EP0529302B1 - Process and device for monitoring the operation of the heater of an oxygen sensor - Google Patents

Process and device for monitoring the operation of the heater of an oxygen sensor Download PDF

Info

Publication number
EP0529302B1
EP0529302B1 EP92112450A EP92112450A EP0529302B1 EP 0529302 B1 EP0529302 B1 EP 0529302B1 EP 92112450 A EP92112450 A EP 92112450A EP 92112450 A EP92112450 A EP 92112450A EP 0529302 B1 EP0529302 B1 EP 0529302B1
Authority
EP
European Patent Office
Prior art keywords
switched
heater
sensor heater
probe
diagnostic condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92112450A
Other languages
German (de)
French (fr)
Other versions
EP0529302A1 (en
Inventor
Robert Dipl.-Ing. Entenmann (Fh)
Alfred Dipl.-Ing. Kratt
Rudolf Dipl.-Ing. Moz (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0529302A1 publication Critical patent/EP0529302A1/en
Application granted granted Critical
Publication of EP0529302B1 publication Critical patent/EP0529302B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the method according to the invention and the device specified for carrying out this method relate to checking the functionality of a heater for an oxygen measuring probe, which is arranged in the exhaust gas duct of an internal combustion engine (BKM), including the supply lines to the heater.
  • BKM internal combustion engine
  • the oxygen content of the exhaust gas is determined with the oxygen measuring probe and the value determined in this way is fed to a control device which serves to set a predetermined air / fuel ratio.
  • the oxygen measuring probe is only ready for operation above a minimum operating temperature.
  • the regulation of the air / fuel mixture via the oxygen measuring probe is only possible when the probe has reached its operating temperature. Only then can a z. B. with a view to a low pollutant emission optimal air / fuel mixture.
  • the operating temperature of the oxygen measuring probe should be reached as soon as possible after the start of the BKM.
  • the probe is heated by the exhaust gases and is accelerated by an electric probe heater for the reasons given above.
  • the electrical probe heating is also required if e.g. B. when idling, the heating power of the exhaust gas is not sufficient to keep the probe at operating temperature, or in the case of long-lasting push operation.
  • the operational readiness of the probe heating is checked e.g. B. on the current flow detected by measuring resistor through the probe heater (DE 39 41 995 A), on the output signals of the probe (DE 26 04 160 C, DE 38 40 148 A), on the warm-up behavior of the probe (DE 39 28 709 A) or about the probe temperature, which in turn can be determined in various ways, e.g. B. from the internal resistance of the probe (DE 31 17 790 C) or with a temperature sensor (US 39 15 828 A).
  • the method according to the invention with the features according to claim 1 or the device according to claim 6 has the advantage that it can be implemented with very simple means.
  • the voltage used for diagnosis is already available without modification of a conventional probe heater. It is therefore not necessary to intervene in the wiring of the probe heater, but it must only be effected by means of suitable evaluation electronics that the supply voltage of the probe heater is measured at certain times and the measured values are processed accordingly.
  • Such an electronic circuit can be made compact and is therefore inexpensive and robust.
  • the invention relates to a method and a device for monitoring the functionality of the heating of an oxygen measuring probe. It is based on the principle that the supply voltage of the probe heater decreases when loaded with the electrical resistance of the probe heater, and the magnitude of the voltage change can be used to infer the load resistance and thus the functionality of the probe heater.
  • the results of the functional test are displayed to the driver optically and / or acoustically.
  • an entry in an error memory can be made in addition to or instead of the warning signals for later error output.
  • the presence of a diagnostic condition is waited for in the first step 10 of the flowchart before a first function test is carried out.
  • the diagnostic condition is adapted to the special circumstances. It includes, for example, the time since the engine was started, the distance traveled, the engine temperature or similar parameters. A combination of different conditions is also conceivable.
  • Step 10 follows step 12, in which it is checked whether the probe heating is switched on. If the probe heating is switched off, it is switched on in the subsequent step 14 and then in step 16 the presence of a measurement condition is awaited. In the exemplary embodiment described here, the measurement condition is met when a predetermined period of time has passed.
  • step 18 which is carried out after step 16, the supply voltage Uein is measured and stored. Step 18 is also reached if it was determined in step 12 that the probe heating is switched on. After step 18, the probe heating is switched off in step 20 and the supply voltage Uout is measured in the subsequent step 22. In the subsequent step 24, the difference between Uout and Uein is compared with a predetermined value deltaU1 and step 26 is carried out if this difference is greater than deltaU1. In step 26, the difference is used for a second comparison. It is checked whether it is less than a predetermined value deltaU2. If this is the case, a further diagnostic condition is awaited in the following step 28 and then it goes back to step 12.
  • step 30 If it is found in step 24 that the difference between Uout and Uein is not greater than a predetermined value deltaU1, then in step 30 it is concluded that the probe heating is interrupted and therefore defective. A short circuit of the heating is recognized in step 32, which is followed by step 26 if the condition checked in step 26 is not fulfilled. Both steps 30 and 32 lead to step 34, in which a corresponding entry is made in the error memory. After step 34, an alarm signal is output in step 36.
  • a functional probe heater represents a load on the supply voltage due to its electrical resistance, so that the supply voltage rises when the probe heater is switched off. If the probe heating and / or the supply lines are interrupted the supply voltage does not change due to the switching process. In step 30, a faulty probe heater (including supply lines) is concluded, an error message is entered in the error memory in step 34, and a corresponding warning signal is output in step 36 if, in steps 18 to 24, there is no voltage change by more than the specified value deltaU1 is observed.
  • step 32 If, on the other hand, the observed change in voltage is greater than deltaU1, it can be assumed that there is no interruption. However, there is still the possibility of a short circuit, which leads to a particularly high load on the supply voltage and thus to a large voltage change. If the voltage change in query 26 exceeds a predetermined maximum value deltaU2, it is concluded in step 32 that there is a short circuit. This is followed in step 34 by the entry in the error memory and in step 36 by the output of a corresponding warning signal.
  • the diagnosis of the probe heating is repeated whenever a further diagnostic condition is fulfilled in step 28.
  • This diagnostic condition can depend on the same parameters as the diagnostic condition of step 10. However, the conditions do not have to be identical and are based on the specific application and legal templates.
  • the functional test is repeated in the case of a functional and / or a probe heater identified as defective.
  • a device is expedient in which the first measurement of the supply voltage takes place with the probe heating switched off and the second measurement with the probe heating switched on. This means that a possible fault in the probe heating can be recognized after a very short operating time. This proves to be an advantage in particular in the case of a short-circuited probe heater, since the supply voltage source is not subjected to the high load then present for an unnecessarily long time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Testing Of Engines (AREA)

Description

Stand der TechnikState of the art

Das erfindungsgemäße Verfahren und die zur Durchführung dieses Verfahrens angegebene Vorrichtung beziehen sich auf die Überprüfung der Funktionsfähigkeit einer Heizung für eine Sauerstoffmeßsonde, die im Abgaskanal einer Brennkraftmaschine (BKM) angeordnet ist, einschließlich der Zuleitungen der Heizung.The method according to the invention and the device specified for carrying out this method relate to checking the functionality of a heater for an oxygen measuring probe, which is arranged in the exhaust gas duct of an internal combustion engine (BKM), including the supply lines to the heater.

Mit der Sauerstoffmeßsonde wird der Sauerstoffgehalt des Abgases bestimmt und der so ermittelte Wert einer Regeleinrichtung zugeführt, die dazu dient, ein vorgegebenes Luft/Kraftstoffverhältnis einzustellen. Die Sauerstoffmeßsonde ist nur oberhalb einer minimalen Betriebstemperatur funktionsbereit. Somit ist die Regelung des Luft/Kraftstoffgemishes über die Sauerstoffmeßsonde erst dann möglich, wenn die Sonde ihre Betriebstemperatur erreicht hat. Nur dann kann ein z. B. im Hinblick auf eine niedrige Schadstoffemission optimales Luft/Kraftstoffgemisch eingeregelt werden. Um die Emissionswerte gering zu halten, sollte die Betriebstemperatur der Sauerstoffmeßsonde möglichst rasch nach dem Start der BKM erreicht werden. Das Aufheizen der Sonde erfolgt durch die Abgase und wird aus den oben angegebenen Gründen durch eine elektrische Sondenheizung beschleunigt. Die elektrische Sondenheizung ist auch dann erforderlich, wenn z. B. im Leerlauf die Heizleistung des Abgases nicht ausreicht, die Sonde auf Betriebstemperatur zu halten, oder bei langandauerndem Schiebebetrieb.The oxygen content of the exhaust gas is determined with the oxygen measuring probe and the value determined in this way is fed to a control device which serves to set a predetermined air / fuel ratio. The oxygen measuring probe is only ready for operation above a minimum operating temperature. The regulation of the air / fuel mixture via the oxygen measuring probe is only possible when the probe has reached its operating temperature. Only then can a z. B. with a view to a low pollutant emission optimal air / fuel mixture. In order to keep the emission values low, the operating temperature of the oxygen measuring probe should be reached as soon as possible after the start of the BKM. The probe is heated by the exhaust gases and is accelerated by an electric probe heater for the reasons given above. The electrical probe heating is also required if e.g. B. when idling, the heating power of the exhaust gas is not sufficient to keep the probe at operating temperature, or in the case of long-lasting push operation.

Im Sinne einer geringen Schadstoffemission ist es erforderlich, die Funktionsfähigkeit der Sondenheizung zu überwachen. Es sind eine Reihe von Verfahren bekannt, um einen oder mehrere der Fehlerzustände Unterbrechung, Kurzschluß und Nebenschluß zu erkennen. Die Prüfung der Betriebsbereitschaft der Sondenheizung erfolgt z. B. über den mittels Meßwiderstand erfaßten Stromfluß durch die Sondenheizung (DE 39 41 995 A), über die Ausgangssignale der Sonde (DE 26 04 160 C, DE 38 40 148 A), über das Aufwärmverhalten der Sonde (DE 39 28 709 A) oder über die Sondentemperatur, die sich ihrerseits auf verschiedene Art und Weise ermitteln läßt, z. B. aus dem Innenwiderstand der Sonde (DE 31 17 790 C) oder mit einem Temperaturfühler (US 39 15 828 A).In the sense of low pollutant emissions, it is necessary to monitor the functionality of the probe heating. A number of methods are known to detect one or more of the open, short, and shunt fault conditions. The operational readiness of the probe heating is checked e.g. B. on the current flow detected by measuring resistor through the probe heater (DE 39 41 995 A), on the output signals of the probe (DE 26 04 160 C, DE 38 40 148 A), on the warm-up behavior of the probe (DE 39 28 709 A) or about the probe temperature, which in turn can be determined in various ways, e.g. B. from the internal resistance of the probe (DE 31 17 790 C) or with a temperature sensor (US 39 15 828 A).

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den Merkmalen nach Anspruch 1, bzw. die Vorrichtung gemäß Anspruch 6 hat den Vorteil, daß es mit sehr einfachen Mitteln realisiert werden kann. Die Spannung, die für die Diagnose herangezogen wird, steht ohne Modifikation einer herkömmlichen Sondenheizung bereits zur Verfügung. Es ist also kein Eingriff in die Beschaltung der Sondenheizung erforderlich, sondern es muß lediglich durch eine geeignete Auswertungselektronik bewirkt werden, daß die Versorgungsspannung der Sondenheizung zu bestimmten Zeitpunkten gemessen wird, und die Meßwerte entsprechend weiterverarbeitet werden. Eine derartige elektronische Schaltung läßt sich kompakt ausführen und ist somit kostengünstig und robust.The method according to the invention with the features according to claim 1 or the device according to claim 6 has the advantage that it can be implemented with very simple means. The voltage used for diagnosis is already available without modification of a conventional probe heater. It is therefore not necessary to intervene in the wiring of the probe heater, but it must only be effected by means of suitable evaluation electronics that the supply voltage of the probe heater is measured at certain times and the measured values are processed accordingly. Such an electronic circuit can be made compact and is therefore inexpensive and robust.

Bei rechnergesteuerten Systemen ist die Realisierung ebenfalls problemlos. Diese Gesichtspunkte sind sehr wichtig, da die Diagnosemöglichkeit auch in Verbindung mit Seriensteuergeräten einsetzbar sein soll. Außerdem wird in absehbarer Zeit die Funktionsüberwachung abgasrelevanter Betriebseinheiten gesetzlich vorgeschrieben werden, was zu einem hohen Bedarf an kostengünstigen und zuverlässigen Überwachungsvorrichtungen, wie der vorliegenden Erfindung, führen wird.With computer-controlled systems, implementation is also straightforward. These aspects are very important because the diagnostic option should also be used in conjunction with series control units. In addition, the function monitoring of exhaust gas-relevant operating units will be prescribed by law in the foreseeable future, which will lead to a high demand for inexpensive and reliable monitoring devices, such as the present invention.

Zeichnungdrawing

Die einzige Figur dieser Druckschrift zeigt ein Blockschaltbild einer möglichen Realisierung der Erfindung.The only figure in this document shows a block diagram of a possible implementation of the invention.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung der Funktionsfähigkeit der Heizung einer Sauerstoffmeßsonde. Sie beruht auf dem Prinzip, daß die Versorgungsspannung der Sondenheizung bei Belastung mit dem elektrischen Widerstand der Sondenheizung sinkt, und aus der Größe der Spannungsänderung auf den Belastungswiderstand und somit auf die Funktionsfähigkeit der Sondenheizung geschlossen werden kann. Die Ergebnisses der Funktionsprüfung werden dem Fahrer optisch und/oder akustisch angezeigt. Je nach Ausführung der Erfindung kann zur späteren Fehlerausgabe auch eine Eintragung in einen Fehlerspeicher zusätzlich zu den oder anstelle von den Warnsignalen erfolgen.The invention relates to a method and a device for monitoring the functionality of the heating of an oxygen measuring probe. It is based on the principle that the supply voltage of the probe heater decreases when loaded with the electrical resistance of the probe heater, and the magnitude of the voltage change can be used to infer the load resistance and thus the functionality of the probe heater. The results of the functional test are displayed to the driver optically and / or acoustically. Depending on the embodiment of the invention, an entry in an error memory can be made in addition to or instead of the warning signals for later error output.

Wie in der Figur gezeigt, wird im ersten Schritt 10 des Flußdiagramms das Vorliegen einer Diagnosebedingung abgewartet, bevor ein erster Funktionstest durchgeführt wird. Die Diagnosebedingung ist den speziellen Gegebenheiten angepaßt. Sie beinhaltet beispielsweise die Zeitspanne seit dem Starten des Motors, die zurückgelegte Wegstrecke, die Motortemperatur oder ähnliche Parameter. Es ist auch eine Verquickung verschiedener Bedingungen denkbar.As shown in the figure, the presence of a diagnostic condition is waited for in the first step 10 of the flowchart before a first function test is carried out. The diagnostic condition is adapted to the special circumstances. It includes, for example, the time since the engine was started, the distance traveled, the engine temperature or similar parameters. A combination of different conditions is also conceivable.

An Schritt 10 schließt sich Schritt 12 an, in dem überprüft wird, ob die Sondenheizung eingeschaltet ist. Im Fall einer ausgeschalteten Sondenheizung wird sie im darauffolgenden Schritt 14 eingeschaltet und danach in Schritt 16 das Vorliegen einer Meßbedingung abgewartet. In dem hier beschriebenen Ausführungsbeispiel ist die Meßbedingung erfüllt, wenn eine vorgegebene Zeitspanne verstrichen ist.Step 10 follows step 12, in which it is checked whether the probe heating is switched on. If the probe heating is switched off, it is switched on in the subsequent step 14 and then in step 16 the presence of a measurement condition is awaited. In the exemplary embodiment described here, the measurement condition is met when a predetermined period of time has passed.

In Schritt 18, der nach Schritt 16 ausgeführt wird, wird die Versorgungsspannung Uein gemessen und abgespeichert. Zu Schritt 18 gelangt man auch, wenn in Schritt 12 festgestellt wurde, daß die Sondenheizung eingeschaltet ist. Nach Schritt 18 wird in Schritt 20 die Sondenheizung ausgeschaltet und im darauffolgenden Schritt 22 die Versorgungsspannung Uaus gemessen. Im anschließenden Schritt 24 wird die Differenz aus Uaus und Uein mit einem vorgegebenen Wert deltaU1 verglichen und Schritt 26 ausgeführt, falls diese Differenz größer als deltaU1 ist. In Schritt 26 wird die Differenz für einen zweiten Vergleich herangezogen. Es wird überprüft ob sie kleiner als ein vorgegebener Wert deltaU2 ist. Ist das der Fall, so wird im folgenden Schritt 28 eine weitere Diagnosebedingung abgewartet und danach geht es zurück zu Schritt 12.In step 18, which is carried out after step 16, the supply voltage Uein is measured and stored. Step 18 is also reached if it was determined in step 12 that the probe heating is switched on. After step 18, the probe heating is switched off in step 20 and the supply voltage Uout is measured in the subsequent step 22. In the subsequent step 24, the difference between Uout and Uein is compared with a predetermined value deltaU1 and step 26 is carried out if this difference is greater than deltaU1. In step 26, the difference is used for a second comparison. It is checked whether it is less than a predetermined value deltaU2. If this is the case, a further diagnostic condition is awaited in the following step 28 and then it goes back to step 12.

Wird in Schritt 24 festgestellt, daß die Differenz aus Uaus und Uein nicht größer als ein vorgegebener Wert deltaU1 ist, so wird im darauffolgenden Schritt 30 auf eine unterbrochene und somit defekte Sondenheizung geschlossen. Ein Kurzschluß der Heizung wird in Schritt 32 erkannt, der sich Schritt 26 anschließt, falls die in Schritt 26 überprüfte Bedingung nicht erfüllt ist. Sowohl Schritt 30 als auch Schritt 32 mündet in Schritt 34, in dem ein entsprechender Eintrag in den Fehlerspeicher erfolgt. Nach Schritt 34 wird in Schritt 36 ein Alarmsignal ausgegeben.If it is found in step 24 that the difference between Uout and Uein is not greater than a predetermined value deltaU1, then in step 30 it is concluded that the probe heating is interrupted and therefore defective. A short circuit of the heating is recognized in step 32, which is followed by step 26 if the condition checked in step 26 is not fulfilled. Both steps 30 and 32 lead to step 34, in which a corresponding entry is made in the error memory. After step 34, an alarm signal is output in step 36.

Eine funktionsfähige Sondenheizung stellt wegen ihres elektrischen Widerstands eine Belastung der Versorgungsspannung dar, so daß die Versorgungsspannung durch das Ausschalten der Sondenheizung ansteigt. Falls die Sondenheizung und/oder die Zuleitungen unterbrochen sind, ändert sich die Versorgungsspannung durch den Schaltvorgang nicht. Es wird also in Schritt 30 auf eine defekte Sondenheizung (einschließlich Zuleitungen) geschlossen, in Schritt 34 eine Fehlermeldung in den Fehlerspeicher eingetragen und in Schritt 36 ein entsprechendes Warnsignal ausgegeben, wenn in den Schritten 18 bis 24 keine Spannungsänderung um mehr als den vorgegebene Wert deltaU1 beobachtet wird.A functional probe heater represents a load on the supply voltage due to its electrical resistance, so that the supply voltage rises when the probe heater is switched off. If the probe heating and / or the supply lines are interrupted the supply voltage does not change due to the switching process. In step 30, a faulty probe heater (including supply lines) is concluded, an error message is entered in the error memory in step 34, and a corresponding warning signal is output in step 36 if, in steps 18 to 24, there is no voltage change by more than the specified value deltaU1 is observed.

Ist die beobachtete Spannungsänderung dagegen größer als deltaU1, so kann davon ausgegangen werden, daß keine Unterbrechung vorliegt. Es besteht dann aber noch die Möglichkeit des Kurzschlusses, der zu einer besonders hohen Belastung der Versorgungsspannung und somit zu einer großen Spannungsänderung führt. Wenn die Spannungsänderung in der Abfrage 26 einen vorgegebenen Maximalwert deltaU2 überschreitet, wird in Schritt 32 gefolgert, daß ein Kurzschluß vorliegt. Es folgt in Schritt 34 der Eintrag in den Fehlerspeicher und in Schritt 36 die Ausgabe eines entsprechenden Warnsignals.If, on the other hand, the observed change in voltage is greater than deltaU1, it can be assumed that there is no interruption. However, there is still the possibility of a short circuit, which leads to a particularly high load on the supply voltage and thus to a large voltage change. If the voltage change in query 26 exceeds a predetermined maximum value deltaU2, it is concluded in step 32 that there is a short circuit. This is followed in step 34 by the entry in the error memory and in step 36 by the output of a corresponding warning signal.

Um eine fortlaufende Überwachung der Sondenheizung zu ermöglichen, wird die Diagnose der Sondenheizung jeweils wiederholt, wenn in Schritt 28 eine weitere Diagnosebedingung erfüllt ist. Diese Diagnosebedingung kann von den gleichen Parametern wie die Diagnosebedingung des Schritts 10 abhängen. Die Bedingungen müssen aber nicht identisch sein und richten sich nach dem speziellen Anwendungsfall und gesetzlichen Vorlagen. Je nach Anwendung wird die Funktionsprüfung im Fall einer funktionstüchtigen und/oder einer als defekt erkannten Sondenheizung wiederholt.In order to enable continuous monitoring of the probe heating, the diagnosis of the probe heating is repeated whenever a further diagnostic condition is fulfilled in step 28. This diagnostic condition can depend on the same parameters as the diagnostic condition of step 10. However, the conditions do not have to be identical and are based on the specific application and legal templates. Depending on the application, the functional test is repeated in the case of a functional and / or a probe heater identified as defective.

Alternativ zu dem hier vorgestellten Ausführungsbeispiel ist eine Vorrichtung zweckmäßig, bei der die 1. Messung der Versorgungsspannung bei ausgeschalteter Sondenheizung erfolgt und die 2. Messung bei eingeschalteter Sondenheizung. Dadurch kann ein möglicher Fehler der Sondenheizung bereits nach einer sehr kurzen Betriebszeit erkannt werden. Dies erweist sich insbesondere bei kurzgeschlossener Sondenheizung als Vorteil, da die Versorgungsspannungsquelle nicht unnötig lange der dann vorhandenen hohen Belastung ausgesetzt wird.As an alternative to the exemplary embodiment presented here, a device is expedient in which the first measurement of the supply voltage takes place with the probe heating switched off and the second measurement with the probe heating switched on. This means that a possible fault in the probe heating can be recognized after a very short operating time. This proves to be an advantage in particular in the case of a short-circuited probe heater, since the supply voltage source is not subjected to the high load then present for an unnecessarily long time.

Claims (6)

  1. Process for monitoring the operational capability of the heater of an oxygen sensor which is arranged in the exhaust gas channel of an internal combustion engine, characterized in that the supply voltage of the sensor heater is measured with the sensor heater switched on and switched off respectively, and when the difference between the voltages drops below a prescribed minimum value or exceeds a prescribed maximum value, appropriate fault signals are output and/or input into a fault memory.
  2. Process according to Claim 1, characterized in that the first measurement preferably takes place with the sensor heater switched on as soon as a first diagnostic condition is fulfilled, and the second measurement takes place after the sensor heater has been switched off.
  3. Process according to Claim 1 or 2, characterized in that a functional test is repeated given the presence of at least one further diagnostic condition.
  4. Process according to Claim 2 or 3, characterized in that the first diagnostic condition and/or the further diagnostic condition can be selected separately and are fulfilled given the presence of specific characteristic operating variables.
  5. Method according to Claim 4, characterized in that the time since the starting of the internal combustion engine, the time since the last diagnosis of the sensor heater, the distance covered or the temperature of the engine can serve as characteristic operating variables.
  6. Process for carrying out the method according to one of Claims 1 to 5, having means for detecting the presence of a diagnostic condition, characterized in that, in conjunction with the oxygen sensor heater, means are provided for measuring the supply voltage of the sensor heater with the sensor heater switched on and switched off, for forming the difference between the two values and for outputting appropriate fault signals when the difference between the voltages drops below a prescribed minium value or exceeds a prescribed maximum value.
EP92112450A 1991-08-27 1992-07-21 Process and device for monitoring the operation of the heater of an oxygen sensor Expired - Lifetime EP0529302B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4128385 1991-08-27
DE4128385A DE4128385A1 (en) 1991-08-27 1991-08-27 METHOD AND DEVICE FOR MONITORING THE OPERATIONAL FUNCTION OF AN OXYGEN MEASURING PROBE HEATING

Publications (2)

Publication Number Publication Date
EP0529302A1 EP0529302A1 (en) 1993-03-03
EP0529302B1 true EP0529302B1 (en) 1995-03-29

Family

ID=6439217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92112450A Expired - Lifetime EP0529302B1 (en) 1991-08-27 1992-07-21 Process and device for monitoring the operation of the heater of an oxygen sensor

Country Status (4)

Country Link
US (1) US5327780A (en)
EP (1) EP0529302B1 (en)
JP (1) JPH05195843A (en)
DE (2) DE4128385A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454259A (en) * 1993-08-02 1995-10-03 Toyota Jidosha Kabushiki Kaisha Failure detecting apparatus in temperature controller of air-fuel ratio sensor
JP3050019B2 (en) * 1993-10-12 2000-06-05 トヨタ自動車株式会社 Oxygen sensor control device for internal combustion engine
DE4404152A1 (en) * 1994-02-10 1995-08-17 Braun Ag Fault evaluation circuit for electrical device
JPH07259612A (en) * 1994-03-18 1995-10-09 Honda Motor Co Ltd Exhaust gas concentration sensor abnormality detecting device of internal combustion engine
IT1285863B1 (en) * 1996-05-08 1998-06-24 Magneti Marelli Spa CONTROL CIRCUIT FOR A VARIABLE RESISTANCE HEATER ASSOCIATED WITH AN EXHAUST GAS OXYGEN SENSOR.
DE19636415B4 (en) * 1996-09-07 2007-12-27 Robert Bosch Gmbh Method and device for monitoring the operation of a hydrocarbon sensor for an internal combustion engine
US6164125A (en) * 1997-04-23 2000-12-26 Denso Corporation Detection of malfunction in gas concentration detection system
JP3760558B2 (en) * 1997-04-23 2006-03-29 株式会社デンソー Oxygen sensor heater control device
DE19953142A1 (en) * 1999-09-14 2001-03-15 Emitec Emissionstechnologie Sheathed conductor arrangement for corrosive environmental conditions and method for producing a sheathed conductor arrangement
DE10056320A1 (en) * 2000-11-14 2002-05-16 Volkswagen Ag Process for diagnosing the end stage of a heating device of a gas sensor comprises using a prescribed diagnosis value as a sensor condition signal and/or a prescribed diagnosis value of a heating voltage parameter signal
FR2910932A1 (en) * 2006-12-27 2008-07-04 Renault Sas Electrical element e.g. electric immersion heater, controlling method for e.g. internal combustion engine, involves calculating difference between voltage measurements at terminals of battery to detect change in operating state of element
DE102009001351A1 (en) * 2009-03-05 2010-09-09 Robert Bosch Gmbh Method and device for detecting an interruption in an electrical supply line
DE102009002037A1 (en) * 2009-03-31 2010-10-07 Robert Bosch Gmbh Method for operating a sensor
DE102010002458A1 (en) * 2009-09-11 2011-03-24 Robert Bosch Gmbh gas probe
EP2781927A1 (en) * 2013-03-19 2014-09-24 Delphi Technologies Holding S.à.r.l. Method and apparatus to detect device functionality
JP6214975B2 (en) 2013-09-10 2017-10-18 日本特殊陶業株式会社 Load drive device and sensor control device
JP6276172B2 (en) * 2014-12-03 2018-02-07 日本特殊陶業株式会社 Load drive device
CN106248414B (en) * 2016-08-05 2018-08-21 东南大学 Sensor distribution method and structural recognition method suitable for monitoring structural health conditions
CN109944671B (en) * 2017-12-20 2020-11-13 中国航天系统工程有限公司 Three-way catalyst health state judgment system and method based on front and rear oxygen sensors
CN114459784B (en) * 2021-08-30 2023-08-29 中电华创电力技术研究有限公司 Method and device for detecting breath holding fault of combined low-pressure heater of steam turbine
CN113847122B (en) * 2021-09-22 2022-09-16 奇瑞汽车股份有限公司 GPF regeneration control method and device for automobile and computer storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915828A (en) * 1973-12-06 1975-10-28 Westinghouse Electric Corp Solid electrolyte cell assembly
US4170967A (en) * 1976-02-04 1979-10-16 Robert Bosch Gmbh Apparatus for controlling the mixture of an internal combustion engine
DE3117790A1 (en) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR MEASURING TEMPERATURE WITH OXYGEN PROBES
JPS57212347A (en) * 1981-06-25 1982-12-27 Nissan Motor Co Ltd Air-fuel ratio control system
JPH01224431A (en) * 1988-03-01 1989-09-07 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
IT1223822B (en) * 1988-09-14 1990-09-29 Marelli Autronica ELECTRIC CIRCUIT PARTICULARLY ELECTRONIC POWER CIRCUIT FOR VEHICLE INJECTION SYSTEMS WITH FUNCTION FOR DIAGNOSTIC DETECTION OF THE FAILURE AND RELATED PROCEDURE
DE3840148A1 (en) * 1988-11-29 1990-05-31 Bosch Gmbh Robert METHOD AND DEVICE FOR DETECTING AN ERROR STATE OF A LAMB PROBE
DE3928709A1 (en) * 1989-08-30 1991-03-07 Bosch Gmbh Robert METHOD AND DEVICE FOR CHECKING THE FUNCTIONALITY OF AN EXHAUST GAS EXHAUST HEATING AND ITS SUPPLY SYSTEM

Also Published As

Publication number Publication date
EP0529302A1 (en) 1993-03-03
US5327780A (en) 1994-07-12
DE59201767D1 (en) 1995-05-04
DE4128385A1 (en) 1993-03-04
JPH05195843A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
EP0529302B1 (en) Process and device for monitoring the operation of the heater of an oxygen sensor
EP0403615B1 (en) Process and device for detecting an error status in a lambda probe
DE4201646C2 (en) Fuel control device for an internal combustion engine
DE102009000286B4 (en) Monitoring a particle limit value in the exhaust gas of an internal combustion engine
DE102007034251B4 (en) Fault analysis method for a lambda probe, engine control for an internal combustion engine for carrying out the failure analysis method and program memory
DE102015203758B4 (en) Internal combustion engine control device
DE102005037717B3 (en) Method of treating or identifying faults in an exterior temperature sensor of a vehicle based on temperature gradient
DE19749817B4 (en) Apparatus and method for determining the start of injection
EP0142817A2 (en) Test method for an igniter system of an internal-combustion engine
DE19636415B4 (en) Method and device for monitoring the operation of a hydrocarbon sensor for an internal combustion engine
DE4232845A1 (en) Misfire monitoring circuit for IC engine with elimination of false signals - applies voltage to firing chamber after firing to monitor ion current through burn and uses reference programme to eliminate spurious events
DE4132008C2 (en) Method and device for checking the functionality of an oxygen probe heater
EP0440757B1 (en) Process and device for checking the operability of an exhaust gas probe heater and its supply system
DE102011077171A1 (en) Method and control unit for monitoring cable faults on a broadband lambda probe
DE102010000663A1 (en) Device for controlling and evaluating exhaust gas sensor used in combustion engine, has reference current source which is connected with corresponding electrode terminals and measuring terminal at respective switching frequencies
DE10257383B4 (en) Misfire detection device for an internal combustion engine
DE19733107A1 (en) Method of checking lambda probes of IC engine
DE19729696C2 (en) Method and device for monitoring the function of a gas probe
DE19838334A1 (en) Diagnostic appliance for regulating combustion processes; has probe signal investigating first, second and third range of signal readings
DE69705150T2 (en) Method for diagnosing the efficiency of a stochiometric exhaust gas sensor arranged downstream of a catalytic converter
DE102004048136A1 (en) Method for diagnosing a nitrogen oxide sensor arranged in the exhaust gas region of an I.C. engine comprises carrying out the diagnosis after switching off the engine in the after-running of a control device
EP0603543B1 (en) Method and apparatus to monitor a control apparatus in a combustion engine
DE69412039T2 (en) Method and device of a coil ignition with additional discharges for diagnosis
EP1093205A2 (en) Device for detecting an interruption in the charging line between a generator and a battery of a vehicle
DE10205966A1 (en) Process and device for monitoring the functioning of a secondary air system in a combustion engine with an exhaust gas system, closes secondary pump if a defect arises

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB LI SE

17P Request for examination filed

Effective date: 19930806

17Q First examination report despatched

Effective date: 19940719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950329

REF Corresponds to:

Ref document number: 59201767

Country of ref document: DE

Date of ref document: 19950504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950629

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950731

Ref country code: CH

Effective date: 19950731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960704

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970721

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980922

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503