eine schematische Darstellung einer Rohrbiegemaschine mit der erfindungsgemäßen Steuerung der Nachdrückvorrichtung und
- Fig. 2
- ein Diagramm zwischen dem Vorschubweg der Nachdrückvorrichtung und dem Rotationsweg des Rohres auf der Biegeschablone entsprechend der in einem Funktionsspeicher gespeicherten Beziehung.
- Fig. 1
- is a schematic representation of a pipe bending machine with the control of the pressing device and
- Fig. 2
- a diagram between the feed path of the pressing device and the rotation path of the tube on the bending template according to the relationship stored in a function memory.
Die in Fig. 1 schematisch dargestellte Rohrbiegemaschine weist eine auf einem (nicht dargestellten) Maschinentisch drehbar montierte Biegeschablone 10 auf. Die mit vertikaler Drehachse 11 angeordnete Biegeschablone 10 hat im wesentlichen die Form eines zylindrischen Körpers, an dessen Umfangsfläche eine Biegerille 12 ausgebildet ist, die den Querschnitt des zu biegenden Rohres 13 etwa zur Hälfte aufnimmt. An der Biegeschablone 10 ist eine Gegenspannbacke 14 befestigt, mit der eine Spannbacke 15 zusammenwirkt, um gemeinsam das Rohr 13 zu umgreifen und für den Biegevorgang festzuspannen. Die Spannbacke 15 ist an einem Schwenkarm 16 angebracht, der um eine Achse schwenkbar ist, welche koaxial zur Drehachse 11 der Biegeschablone 10 angeordnet ist. An diesem Schwenkarm 16 ist die Spannbacke 15 radial bewegbar, um das Rohr einzuspannen oder freizugeben.The pipe bending machine shown schematically in FIG. 1 has a
Der ungebogene Abschnitt 13a des Rohres 13 wird von einer Nachdrückvorrichtung 17 abgestützt. Die Nachdrückvorrichtung weist einen Schlitten 18 auf, der in Richtung des Doppelpfeiles 19 quer zu dem Rohrabschnitt 13a verfahrbar ist. Der Schlitten 18 trägt einen Unterschlitten 20, der in Längsrichtung zu dem ungebogenen Rohrabschnitt 13a, also in Richtung des Doppelpfeiles 21 verfahrbar ist, sowie einen Antrieb 22 zum Bewegen des Unterschlittens 20. Der Antrieb 22 ist als Kolbenzylindereinheit ausgebildet, die an dem Schlitten 18 fest angeordnet ist und deren Kolben 23 über die Kolbenstange 24 an dem Unterschlitten 20 angreift, um diesen zu verschieben. Der Zylinder des Antriebs 22 weist eine Arbeitskammer 25 und eine Rückhubkammer 26 auf, die durch den Kolben 23 getrennt sind.The
An dem Schlitten 18 ist ferner ein Positionsgeber 30 montiert, der mit einer am Unterschlitten 20 angebrachten Positionsmeßleiste 31 zusammenwirkt. Bei dem vorliegenden Ausführungsbeispiel ist die Positionsmeßleiste 31 eine Zahnstange, die bei Längsbewegung des Unterschlittens 20 ein Ritzel des Positionsgebers 30 antreibt, in welchem Impulse erzeugt werden, deren Anzahl ein Maß für die Position des Unterschlittens 20 ist.A
Ein weiterer Positionsgeber 32 ist an der Biegeschablone 10 angeordnet. Dieser Positionsgeber 32 weist beispielsweisen einen Drehwinkelkodierer auf, der die Drehposition der Biegeschablone 10 angibt. Die Biegeschablone 10 wird von einem hydraulischen Antrieb 33 gedreht.Another
An dem Unterschlitten 20 ist in der Nähe der Biegeschablone 10 eine Gleitschiene 34 angebracht, die von der der Biegeschablone abgewandten Seite her gegen das Rohr 13 drückt und den ungebogenen Rohrabschnitt 13a beim Biegevorgang abstützt. Ferner ist an dem Unterschlitten 20 ein Schubelement 35 angebracht, das an dem rückwärtigen Teil des ungebogenen Rohrabschnitts 13a angreift. Das Schubelement 35 kann eine Klemmbacke 36 aufweisen, um den Rohrabschnitt 13a fest einzuspannen. Es ist so ausgebildet, daß es an dem Rohr gleitfrei angreift.A
Beim Biegevorgang wird das gerade Rohr zwischen Spannbacke 15 und Gegenspannbacke 14 eingespannt. Dann wird die Biegeschablone 10 nach einem vorgegebenen Programm gedreht, wobei das Rohr um die Biegeschablone 10 herumgezogen wird und gleichzeitig der gerade Rohrabschnitt 13a nach vorne bewegt wird. Während des Biegevorganges wird der Unterschlitten 20 parallel zum Rohrabschnitt 13a durch den hydraulischen Antrieb 22 vorgeschoben. Dieser Vorschub erfolgt in der Weise, daß das Rohr 13 von dem Schubelement 35 geschoben wird, wobei der Rohrabschnitt 13a gestaucht wird.During the bending process, the straight tube is clamped between the clamping
Das Signal des Positionsgebers 32 wird in einer Verarbeitungseinheit 40, in der der Biegeradius BR gespeichert ist, zu dem ersten Positionssignal PS1 verarbeitet. Der Biegeradius BR berücksichtigt den Radius der Biegeschablone 10 sowie den Durchmesser des zu biegenden Rohres. Der Biegeradius ist derjenige Radius, um den die Rohrmittelachse gebogen wird und das Positionssignal PS1 gibt denjenigen Weg an, den das Rohr um die Biegeschablone 10 herum vom Beginn des Biegevorganges an durchlaufen hat.The signal from the
Das zweite Positionssignal PS2 entspricht dem Ausgangssignal des Positionsgebers 30. Es entspricht demjenigen weg, den der Unterschlitten bzw. das Schubelement 35 vom Beginn des Rohrbiegevorganges an durchlaufen hat.The second position signal PS2 corresponds to the output signal of the
Die beiden Positionssignale PS1 und PS2 werden einer Steuereinheit 41 zugeführt und dort in einem Komparator COMP miteinander verglichen. Das Ausgangssignal des Komparators wird mit dem in einem Funktionsspeicher FS gespeicherten Signal verglichen und das Differenzsignal zwischen dem im Funktionsspeicher FS gespeicherten Funktionssignal und dem Ausgangssignal des Komparators COMP wird zusammen mit einem Signal, das einem Parameterspeicher PS entnommen wird, verarbeitet. Der Parameterspeicher PS enthält manuell eingebbare Parameter wie beispielsweise einen Materialparameter MP des Rohres 13, einen Wandstärkeparameter WSP des Rohres 13, einen Durchmesserparameter DP des Rohres 13 und einen Biegeradiusparameter BRP. Das so gewonnene Signal wird von einem Verstärker V verstärkt und als Stellsignal SS einem Druckregler 42 zugeführt, der den Lieferdruck in einer von einer Druckquelle 44, z.B. einer Pumpe, zu der Arbeitskammer 25 des Antriebs 22 führenden Druckleitung 43 auf einen Wert regelt, der dem Stellsignal SS proportional ist.The two position signals PS1 and PS2 are fed to a
Die Steuerung der Rohrbiegemaschine arbeitet wie folgt:
Der Antrieb 33 der Biegeschablone ist zwangsgesteuert, d.h. er arbeitet entweder mit konstanter Geschwindigkeit oder nach einem entsprechend dem Drehwinkel der Biegeschablone ablaufenden Programm mit variierenden Geschwindigkeiten und ggf. Stillstandszeiten. In Abhängigkeit von dem durch den Antrieb 33 hervorgerufenen Drehwinkel wird von der Verarbeitungsschaltung 40 unter Berücksichtigung des Biegeradius BR das Positionssignal PS1 erzeugt, das den Rotationsweg des Rohres 13 um die Biegeschablone 10 herum angibt. Das Positionssignal PS1 bildet die Führungsgröße für die Steuereinrichtung 41. Es wird dem Funktionsspeicher FS zugeführt, um daraus die Funktionswerte abzurufen, die für die einzelnen Positionswerte gespeichert sind. Der Komparator COMP vergleicht die Positionssignale PS1 und PS2 miteinander und liefert an den Funktionsspeicher FS ein Differenzsignal. Dieses Differenzsignal wird mit dem dem Positionssignal PS1 entsprechenden Funktionswert verglichen und das daraufhin entstehende Differenzsignal wird in dem Parameterspeicher PS mit den entsprechenden Materialparametern MP,DP,WSP und BRP verarbeitet, um das Stellsignal SS zu erzeugen. Dieses Stellsignal SS stellt am Druckregler 42 einen entsprechenden Druck ein, mit dem dann der Kolben 23 des Antriebs 22 beaufschlagt wird.The control of the pipe bending machine works as follows:
The
In Fig. 2 ist die Beziehung zwischen den Positionssignalen PS2 und PS1 dargestellt. Die 45°-Linie, bei denen die Positionssignale PS1 und PS2 einander gleich sind, ist gestrichelt dargestellt. Die Kurve 45 gibt in Bezug auf die 45°-Linie den Inhalt des Funktionsspeichers FS für die einzelnen Positionssignale PS1 an.2 shows the relationship between the position signals PS2 and PS1. The 45 ° line, in which the position signals PS1 and PS2 are equal to one another, is shown in dashed lines. The
Das Positionssignal PS1 bildet die Führungsgröße und das Positionssignal PS2 nimmt einen Wert an, der vom Vorschubwiderstand des Rohres abhängt. Würde die Steuerung so erfolgen, daß die Werte von PS1 und PS2 einander gleich sind, dann würde die Kurve entlang der gestrichelt dargestellten 45°-Linie verlaufen. In diesem Fall würde das Schubelement 35 und die Spannbacke 14 - jeweils bezogen auf ihre Anfangsstellung - die gleichen Wegpositionen einnehmen, jedoch würde das Rohr nicht mit Druck nachgeschoben, so daß kein Druckbiegen erfolgen würde. Damit ein Druckbiegen erfolgen kann, weicht die Kurve 45 von der 45°-Linie ab. In der Anfangsphase des Biegevorganges wird zunächst nur die Biegeschablone 10 gedreht, während der Antrieb 22 für die Nachdrückvorrichtung zunächst noch nicht mit Druck beaufschlagt wird. Daher verläuft bis zu einem Wert S₁ des Positionssignals PS1 die Kurve 45 unterhalb der 45°-Linie. Nach dieser Anfangsphase verläuft die Kurve 45 über der 45°-Linie. Im Funktionsspeicher FS wird die Differenz (PS2 - PS1) mit dem Funktionssignal Δs verglichen und die Differenz (
Die Kurve 45 von Fig. 2 zeigt, daß in unterschiedlichen Phasen des Biegevorganges, also in unterschiedlichen Bereichen des ersten Positionssignals PS1 unterschiedliche Funktionssignal Δs erzeugt werden. Diese unterschiedlichen Bereiche des Positionssignals PS1 sind die Bereiche 0-S₁, S₁-S₂, S₂-S₃, S₃-S₄ und S₄-SE. SE ist die Endposition, bei der der Biegevorgang beendet wird. Die Werte Δs, also die Soll-Abweichungen des Positionssignals PS2 vom Positionssignal PS1 sind in Abhängigkeit vom Positionssignal PS1 in dem Funktionsspeicher FS gespeichert, beispielsweise in einem Festspeicher oder auch als Funktionskurve bzw. als Nockenscheibe.The
Generell ist es auch möglich, im Funktionsspeicher einen konstanten von Δs zu speichern, so daß bei gleichen Positionsdaten PS1 und PS2 auf den Kolben 23 stets ein konstanter Druck einwirkt, der den ungebogenen Rohrabschnitt 13a in Richtung auf die Biegeschablone drückt.In general, it is also possible to store a constant Δs in the functional memory, so that with the same position data PS1 and PS2, the
Claims (7)
- A method for controlling a pipe bending machine comprising a rotatable bending template (10) and a clamping jaw (15) for pressing a pipe (13) against said bending template (10), as well as a pushing device (17) capable of being advanced by a hydraulic drive (22) and engaging the unbent portion (13a) of said pipe, wherein a first measured value is obtained from the rotation of said bending template (10) and a second measured value is obtained from the advance of said pushing device (17), and an actuation signal (SS) for controlling the drive (33, 22) of one of said bending template (10) and said pushing device (17) is obtained from the difference between the said two measured values,
characterised in
that the measured values processed are the position signals (PS1, PS2) of said bending template (10) and said pushing device (17) and that said actuation signal (SS) changes the supply pressure of the controlled drive (22, 23) in dependence on position signals (PS1, PS2). - The method of claim 1, characterised in that said actuation signal (SS) is generated such that it tends to cause a lead of the drive (22) of said pushing device (17) over the drive (33) of said bending template (10).
- The method of claim 1, characterised in that one of said two drives (22, 33) is positively controlled and the position signal (PS1) corresponding to said drive is used as the reference input for the controlled drive (22), and that the processing of the position signals (PS1, PS2) is done with varying parameters in dependence on the position signal (PS1) forming said reference input.
- The method of claim 1, characterised in that a target position of said pushing device (17) is kept smaller than the actual position of said bending template (10) until the position signal of said bending template (10) has reached a predetermined value (S₁), and is then controlled to take a value that is greater than the actual position (PS1) of said bending template (10).
- The method of claim 1, characterised in that the processing of said position signals (PS1, PS2) is variable in dependence on settable parameters of said pipe (13) or said bending template (10).
- A pipe bending machine for pressure bending a pipe (13), comprising a bending template (10) rotatable by a first drive (33) and a clamping jaw (15) pressing a pipe (13) against said bending template (10), a pushing device (17) driven by a hydraulic second drive (22) and engaging the unbent portion (13a) of said pipe, position sensors (32, 30) for detecting the positions of said bending template (10) and said pushing device (17), and a control means (41) changing the drive (22) of said pushing device (17) or that of said bending template (10) in dependence on measured values obtained from the position signals (PS1, PS2),
characterised in
that said control unit (41) calculates the difference between said position signals (PS1, PS2) and controls a pressure controller (42) in dependence thereon to change the supply pressure of one of said two drives (33, 22). - The pipe bending machine of claim 6, characterised in that said drive (33) of said bending template (10) is positively controlled and the position signal (PS1) of said bending template (10) forms a reference input for the drive (22) of said pushing device (17) and that said control means (41) includes a function memory (FS), different regions of positions of said bending template (10) being associated to different function values (Δs) that are read out when said regions are reached and are used to generate said actuation signal (SS) for said pressure controller (42).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4129478A DE4129478A1 (en) | 1991-09-05 | 1991-09-05 | METHOD FOR CONTROLLING A PIPE BENDING MACHINE |
DE4129478 | 1991-09-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0530452A1 EP0530452A1 (en) | 1993-03-10 |
EP0530452B1 true EP0530452B1 (en) | 1995-12-27 |
Family
ID=6439881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92110316A Expired - Lifetime EP0530452B1 (en) | 1991-09-05 | 1992-06-18 | Method for controlling or tube bending machine |
Country Status (4)
Country | Link |
---|---|
US (1) | US5259224A (en) |
EP (1) | EP0530452B1 (en) |
CA (1) | CA2076418C (en) |
DE (2) | DE4129478A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5426965A (en) * | 1993-05-25 | 1995-06-27 | Eaton Leonard, Inc. | Carriage boost drive |
US5343725A (en) * | 1993-07-07 | 1994-09-06 | Eagle Precision Technologies Inc. | Tube bending apparatus and method |
US5379624A (en) * | 1993-11-22 | 1995-01-10 | Burr Oak Tool & Gauge Company | Slaved tube length control for hairpin bender |
US5481891A (en) * | 1993-12-20 | 1996-01-09 | Eagle Precision Technologies Inc. | Tube bending apparatus and method |
JP3351147B2 (en) * | 1994-12-26 | 2002-11-25 | トヨタ自動車株式会社 | Bent work correction method and bent work correction information determination device |
DE19522062A1 (en) * | 1995-06-17 | 1996-12-19 | Schwarze Rigobert | Method for controlling a pipe bending machine |
DE19530805A1 (en) * | 1995-08-22 | 1997-02-27 | Schwarze Rigobert | CNC controlled pipe bending machine |
DE19532261A1 (en) * | 1995-09-01 | 1997-03-06 | Schwarze Rigobert | Strand bending machine |
US5784913A (en) * | 1995-10-06 | 1998-07-28 | Pines Manufacturing | Pressure die assist boost system for tube bending machine |
US5819574A (en) * | 1996-06-07 | 1998-10-13 | Kabushiki Kaisha Opton | Hydraulic device for bending work and a bending device with the hydraulic device mounted thereon |
DE19918854A1 (en) * | 1999-04-26 | 2000-11-02 | Abb Alstom Power Ch Ag | Device and method for bending winding bars |
US6253595B1 (en) * | 1999-09-21 | 2001-07-03 | Crc-Evans Pipeline International, Inc. | Automated pipe bending machine |
JP4772984B2 (en) * | 2001-05-23 | 2011-09-14 | 株式会社オプトン | Bending material supply device |
US6644079B2 (en) * | 2001-12-21 | 2003-11-11 | Burr Oak Tool And Gauge Company, Inc. | Hairpin bender with leg length measurement and adjustment feature |
US7010951B2 (en) * | 2004-02-18 | 2006-03-14 | Chiao Sheng Machinery Co., Ltd. | Feeding mechanism of an automatic pipe bending machine |
DE102005058168B4 (en) * | 2005-12-05 | 2009-08-06 | Benteler Automobiltechnik Gmbh | Slide rail for a bending machine |
US7765841B2 (en) * | 2006-02-16 | 2010-08-03 | Oes, Inc. | Quality analysis of tube bending processes including mandrel fault detection |
US7302823B1 (en) * | 2006-07-06 | 2007-12-04 | Crc-Evans Pipeline International, Inc. | Gauge for pipe bending machine |
FI20075240L (en) | 2007-04-10 | 2008-10-11 | Akseli Lahtinen Oy | Bending machine |
CN102773319A (en) * | 2012-08-07 | 2012-11-14 | 张家港市华舜机械制造有限公司 | Auxiliary push device of pipe bender |
CN103920769B (en) * | 2014-04-14 | 2016-01-20 | 方小刚 | A kind of bending process of linear pattern heating furnace tube |
CN103962428B (en) * | 2014-04-14 | 2015-12-09 | 吴刚 | A kind of bending process of linear pattern heating furnace tube |
CN103920767B (en) * | 2014-04-14 | 2016-08-17 | 温州泓呈祥科技有限公司 | A kind of bending process of linear type heating furnace tube |
SG10201907808VA (en) | 2018-09-05 | 2020-04-29 | Blm Spa | Machine for the working of tubes provided with a device for detecting any slippage of the tube being worked |
CN112122419A (en) * | 2020-09-10 | 2020-12-25 | 西北工业大学 | Bending die with small bending radius and bending method of bent pipe |
CN113059784A (en) * | 2021-04-01 | 2021-07-02 | 深圳市名雕装饰股份有限公司 | Automatic pipe bender |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2810422A (en) * | 1954-04-07 | 1957-10-22 | Pines Engineering Co Inc | Tube bending machine with mechanism for control of wall thickness actuated by the rotatable bending die in accordance with its speed of rotation |
US3766764A (en) * | 1971-10-06 | 1973-10-23 | B Ross | Automatic pipe bender |
US3821525A (en) * | 1972-03-16 | 1974-06-28 | Conrac Corp | Method and apparatus for automatically compensated tube bending |
DE2304838C2 (en) * | 1973-02-01 | 1982-08-19 | Deutsche Babcock Ag, 4200 Oberhausen | Pipe bending device |
FR2317024A1 (en) * | 1975-07-09 | 1977-02-04 | Aerospatiale | Precision bending control of a metal section - by noting the bending parameters, for aerodyne pipe system prodn. |
JPS58205620A (en) * | 1982-05-26 | 1983-11-30 | Hitachi Ltd | Pipe bending device |
DE3240799A1 (en) * | 1982-11-04 | 1984-05-17 | Rigobert Dipl.-Ing. 5000 Köln Schwarze | PIPE BENDING MACHINE |
US5050089A (en) * | 1989-09-08 | 1991-09-17 | Regents Of The University Of Minnesota | Closed-loop control system |
-
1991
- 1991-09-05 DE DE4129478A patent/DE4129478A1/en not_active Withdrawn
-
1992
- 1992-06-18 EP EP92110316A patent/EP0530452B1/en not_active Expired - Lifetime
- 1992-06-18 DE DE59204818T patent/DE59204818D1/en not_active Expired - Fee Related
- 1992-08-14 US US07/929,546 patent/US5259224A/en not_active Expired - Lifetime
- 1992-08-18 CA CA002076418A patent/CA2076418C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2076418A1 (en) | 1993-03-06 |
EP0530452A1 (en) | 1993-03-10 |
US5259224A (en) | 1993-11-09 |
CA2076418C (en) | 2003-11-04 |
DE4129478A1 (en) | 1993-03-11 |
DE59204818D1 (en) | 1996-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0530452B1 (en) | Method for controlling or tube bending machine | |
DE2514187C2 (en) | Device for making stirrups | |
EP0759332B1 (en) | CNC-controlled tube bending machine | |
DE102011011545A1 (en) | Method for supplying fluid e.g. adhesive substance, into joint, involves guiding nozzle by robot along joint, and controlling discharge velocity of fluid based on width, depth and/or grouting depth of joint and/or moving velocity of nozzle | |
DE2346796A1 (en) | AUTOMATIC LEVELING PROCEDURE AND LEVELING MACHINE FOR MULTIPLE LEVELING POINTS | |
EP0761334B1 (en) | Tube bending machine | |
EP2077166B1 (en) | Longitudinal edge machining device for sheet metal | |
DE3211489A1 (en) | METHOD AND DEVICE FOR CORRECTING SETPOINT DIFFERENCES OF PLATFORMALLY DEFORMABLE OBJECTS | |
DE4308032C2 (en) | Method and device for cutting pieces from a rod-shaped profile material | |
DE3824856A1 (en) | Apparatus for ring forming | |
EP0748662B1 (en) | Method for controlling a tube bending machine | |
DE2346797A1 (en) | AUTOMATIC STRAIGHTING PROCEDURE AND STRAIGHTING PRESS WITH ONE STRAIGHTING OFFICE | |
DE2549546A1 (en) | Feeding rod to metal-working machines for forging etc. - using pulse counter to ensure accurate length of cut blank | |
DE2711862A1 (en) | Honing machine stroke adjustment system - has pneumatic measuring head with measuring cells and template alongside workpiece | |
EP3181249B1 (en) | Method and device for forming a workpiece by impact extrusion | |
DE2304838A1 (en) | PIPE BENDING DEVICE ON A PIPE BENDING MACHINE | |
DE2457504C3 (en) | Extrusion process and machine | |
EP0757925A1 (en) | Method for controlling a pipe bending machine | |
DE1942673C2 (en) | Method and device for the production of tubes with a helically wound rib | |
AT402479B (en) | METHOD AND DEVICE FOR BENDING HOLLOW PROFILE WORKPIECES | |
DE2244733A1 (en) | METHOD AND DEVICE FOR BENDING A METAL PART | |
EP0524991B1 (en) | Process and device for bending at least a section of a rod material | |
DE2744420C2 (en) | Machine for bending strand material | |
DE3019998A1 (en) | DEVICE FOR CONTROLLING THE EXPANSION OF THE LAEPPING TOOL OF A LAEPPING MACHINE | |
DE19904664A1 (en) | Adaptable control method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19930901 |
|
17Q | First examination report despatched |
Effective date: 19950221 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960105 |
|
REF | Corresponds to: |
Ref document number: 59204818 Country of ref document: DE Date of ref document: 19960208 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090624 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090623 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090618 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090623 Year of fee payment: 18 Ref country code: DE Payment date: 20090826 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090626 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110101 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100618 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100619 |