EP0530109A1 - Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive - Google Patents

Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive Download PDF

Info

Publication number
EP0530109A1
EP0530109A1 EP92402360A EP92402360A EP0530109A1 EP 0530109 A1 EP0530109 A1 EP 0530109A1 EP 92402360 A EP92402360 A EP 92402360A EP 92402360 A EP92402360 A EP 92402360A EP 0530109 A1 EP0530109 A1 EP 0530109A1
Authority
EP
European Patent Office
Prior art keywords
optical
amplifier
laser
station
amplifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92402360A
Other languages
German (de)
English (en)
Other versions
EP0530109B1 (fr
Inventor
Yvon Sorel
Jean-Claude Simon
René Auffret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0530109A1 publication Critical patent/EP0530109A1/fr
Application granted granted Critical
Publication of EP0530109B1 publication Critical patent/EP0530109B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2914Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using lumped semiconductor optical amplifiers [SOA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2935Signal power control considering the whole optical path with a cascade of amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2971A single amplifier for both directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2972Each direction being amplified separately

Definitions

  • the present invention relates to an optical communication system.
  • This known optical network has a drawback: the losses caused by the couplers limit the number of interlocutors and, consequently, the size of the network.
  • the object of the present invention is to remedy the above drawbacks.
  • a single component therefore fulfills both the transmission and reception functions.
  • the invention makes it possible to produce an optical network of larger size and greater dynamic than known optical networks (because of the gain of the amplifiers used in the invention).
  • this document (5) does not plan to adapt the amplifier so that it functions alternately as a detector and as a modulator.
  • At least one of the amplifiers comprises a first electrode and a second electrode which are respectively connected to the modulation means and to the detection means.
  • the transmission means may comprise a first laser and a second laser which are respectively placed at the two ends of the optical fiber, each of these first and second lasers being designed to send a continuous optical signal to this optical fiber.
  • the respective emission wavelengths of the first and second lasers are different and each laser is provided with a filter which prevents it from receiving the light coming from the other laser, so as not to disturb the operation of the lasers.
  • This optical bus includes a line of optical transmission constituted for example by a single mode optical fiber 2.
  • N transmit-receive stations S1, S2, ..., SN-1, SN where N is an integer at least equal to 2.
  • These N stations S1, S2, ..., SN-1, SN respectively comprise N traveling wave semiconductor optical amplifiers A1, A2, ..., AN-1, AN.
  • optical amplifiers are mounted on the optical fiber 2: they are connected to each other by sections of this optical fiber so that they are successively traversed by a light which is injected at one end of the optical fiber 2.
  • two lasers L1 and L2 are respectively placed at the two ends of the optical fiber 2.
  • the laser L1 sends into this fiber 2 (via a lens not shown) a continuous optical signal of wavelength l1.
  • the laser L2 sends into the fiber 2 (via another lens not shown) a continuous optical signal of wavelength l2.
  • the fiber 2 is traversed by continuous optical signals in two opposite directions of transmission.
  • Such a structure is possible because the optical bandwidth of traveling wave amplifiers is very large - it is greater than or equal to 6000 GHz (which corresponds to more than 50 nm to 1.5 micrometers).
  • Each optical amplifier has "operating symmetry" in the sense that it operates identically regardless of the direction of light travel.
  • each interlocutor that is to say the user of a transceiver station
  • optical amplifiers A1, A2, ..., AN-1, AN are respectively associated with transmission-reception means M1, M2, ..., MN-1, MN which will be described later.
  • the optical amplifiers are amplifiers with two working electrodes.
  • the amplifier Ai (i taking any one of the values 1 to N) comprises, on one side, a first electrode e1 and a second electrode e2 which are placed side by side and, on the opposite side, an electrode e3 set to the mass.
  • the amplifier Ai is provided with its transmission-reception means Mi.
  • first polarization tee which bears the reference T1
  • second polarization tee which carries the reference T2
  • transmitter E a transmitter E
  • receiver R a receiver
  • electronic management means MG electronic management means
  • the first tee comprises a load resistance R1 (of 50 ohms for example) and a blocking inductor L1 which have a common terminal, the latter being connected to the first electrode e1.
  • This first tee also includes a decoupling capacitor C1 via which the resistor R1 is connected to the input of the receiver R associated with the optical amplifier Ai.
  • the other terminal of the inductor L1 is connected to a first current generator G1 which supplies a bias current I1.
  • the second tee includes a load resistor R2 (50 ohms for example) and a blocking inductor L2 which have a common terminal, the latter being connected to the second electrode e2.
  • the second tee also includes a decoupling capacitor C2 via which the resistor R2 is connected to the output of the emitter E associated with the optical amplifier Ai.
  • the other terminal of the inductor L2 is connected to a second current generator G2 which provides a bias current I2.
  • the bias currents I1 and I2 are applied continuously.
  • the traveling wave amplifier Ai when an amplitude modulated optical signal passes through it, supplies an electrical voltage between the electrodes e1 and e3, the variation of which is linked to that of the number of photons which cross the amplifier Ai.
  • the bandwidth of this amplifier operating as a detector is approximately 200 MHz at 3 dB (see document (5)).
  • the receiver R which detects and amplifies this voltage and translates it into information intended for the user of the station where the amplifier Ai is located.
  • the amplifier Ai when the amplifier Ai is crossed by a continuous optical signal, if we modulate the injection current of this amplifier Ai and therefore the gain of this amplifier, the latter then behaves like a modulator d amplitude whose bandwidth at 3 dB is approximately 200 MHz, as for detection.
  • one of these interlocutors transmits information and the N-1 other interlocutors receives the information transmitted.
  • all the amplifiers A1, ..., AN permanently detect the signals of wavelengths l1 and l2 transported by the fiber 2.
  • the information is taken by the station addressed when its electronic circuits recognize the address which precedes any information signal, as is the case for conventional optical bus management protocols.
  • This modulation results from an electrical signal which carries the information to be transmitted and which comes from the transmitter E of the station Si.
  • the electronic management means MG are connected to the transmitter E and to the receiver R.
  • These MG management means authorize the transmission by the station considered when another station has finished transmitting.
  • these MG management means generate the information authorizing the transmission by any of the other stations when the considered station has finished transmitting.
  • all the amplifiers A1, A2, ... AN or some of them no longer have two working electrodes e1 and e2 but a single working electrode e4 .
  • This Tee comprises a load resistance R3 (which is worth for example 50 ohms) and a blocking inductor L3 which have a common terminal connected to the electrode e4.
  • the other electrode e3 of the amplifier Ai is, as before, grounded.
  • the other terminal of the inductor L3 is connected to a current generator G which supplies a bias current I3.
  • the switch when this station has finished transmitting, the switch switches to the reception position (the capacitor C3 then being connected to the receiver R) and when the station does not receive any information intended for it and this station wishes to transmit, the switch CM switches to the transmission position (the capacitor C3 then being connected to the transmitter E).
  • the propagation time of the signals on line 2 is taken into account to prevent information of respective wavelengths l1 and l2 from arriving simultaneously on an optical amplifier.
  • an optical bus can be produced in accordance with the invention (not shown) comprising two parallel optical fibers.
  • the laser L1 is then placed on one side of the assembly of the two fibers and the laser L2 is placed on the other side of this assembly.
  • the laser L1 sends the continuous optical signal which corresponds to it in one of the two fibers and the laser L2 sends the continuous optical signal which corresponds to it in the other fiber.
  • each transceiver station comprises two traveling wave optical amplifiers which are respectively mounted on the two fibers, each of these two amplifiers being of course provided with transceiver means.
  • FIG. 4 Another particular embodiment of the present invention, which is schematically and partially shown in FIG. 4, makes it possible to avoid the duplication of equipment which has just been envisaged.
  • the lasers L1 and L2 are placed at the two ends of the line 2 and the latter is traversed in opposite directions, as in the case of FIG. 1, by the continuous optical signals of respective wavelengths l1 and l2.
  • Each station Si (1 ⁇ i ⁇ N) then comprises two traveling wave semiconductor optical amplifiers A1i and A2i mounted in parallel on the fiber 2.
  • a first Y coupler referenced C1i is used, one branch of which is connected to the fiber section 2 where the signals of wavelength l1 arrive.
  • a second Y coupler referenced C2i is also used, one branch of which is connected to the fiber section 2 through which the signals of wavelength l2 arrive.
  • the amplifier A1i and A2i are of course respectively associated with transmission-reception means M1i and M2i.
  • the optical bus has a closed loop structure and the transceiver stations each comprise a single optical amplifier with traveling wave semiconductor and are distributed along the optical line of this bus.
  • a single laser is provided for injecting light into this optical line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive. Ce système comprend au moins une fibre optique (2), des stations d'émission-réception (S1, ..., SN) placées le long de la fibre et comportant chacune au moins un amplificateur optique à semiconducteur à onde progressive (A1, ..., AN) qui est monté sur la fibre et des moyens d'émission (L1, L2) prévus pour envoyer dans la fibre au moins un signal optique continu. Chaque amplificateur est prévu pour, alternativement, moduler le signal continu, afin d'émettre des informations, et détecter des informations sous forme d'au moins un signal modulé qui lui est destiné et a été émis par un autre amplificateur. Application à la réalisation de bus optiques. <IMAGE>

Description

  • La présente invention concerne un système de communication optique.
  • Elle s'applique aux télécommunications optiques et en particulier à la réalisation de bus optiques.
  • On connaît déjà un réseau optique auquel le raccordement d'un interlocuteur nécessite non seulement un récepteur et un émetteur mais encore deux coupleurs optiques qui servent respectivement :
    • à prélever des informations transmises par la ligne optique de ce réseau optique pour les amener au récepteur, et
    • à injecter dans cette ligne optique des informations issues de l'émetteur.
  • Ce réseau optique connu présente un inconvénient : les pertes occasionnées par les coupleurs limitent le nombre d'interlocuteurs et, en conséquence, la taille du réseau.
  • On connaît également par les documents suivants :
    • (1) Cascaded carrier depletion optical switches based on InP/GaInAsP waveguides, J.A. Cavaillès et al., Comptes rendus de ECOC'90, p. 213 à 216,
    • (2) Single mode polarization insensitive GaInAsP/InP total internal reflection optical switch, M. Renaud et al., Comptes rendus de ECOC'90, p. 217 à 220,
    • (3) Synchronization of passive access nodes in very high speed optical packet networks, T.M. Martinson, Comptes rendus de ECOC'90, p. 473 à 476,
    • (4) InP monolithically integrated passive access node switches for very high speed optical loop, M. Erman et al., Comptes rendus de ECOC'90, p. 1015 à 1018,

       des réseaux de communication le long desquels sont placés des noeuds d'accès passif ("passive access nodes" dans les publications en langue anglaise) comportant des commutateurs optiques.
  • Ces derniers présentent, entre autres, l'inconvénient d'extraire de ces réseaux de communication une puissance lumineuse assez importante lorsqu'ils sont utilisés en tant que détecteurs.
  • La présente invention a pour but de remédier aux inconvénients précédents.
  • Pour ce faire, l'invention utilise des amplificateurs optiques à semiconducteur à onde progressive ("traveling wave semiconductor optical amplifiers" dans les publications en langue anglaise), chacun de ces amplificateurs assurant alternativement
    • une fonction de détection d'informations et
    • une fonction d'émission d'informations par modulation d'un signal optique continu.
  • De façon précise, la présente invention a pour objet un système de communication optique, caractérisé en ce qu'il comprend :
    • au moins une fibre optique et
    • des stations d'émission-réception placées le long de cette fibre optique, chaque station comportant au moins un amplificateur optique à semiconducteur à onde progressive qui est monte sur la fibre optique,

    en ce que le système comprend en outre des moyens d'émission prévus pour envoyer dans cette fibre optique au moins un signal optique continu qui traverse ainsi l'amplificateur de chaque station, et en ce que cet amplificateur est prévu pour, alternativement,
    • moduler, à l'aide de moyens de modulation, le signal optique continu qui traverse cet amplificateur, afin d'émettre des informations à l'intention de l'un au moins des autres amplificateurs qui reçoivent le signal ainsi module, et
    • détecter, à l'aide de moyens de détection, des informations sous forme d'au moins un signal module qui est destiné à cet amplificateur et qui a été émis par un autre amplificateur du système et transmis par la fibre optique.
  • Dans la présente invention, un seul composant remplit donc à la fois les fonctions d'émission et de réception.
  • Avec l'invention, le nombre de composants d'un bus optique est réduit de façon importante et l'on n'a plus les pertes qui étaient liées aux coupleurs optiques.
  • L'invention permet de réaliser un réseau optique de plus grande taille et plus grande dynamique que les réseaux optiques connus (à cause du gain des amplificateurs utilises dans l'invention).
  • Certes, il est connu par le document suivant
    • (5) Traveling wave semiconductor laser amplifier detectors, Mats Gustavsson et al., Journal of lightwave technology, vol. 8, n°4, avril 1990, p. 610 à 617,

       d'utiliser un amplificateur optique à onde progressive, encore appelé amplificateur optique non résonant, en tant que détecteur, en particulier sur un bus de données à fibre optique.
  • Néanmoins, ce document (5) ne prévoit pas d'adapter l'amplificateur de façon qu'il fonctionne alternativement en tant que détecteur et en tant que modulateur.
  • Selon un mode de réalisation particulier du système objet de l'invention, l'un au moins des amplificateurs comporte une première électrode et une deuxième électrode qui sont respectivement reliées aux moyens de modulation et aux moyens de détection.
  • Selon un autre mode de réalisation particulier, l'un au moins des amplificateurs comporte une électrode qui est reliée, alternativement,
    • aux moyens de modulation, et
    • aux moyens de détection.
  • Les moyens d'émission peuvent comprendre un premier laser et un deuxième laser qui sont respectivement placés aux deux extrémités de la fibre optique, chacun de ces premier et deuxième lasers étant prévu pour envoyer dans cette fibre optique un signal optique continu.
  • De préférence, les longueurs d'onde d'émission respectives des premier et deuxième lasers sont différentes et chaque laser est muni d'un filtre qui l'empêche de recevoir la lumière issue de l'autre laser, pour ne pas perturber le fonctionnement des lasers.
  • Enfin, chaque station peut comprendre des premier et deuxième amplificateurs optiques à semiconducteur à onde progressive qui sont montés en parallèle sur la fibre optique, chacun des premier et deuxième amplificateurs étant,
    • d'une part, prévu pour, alternativement, moduler le signal optique continu émis par l'un des lasers et détecter des informations résultant de la modulation de ce signal par au moins un autre amplificateur du système, et
    • d'autre part, muni d'un filtre qui l'empêche de recevoir la lumière issue de l'autre laser.
  • La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
    • la figure 1 est une vue schématique d'un mode de réalisation particulier du système objet de l'invention,
    • la figure 2 est une vue schématique d'un amplificateur optique à semiconducteur à onde progressive comportant deux électrodes de travail, qui est utilisable dans la présente invention,
    • la figure 3 est une vue schématique d'un autre amplificateur optique à semiconducteur à onde progressive comportant une seule électrode de travail, qui est également utilisable dans la présente invention, et
    • la figure 4 est une vue schématique et partielle d'un autre mode de réalisation particulier du système objet de l'invention.
  • Sur la figure 1, on a représenté schématiquement un système conforme à l'invention.
  • Il s'agit d'un bus optique qui a une structure de boucle ouverte.
  • Ce bus optique comprend une ligne de transmission optique constituée par exemple par une fibre optique monomode 2.
  • Le long de cette fibre 2 sont placées N stations d'émission-réception S1, S2, ..., SN-1, SN, où N est un nombre entier au moins égal à 2.
  • Ces N stations S1, S2, ..., SN-1, SN comprennent respectivement N amplificateurs optiques à semiconducteur à onde progressive A1, A2, ..., AN-1, AN.
  • Ces amplificateurs optiques sont montés sur la fibre optique 2 : ils sont reliés les uns aux autres par des tronçons de cette fibre optique de sorte qu'ils sont successivement parcourus par une lumière qui est injectée à une extrémité de la fibre optique 2.
  • De plus, deux lasers L1 et L2 sont respectivement placés aux deux extrémités de la fibre optique 2.
  • Le laser L1 envoie dans cette fibre 2 (par l'intermédiaire d'une lentille non représentée) un signal optique continu de longueur d'onde l1.
  • De même, le laser L2 envoie dans la fibre 2 (par l'intermédiaire d'une autre lentille non représentée) un signal optique continu de longueur d'onde l2.
  • Ainsi, la fibre 2 est parcourue par des signaux optiques continus suivant deux sens de transmission opposés.
  • Les longueurs d'ondes l1 et l2 peuvent être égales mais, de préférence, elles sont différentes et l'on prévoit alors :
    • entre le laser L1 et l'extrémité correspondante de la fibre 2, un filtre F1 qui élimine la lumière de longueur d'onde l2 qui se propage dans la fibre en direction du laser L1, et
    • entre le laser L2 et l'extrémité correspondante de la fibre 2, un filtre F2 qui élimine la lumière de longueur d'onde l1 qui se propage dans la fibre en direction du laser L2.
  • De cette façon, on évite de perturber le fonctionnement des lasers L1 et L2.
  • On a ainsi une structure dans laquelle deux longueurs d'ondes sont respectivement affectées aux deux sens de parcours opposés dans la fibre 2.
  • Une telle structure est possible car la bande passante optique des amplificateurs à onde progressive est très grande - elle est supérieure ou égale à 6000 GHz (ce qui correspond à plus de 50 nm à 1,5 micromètre).
  • Le filtrage optique de deux longueurs d'ondes espacées de plusieurs dizaines de nanomètre ne pose pas de problème particulier.
  • Chaque amplificateur optique a "une symétrie de fonctionnement" en ce sens qu'il fonctionne à l'identique quel que soit le sens de parcours de la lumière.
  • Les deux sens de transmission autorisés par cette symétrie de fonctionnement permettent à chaque interlocuteur (c'est-à-dire l'utilisateur d'une station d'émission-réception) de communiquer avec ceux qui se trouvent de part et d'autre de sa station sur la ligne optique.
  • En revenant à la figure 1, on voit que les amplificateurs optiques A1, A2, ..., AN-1, AN sont respectivement associés à des moyens d'émission-réception M1, M2, ..., MN-1, MN qui seront décrits par la suite.
  • Dans l'exemple représenté sur la figure 1, les amplificateurs optiques sont des amplificateurs à deux électrodes de travail.
  • On voit sur la figure 2 l'un de ces amplificateurs qui porte la référence Ai (1≦i≦N) et qui est inséré dans la ligne optique 2.
  • L'amplificateur Ai (i prenant l'une quelconque des valeurs 1 à N) comporte, sur une face, une première électrode e1 et une deuxième électrode e2 qui sont placées côte à côte et, sur la face opposée, une électrode e3 mise à la masse.
  • L'amplificateur Ai est muni de ses moyens d'émission-réception Mi.
  • Ces derniers comprennent un premier Té de polarisation, qui porte la référence T1, un deuxième Té de polarisation, qui porte la référence T2, un émetteur E, un récepteur R et des moyens électroniques de gestion MG.
  • Le premier Té comprend une résistance de charge R1 (de 50 ohms par exemple) et une inductance de blocage L1 qui ont une borne commune, cette dernière étant reliée à la première électrode e1.
  • Ce premier Té comprend aussi un condensateur de découplage C1 par l'intermédiaire duquel la résistance R1 est reliée à l'entrée du récepteur R associé à l'amplificateur optique Ai.
  • L'autre borne de l'inductance L1 est reliée à un premier générateur de courant G1 qui fournit un courant de polarisation I1.
  • Le deuxième Té comprend une résistance de charge R2 (de 50 ohms par exemple) et une inductance de blocage L2 qui ont une borne commune, cette dernière étant reliée à la deuxième électrode e2.
  • Le deuxième Té comprend aussi un condensateur de découplage C2 par l'intermédiaire duquel la résistance R2 est reliée à la sortie de l'émetteur E associé à l'amplificateur optique Ai.
  • L'autre borne de l'inductance L2 est reliée à un deuxième générateur de courant G2 qui fournit un courant de polarisation I2.
  • Les courants de polarisation I1 et I2 sont appliqués en permanence.
  • En ce qui concerne la détection, l'amplificateur à onde progressive Ai, lorsqu'il est traversé par un signal optique modulé en amplitude, fournit entre les électrodes e1 et e3, une tension électrique dont la variation est liée à celle du nombre de photons qui traversent l'amplificateur Ai.
  • La bande passante de cet amplificateur fonctionnant en détecteur est d'environ 200 MHz à 3 dB (voir le document (5)).
  • C'est le récepteur R qui détecte et amplifie cette tension et traduit celle-ci en informations à l'intention de l'utilisateur de la station où se trouve l'amplificateur Ai.
  • En ce qui concerne l'émission, lorsque l'amplificateur Ai est traversé par un signal optique continu, si on module le courant d'injection de cet amplificateur Ai et donc le gain de cet amplificateur, ce dernier se comporte alors comme un modulateur d'amplitude dont la bande passante à 3 dB vaut environ 200 MHz, comme pour la détection.
  • C'est l'émetteur E qui fournit un signal électrique modulé traduisant les informations que l'utilisateur de la station correspondante veut envoyer à une ou d'autres stations.
  • On a donc bien la possibilité, avec un amplificateur optique à onde progressive à deux électrodes, d'avoir alternativement une fonction d'émission et une fonction de réception, chacune des électrodes e1 et e2 étant affectée à l'une de ces deux fonctions.
  • On explique ci-après le fonctionnement du bus optique représenté sur la figure 1.
  • Etant donné les N interlocuteurs en ligne, l'un de ces interlocuteurs émet des informations et les N-1 autres interlocuteurs reçoivent les informations émises.
  • Pour la réception, tous les amplificateurs A1,..., AN détectent en permanence les signaux de longueurs d'ondes l1 et l2 transportés par la fibre 2.
  • La prise d'information est réalisée par la station adressée lorsque ses circuits électroniques reconnaissent l'adresse qui précède tout signal d'information, comme c'est le cas pour les protocoles de gestion des bus optiques classiques.
  • Pour l'émission, lorsqu'une station Si (1≦i≦N) émet, son amplificateur Ai module en amplitude les signaux optiques continus (de longueurs d'ondes l1 et l2) qui le traversent.
  • Cette modulation résulte d'un signal électrique qui porte les informations à émettre et qui est issue de l'émetteur E de la station Si.
  • Les moyens électroniques de gestion MG sont reliés à l'émetteur E et au récepteur R.
  • Ces moyens de gestion MG autorisent l'émission par la station considérée lorsqu'une autre station a fini d'émettre.
  • En outre, ces moyens de gestion MG engendrent les informations autorisant l'émission par l'une quelconque des autres stations lorsque la station considérée a fini d'émettre.
  • Dans un autre mode de réalisation particulier qui est schématiquement illustré par la figure 3, tous les amplificateurs A1, A2, ... AN ou certains d'entre eux comportent non plus deux électrodes de travail e1 et e2 mais une seule électrode de travail e4.
  • Dans ce cas, il n'y a qu'un seul Té de polarisation référencé T3 sur la figure 3.
  • Ce Té comprend une résistance de charge R3 (qui vaut par exemple 50 ohms) et une inductance de blocage L3 qui ont une borne commune reliée à l'électrode e4.
  • L'autre électrode e3 de l'amplificateur Ai est comme précédemment à la masse.
  • L'autre borne de l'inductance L3 est reliée à un générateur de courant G qui fournit un courant de polarisation I3.
  • L'autre borne de la résistance R3 est reliée à une borne d'un condensateur de découplage C3 dont l'autre borne est reliée
    • soit à la sortie de l'émetteur E de la station considérée Si,
    • soit à l'entrée du récepteur R de cette station,

    grâce à un commutateur CM à deux positions dont l'état (position) est commandé par les moyens de gestion MG que comportent les moyens d'émission-réception Mi de la station.
  • Dans ce cas, lorsque cette station a fini d'émettre, le commutateur passe en position de réception (le condensateur C3 étant alors relié au récepteur R) et lorsque la station ne reçoit aucune information qui lui est destinée et que cette station souhaite émettre, le commutateur CM passe en position d'émission (le condensateur C3 étant alors relié à l'émetteur E).
  • Dans le protocole de gestion, on tient compte du temps de propagation des signaux sur la ligne 2 pour éviter que des informations de longueurs d'ondes respectives l1 et l2 arrivent simultanément sur un amplificateur optique.
  • Pour simplifier le protocole de gestion, on peut réaliser un bus optique conforme à l'invention (non représenté) comportant deux fibres optiques parallèles.
  • Le laser L1 est alors placé d'un côté de l'ensemble des deux fibres et le laser L2 est placé de l'autre côté de cet ensemble.
  • Le laser L1 envoie le signal optique continu qui lui correspond dans l'une des deux fibres et le laser L2 envoie le signal optique continu qui lui correspond dans l'autre fibre.
  • Alors, chaque station d'émission-réception comprend deux amplificateurs optiques à onde progressive qui sont respectivement montés sur les deux fibres, chacun de ces deux amplificateurs étant bien entendu munis de moyens d'émission-réception.
  • Un autre mode de réalisation particulier de la présente invention, qui est schématiquement et partiellement représenté sur la figure 4, permet d'éviter le doublement des équipements qui vient d'être envisagé.
  • Dans ce mode de réalisation particulier qui est représenté sur la figure 4, les lasers L1 et L2 sont placés aux deux extrémités de la ligne 2 et celle-ci est parcourue dans des sens opposés, comme dans le cas de la figure 1, par les signaux optiques continus de longueurs d'ondes respectives l1 et l2.
  • Chaque station Si (1≦i≦N) comprend alors deux amplificateurs optiques à semiconducteur à onde progressive A1i et A2i montés en parallèle sur la fibre 2.
  • La station Si comprend aussi :
    • un premier filtre optique passe-bande F1i qui empêche l'arrivée des signaux optiques de longueur d'onde l2 dans l'amplificateur A1i et
    • un deuxième filtre optique passe-bande F2i qui empêche l'arrivée des signaux optiques de longueur d'onde l1 dans l'amplificateur A2i.
  • Pour installer la station Si sur la fibre 2, on utilise un premier coupleur en Y référencé C1i, dont une branche est raccordée au tronçon de fibre 2 par où arrivent les signaux de longueur d'onde l1.
  • Les deux autres branches de ce coupleur C1i sont respectivement reliées :
    • à un côté de l'amplificateur A1i,
    • à un côté de l'ampliicateur A2i, par l'intermédiaire du filtre F2i.
  • On utilise aussi un deuxième coupleur en Y référencé C2i, dont une branche est raccordée au tronçon de fibre 2 par où arrivent les signaux de longueur d'onde l2.
  • Les deux autres branches de ce coupleur C2i sont respectivement reliées :
    • à l'autre côté de l'amplificateur A1i par l'intermédiaire du filtre F1i,
    • à l'autre côté de l'amplificateur A2i.
  • L'amplificateur A1i de la station Si permet :
    • de recevoir des informations de toute station comprise entre cette station Si et le laser L1, et
    • d'émettre des informations en direction de toute station comprise entre cette station Si et le laser L2.
  • L'amplificateur A2i de la station Si permet :
    • d'émettre des informations en direction de toute station comprise entre cette station Si et le laser L1, et
    • de recevoir des informations de toute station comprise entre cette station Si et le laser L2.
  • Les amplificateur A1i et A2i sont bien entendu respectivement associés à des moyens d'émission-réception M1i et M2i.
  • Dans un autre mode de réalisation particulier non représenté, le bus optique a une structure de boucle fermée et les stations d'émission-réception comportent chacune un seul amplificateur optique à semi-conducteur à onde progressive et sont réparties le long de la ligne optique de ce bus.
  • Dans ce cas, un seul laser est prévu pour injecter de la lumière dans cette ligne optique.

Claims (6)

  1. Système de communication optique, caractérisé en ce qu'il comprend :
    - au moins une fibre optique (2) et
    - des stations d'émission-réception (S1, S2, ..., Si, ..., SN) placées le long de cette fibre optique (2), chaque station comportant au moins un amplificateur optique à semiconducteur à onde progressive (A1, A2, ..., Ai, ..., AN ; A1i, A2i) qui est monté sur la fibre optique (2),
    en ce que le système comprend en outre des moyens d'émission (L1, L2) prévus pour envoyer dans cette fibre optique au moins un signal optique continu qui traverse ainsi l'amplificateur de chaque station, et en ce que cet amplificateur (A1, A2, ..., Ai, ..., AN ; A1i ; A2i) est prévu pour, alternativement,
    - moduler, à l'aide de moyens de modulation (E, T2 ; E, T3) le signal optique continu qui traverse cet amplificateur, afin d'émettre des informations à l'intention de l'un au moins des autres amplificateurs qui reçoivent le signal ainsi modulé, et
    - détecter, à l'aide de moyens de détection (R, T1 ; R, T3) des informations sous forme d'au moins un signal modulé qui est destiné à cet amplificateur et qui a été émis par un autre amplificateur du système et transmis par la fibre optique (2).
  2. Système selon la revendication 1, caractérisé en ce que l'un au moins des amplificateurs (A1, A2, ... Ai, ..., AN ; A1i, A2i) comporte une première électrode (e1) et une deuxième électrode (e2) qui sont respectivement reliées aux moyens de détection (R, T1) et aux moyens de modulation (E, T2).
  3. Système selon la revendication 1, caractérisé en ce que l'un au moins des amplificateurs (A1, A2, ..., Ai, ..., AN ; A1i, A2i) comporte une électrode (e4) qui est reliée, alternativement,
    - aux moyens de modulation (E, T3), et
    - aux moyens de détection (R, T3).
  4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens d'émission comprennent un premier laser (L1) et un deuxième laser (L2) qui sont respectivement placés aux deux extrémités de la fibre optique (2), chacun de ces premier et deuxième lasers étant prévu pour envoyer dans cette fibre optique un signal optique continu.
  5. Système selon la revendication 4, caractérisé en ce que les longueurs d'onde d'émission respectives des premier (L1) et deuxième (L2) lasers sont différentes et en ce que chaque laser est muni d'un filtre (F1, F2) qui l'empêche de recevoir la lumière issue de l'autre laser.
  6. Système selon la revendication 5, caractérisé en ce que chaque station comprend des premier et deuxième amplificateurs optiques à semiconducteur à onde progressive (A1i, A2i) qui sont montés en parallèle sur la fibre optique (2), chacun des premier et deuxième amplificateurs étant,
    - d'une part, prévu pour, alternativement, moduler le signal optique continu émis par l'un des lasers et détecter des informations résultant de la modulation de ce signal par au moins un autre amplificateur du système, et
    - d'autre part, muni d'un filtre (F1i, F2i) qui l'empêche de recevoir la lumière issue de l'autre laser.
EP92402360A 1991-08-30 1992-08-28 Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive Expired - Lifetime EP0530109B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9110773 1991-08-30
FR9110773A FR2680928B1 (fr) 1991-08-30 1991-08-30 Systeme de communication optique utilisant des amplificateurs optiques a semiconducteur a onde progressive.

Publications (2)

Publication Number Publication Date
EP0530109A1 true EP0530109A1 (fr) 1993-03-03
EP0530109B1 EP0530109B1 (fr) 1997-01-29

Family

ID=9416505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402360A Expired - Lifetime EP0530109B1 (fr) 1991-08-30 1992-08-28 Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive

Country Status (4)

Country Link
US (1) US5515193A (fr)
EP (1) EP0530109B1 (fr)
DE (1) DE69217143T2 (fr)
FR (1) FR2680928B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637880A1 (fr) * 1993-08-04 1995-02-08 AT&T Corp. Multiplexage optique par modulation successive dans un réseau à fibres optiques

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396375B2 (en) * 2010-02-18 2013-03-12 Universitat Politecnica De Catalunya Method and apparatus for bidirectional optical link using a single optical carrier and colorless demodulation and detection of optical frequency shift keyed data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546012A1 (fr) * 1983-05-11 1984-11-16 Thomson Csf Procede de transmission bidirectionnelle de donnees par fibre optique sur un bus serie et dispositif terminal connecte a ce bus pour la mise en oeuvre de ce procede
DE3732626A1 (de) * 1987-09-28 1989-04-06 Siemens Ag Photo-lasertransistor
US4918396A (en) * 1989-04-05 1990-04-17 At&T Bell Laboratories Monitoring and/or control of optical amplifiers
EP0414333A2 (fr) * 1989-08-25 1991-02-27 ANT Nachrichtentechnik GmbH Réseau de données à fibres optiques
EP0440276A2 (fr) * 1990-01-30 1991-08-07 PIRELLI CAVI S.p.A. Ligne de télécommunication à fibre optique avec voies de service séparées

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064919B (en) * 1979-12-04 1983-10-05 Standard Telephones Cables Ltd Data transmission loops optical repeaters
US4642804A (en) * 1985-05-10 1987-02-10 Bell Communications Research, Inc. Shared laser lightwave transmission systems
FR2635423B1 (fr) * 1988-08-11 1993-11-26 Etat Francais Cnet Procede et dispositif de filtrage optique et de photodetection de signaux optiques modules en intensite
ATE107821T1 (de) * 1988-11-03 1994-07-15 Ascom Tech Ag Verfahren und vorrichtung zum dezentralen aussenden von information auf eine übertragungsstrecke.
FR2652465B1 (fr) * 1989-09-27 1991-11-15 France Etat Photorecepteur pour signaux optiques modules en frequence.
US5264960A (en) * 1992-05-08 1993-11-23 At&T Bell Laboratories Optical wavelength shifter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546012A1 (fr) * 1983-05-11 1984-11-16 Thomson Csf Procede de transmission bidirectionnelle de donnees par fibre optique sur un bus serie et dispositif terminal connecte a ce bus pour la mise en oeuvre de ce procede
DE3732626A1 (de) * 1987-09-28 1989-04-06 Siemens Ag Photo-lasertransistor
US4918396A (en) * 1989-04-05 1990-04-17 At&T Bell Laboratories Monitoring and/or control of optical amplifiers
EP0414333A2 (fr) * 1989-08-25 1991-02-27 ANT Nachrichtentechnik GmbH Réseau de données à fibres optiques
EP0440276A2 (fr) * 1990-01-30 1991-08-07 PIRELLI CAVI S.p.A. Ligne de télécommunication à fibre optique avec voies de service séparées

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637880A1 (fr) * 1993-08-04 1995-02-08 AT&T Corp. Multiplexage optique par modulation successive dans un réseau à fibres optiques

Also Published As

Publication number Publication date
FR2680928A1 (fr) 1993-03-05
EP0530109B1 (fr) 1997-01-29
US5515193A (en) 1996-05-07
DE69217143T2 (de) 1997-08-21
DE69217143D1 (de) 1997-03-13
FR2680928B1 (fr) 1994-11-10

Similar Documents

Publication Publication Date Title
CA2079764C (fr) Systeme de transmission bidirectionnelle, notamment par fibre optique, avec une porteuse unique pour les deux sens de transmission
EP0718992B1 (fr) Dispositif de régénération en ligne d&#39;un signal tranmis par solitons via la modulation synchrone des solitons à l&#39;aide d&#39;un miroir optique non-linéaire
EP0780723A1 (fr) Modulateur optique réglable d&#39;amplitude et de phase, et régénérateur de solitons comprenant un tel modulateur
EP0763912B1 (fr) Doubleur tout optique et régénérateur de solitons utilisant le doubleur
EP0576358B1 (fr) Procédé et système de transmission optique à très longue distance de solitons
FR2707442A1 (fr) Système de transmission sur fibre optique à compensation des distorsions en ligne.
CA2238923C (fr) Systeme de transmission optique a compensation dynamique de la puissance transmise
EP0231015B1 (fr) Dispositif de télécommunications photoniques cohérentes
EP0630123B1 (fr) Dispositif pour la remise en forme d&#39;un train d&#39;impulsions optiques et dispositif pour la récupération d&#39;un signal périodique synchronisé sur un train d&#39;impulsions optiques modulées
EP0816896B1 (fr) Composant électrooptique
EP0530109B1 (fr) Système de communication optique utilisant des amplificateurs optiques à semiconducteur à onde progressive
EP0002971A1 (fr) Dispositif de couplage à une ligne de transmission optique et système de transmission comportant de tels dispositifs
WO2008009849A2 (fr) Reseau optique passif longue distance utilisant la modulation deportee d&#39;un signal optique d&#39;amplification
EP0094866B1 (fr) Dispositif de liaison conversationnelle de type BUS à fibres optiques unimodales
FR2687030A1 (fr) Installation de transmission bi-directionnelle d&#39;informations par fibre(s) optique (s).
EP0879509B1 (fr) Liaison optique bidirectionnelle et dispositif d&#39;amplification pour cette liaison
EP0975106A1 (fr) Dispositif de régénération en ligne d&#39;un signal optique de solitons par une modulation synchrone de ces solitons et système de transmission comportant un tel dispositif
FR2971108A1 (fr) Systeme de determination d&#39;un temps de propagation d&#39;un signal optique entre deux equipements optiques au moyen d&#39;une liaison optique
EP2163011B1 (fr) Reseau optique longue distance avec localisation des moyens d&#39;amplification au niveau du central optique
EP0509434B1 (fr) Installation de transmission à liaison optique télésurveillée
EP0941587A1 (fr) Systeme de transmission optique a reflectometrie optique temporelle coherente
FR2549661A1 (fr) Dispositif de couplage d&#39;un terminal a un canal de liaison par fibre optique en boucle fermee et procede de transmission d&#39;informations dans un systeme utilisant de tels dispositifs
BLANK et al. High-capacity lightwave transmission systems
EP2139129B1 (fr) Procédé de limitation du bruit de phase non-lineaire d&#39;un signal optique module en phase a amplitude constante et dispositif associé
EP1372278A1 (fr) Composant semi-conducteur monolithique pour la régénération de signaux optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19930809

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960426

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69217143

Country of ref document: DE

Date of ref document: 19970313

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970730

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970819

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980828

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601