EP0518822A1 - Measuring device for track maintenance machines - Google Patents

Measuring device for track maintenance machines Download PDF

Info

Publication number
EP0518822A1
EP0518822A1 EP92810441A EP92810441A EP0518822A1 EP 0518822 A1 EP0518822 A1 EP 0518822A1 EP 92810441 A EP92810441 A EP 92810441A EP 92810441 A EP92810441 A EP 92810441A EP 0518822 A1 EP0518822 A1 EP 0518822A1
Authority
EP
European Patent Office
Prior art keywords
measuring device
sensors
lenses
light
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92810441A
Other languages
German (de)
French (fr)
Other versions
EP0518822B1 (en
Inventor
Heinz Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matisa Materiel Industriel SA
Original Assignee
Matisa Materiel Industriel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matisa Materiel Industriel SA filed Critical Matisa Materiel Industriel SA
Publication of EP0518822A1 publication Critical patent/EP0518822A1/en
Application granted granted Critical
Publication of EP0518822B1 publication Critical patent/EP0518822B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the present invention relates to a measuring device for track construction machines, which contains an optical receiving device for receiving light waves, which are emitted by light sources located on both sides of the measuring device, and an evaluation device.
  • measuring devices are required to accurately record the track course and, in particular, to be able to adapt or correct it to the requirements.
  • Such measuring devices conventionally consist of an optical measuring system which uses three reference points on the track track which are at a distance from one another in order to record the track course. For straight horizontal lines, these three points must be in a line, in curves, for example, these three reference points must be at a certain offset from each other. This offset is measured and evaluated. According to the evaluation, the course of the track must then be corrected if necessary.
  • the conventional optical measuring devices have lens disks driven by motors, which project the light waves emitted by lamps in the two outer reference points at the middle reference point onto correspondingly arranged sensors.
  • the relative position of the two outer reference points in relation to the optical axis of the measuring device is conventionally determined and evaluated by means of time measurement.
  • the object of the present invention was to find a measuring device which does not require any moving parts and the wear and tear resulting therefrom and thus increasing measurement inaccuracies.
  • This object is achieved according to the invention in that two lenses arranged at a distance from one another are provided, and in that at least one sensor with a plurality of light-sensitive points is arranged between the two lenses in such a way that light rays incident through the respective lens correspond to their angle of incidence on the Lens are projected onto the corresponding zone of the sensor, and that an evaluation logic is provided, which merges and evaluates the signals produced by the sensors.
  • the measuring device according to the invention advantageously has no moving parts, which ensures that the measuring accuracy remains constant over the entire useful life of the device, since no wear occurs on moving parts of the optics, which reduces the measuring accuracy depending on the useful life.
  • the measuring device can also be constructed very compactly and is insensitive to impacts and rough transport.
  • FIG 1 shows the arrangement of the measuring optics according to the invention with sensor strips.
  • Figure 2 schematically shows the sensor strips with different light source positions.
  • a sensor strip 4, 5 is arranged in the middle of the optical axis 3 formed from two lenses 1, 2 which are semicircular in cross section. These strips are arranged in such a way that the light rays collected by the lenses, depending on the position of the corresponding light sources, are projected as a fine line of light along the sensor strips.
  • the light source A lying on the optical axis 3 is projected onto the point A 'of the sensor strip 5.
  • a light source B lying outside the optical axis 3 is correspondingly projected onto the point B 'of the sensor strip 5.
  • the distance of the projected point on the sensor strip from the point of the optical axis on the sensor strip is a measure of the angle ⁇ of the light source with respect to the optical axis to this point.
  • 2 color filters 6 and polarization filters 7, 8 are additionally mounted in front of the lens for filtering stray light. This means that only light from a specific light source falls on the sensor strips and a clear signal can be generated. In particular when using highly sensitive CCD (Charge Coupled Device) sensors, only a relatively small amount of light may be incident on the sensors. By setting the two polarization filters 7, 8 rotated relative to one another by 90 °, a very large part of the incident light is absorbed. If very strong light sources are now used, only a weak part of these light beams are transmitted to the sensors and all other extraneous light sources are filtered out.
  • CCD Charge Coupled Device
  • the angles can one or more light sources on both sides of the measuring arrangement with respect to the optical axis are detected and evaluated.
  • the optical axis is actually one plane; for the complete measurement of the angle of the light source with respect to two optical planes, two of the measuring devices described are correspondingly necessary, the optical planes of which are rotated relative to one another at a certain angle, preferably 90 °.
  • the described measuring device is doubled with two pairs of cylindrical lenses, preferably rotated by 90 ° to one another, with the correspondingly assigned sensor strip pairs for the purpose of determining the angle of incidence of the light in two optical planes, the measuring device thus doubled around its optical longitudinal axis with a specific one Angle, preferably 45 °, is rotated relative to a plane, for example a horizontal plane.
  • a specific one Angle preferably 45 °
  • FIG. 2 The type of evaluation is illustrated in FIG. 2.
  • a sensor strip consists of 2000 individual light-sensitive cells. All cells are cyclically queried for their status from cell 0 to cell 2000 using pulse generator logic.
  • the first cell 0 is arranged at the opposite end of the sensor strip.
  • a certain voltage value is output as the state corresponding to the light intensity of the light falling on each individual cell.
  • both light sources A and C lie on the optical axis of the measuring device. The light beam collected by the optics illuminates cell 1000 on both sensor strips.
  • the counter is constructed in such a way that when a signal from both sensor strips arrives at the same time, the signal is suppressed.
  • the value of the counter reached after a complete interrogation cycle corresponds to the difference angle between the two relative angles of the light sources A and C from the optical axis, the sign determining the corresponding side of the angle, that is to say upwards or downwards.
  • the value of the counter is set to zero.
  • a direct relationship between the counter value and the relative angle can be determined in degrees and displayed using suitable means or processed in a further evaluation logic.
  • the advantage of direct measurement of the relative angle is in particular that it compensates for an offset of the optical axis. If the two light sources lie on an axis which leads through the optical center of the measuring device, 0 is correctly output as the difference angle.
  • the counter will start counting up after 500 pulses every polling cycle by a signal from the sensor strip 5. After a further 500 pulses, at the pulse number 1000, the counting process is stopped by a signal from the sensor strip 4.
  • the counter reading is therefore 500 units, which corresponds to a certain angular value in degrees upwards between the connection of the light source C with the measuring device and the connection of the light source A with the measuring device. Finally, this value is used to check the measuring points and, if necessary, to correct the track layout.
  • PSD Position Sensitive Detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Die Messeinrichtung für Geleisebaumaschinen weist eine optische Empfangseinrichtung mit zwei in einer Achse (3) ausgerichteten Linsen (1, 2) und mindestens je einem zugehörigen Sensorstreifen (4, 5) auf. Die Projektionen von ausserhalb der Empfangseinrichtung angeordneter Lichtquellen (A, B, C) auf die Sensorstreifen (4, 5) erzeugen Signale, welche ausgewertet werden und die Grösse des Winkels der Lichtquelle bezüglich der optischen Achse bestimmen. Durch die Anordnung von lichtempfindlichen Sensorstreifen (4, 5) kann vorteilhafterweise auf mechanisch rotierende Elemente in der Empfangseinrichtung verzichtet werden. <IMAGE>The measuring device for track construction machines has an optical receiving device with two lenses (1, 2) aligned in one axis (3) and at least one associated sensor strip (4, 5). The projections of light sources (A, B, C) arranged outside the receiving device onto the sensor strips (4, 5) generate signals which are evaluated and determine the size of the angle of the light source with respect to the optical axis. The arrangement of light-sensitive sensor strips (4, 5) advantageously means that mechanically rotating elements in the receiving device can be dispensed with. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Messeinrichtung für Geleisebaumaschinen, welche eine optische Empfangseinrichtung für den Empfang von Lichtwellen, die durch auf beiden Seiten der Messeinrichtung im Abstand dazu befindlichen Lichtquellen abgegeben werden, und eine Auswertungseinrichtung enthält.The present invention relates to a measuring device for track construction machines, which contains an optical receiving device for receiving light waves, which are emitted by light sources located on both sides of the measuring device, and an evaluation device.

Bei der Erstellung neuer oder bei der Nachbearbeitung bestehender Geleiseanlagen, insbesondere für Eisenbahnen, werden Messeinrichtungen benötigt, um den Geleiseverlauf genau erfassen und insbesondere den Anforderungen anpassen oder korrigieren zu können. Derartige Messeinrichtungen bestehen herkömmlicherweise aus einem optischen Messystem, welches drei voneinander entfernte Referenzpunkte auf der Geleisespur verwendet, um den Geleiseverlauf zu erfassen. Für gerade horizontale Strecken müssen diese drei Punkte in einer Linie liegen, in Kurven beispielsweise müssen diese drei Referenzpunkte in einem bestimmten Versatz zueinander liegen. Dieser Versatz wird gemessen und ausgewertet. Entsprechend der Auswertung muss der Geleiseverlauf danach allenfalls korrigiert werden.When creating new or reworking existing track systems, especially for railways, measuring devices are required to accurately record the track course and, in particular, to be able to adapt or correct it to the requirements. Such measuring devices conventionally consist of an optical measuring system which uses three reference points on the track track which are at a distance from one another in order to record the track course. For straight horizontal lines, these three points must be in a line, in curves, for example, these three reference points must be at a certain offset from each other. This offset is measured and evaluated. According to the evaluation, the course of the track must then be corrected if necessary.

Die herkömmlichen optischen Messeinrichtungen weisen mittels Motoren angetriebene Linsenscheiben auf, welche die von in den beiden äusseren Referenzpunkten mittels Lampen abgestrahlten Lichtwellen am mittleren Referenzpunkt auf entsprechend angeordnete Sensoren projizieren. Dabei wird herkömmlicherweise mittels Zeitmessung die relative Lage der beiden äusseren Referenzpunkte im Verhältnis zur optischen Achse der Messeinrichtung festgestellt und ausgewertet.The conventional optical measuring devices have lens disks driven by motors, which project the light waves emitted by lamps in the two outer reference points at the middle reference point onto correspondingly arranged sensors. The relative position of the two outer reference points in relation to the optical axis of the measuring device is conventionally determined and evaluated by means of time measurement.

Die Aufgabe der vorliegenden Erfindung lag nun darin, eine Messeinrichtung zu finden, welche ohne bewegliche Teile und den dadurch bedingten Verschleiss und damit wachsende Messungenauigkeiten auskommt.The object of the present invention was to find a measuring device which does not require any moving parts and the wear and tear resulting therefrom and thus increasing measurement inaccuracies.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass zwei im Abstand zueinander in einer Achse angeordnete Linsen vorgesehen sind, und dass zwischen den beiden Linsen je mindestens ein Sensor mit mehreren lichtempfindlichen Punkten derart angeordnet ist, dass durch die jeweilige Linse einfallende Lichtstrahlen entsprechend ihrem Eintrittswinkel auf die Linse auf die entsprechende Zone des Sensors projiziert werden, und dass eine Auswertungslogik vorgesehen ist, welche die von den Sensoren produzierten Signale zusammenführt und auswertet.This object is achieved according to the invention in that two lenses arranged at a distance from one another are provided, and in that at least one sensor with a plurality of light-sensitive points is arranged between the two lenses in such a way that light rays incident through the respective lens correspond to their angle of incidence on the Lens are projected onto the corresponding zone of the sensor, and that an evaluation logic is provided, which merges and evaluates the signals produced by the sensors.

Bevorzugte Ausführungsformen der Erfindung sind in den Ansprüchen 2 bis 12 beschrieben.Preferred embodiments of the invention are described in claims 2 to 12.

Die erfindungsgemässe Messeinrichtung weist vorteilhaft keine beweglichen Teile auf, womit eine über die gesamte Nutzungsdauer der Einrichtung gleichbleibende Messgenauigkeit gewährleistet wird, da kein Verschleiss an beweglichen Teilen der Optik auftritt, welcher in Abhängigkeit der Nutzungsdauer die Messgenauigkeit herabsetzt. Ebenfalls kann die Messeinrichtung sehr kompakt aufgebaut werden und ist unempfindlich gegen Stösse und rauhen Transport.The measuring device according to the invention advantageously has no moving parts, which ensures that the measuring accuracy remains constant over the entire useful life of the device, since no wear occurs on moving parts of the optics, which reduces the measuring accuracy depending on the useful life. The measuring device can also be constructed very compactly and is insensitive to impacts and rough transport.

Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand von Zeichnungen noch näher erläutert.An embodiment of the invention is explained in more detail below with reference to drawings.

Es zeigen :Show it :

Figur 1 die erfindungsgemässe Anordnung der Messoptik mit Sensorstreifen.1 shows the arrangement of the measuring optics according to the invention with sensor strips.

Figur 2 schematisch die Sensorstreifen mit verschiedenen Lichtquellenpositionen.Figure 2 schematically shows the sensor strips with different light source positions.

In der Mitte der aus zwei im Querschnitt halbkreisförmigen Linsen 1, 2 gebildeten optischen Achse 3 sind je ein Sensorstreifen 4, 5 angeordnet. Diese Streifen sind derart angeordnet, dass die durch die Linsen gesammelten Lichtstrahlen je nach Stellung der entsprechenden Lichtquellen als feiner Lichtstrich gebündelt entlang der Sensorstreifen projiziert werden. Im Beispiel wird die auf der optischen Achse 3 liegende Lichtquelle A auf die Stelle A′ des Sensorstreifens 5 projiziert. Eine ausserhalb der optischen Achse 3 liegende Lichtquelle B wird entsprechend auf den Punkt B′ des Sensorstreifens 5 projiziert. Der Abstand des projizierten Punktes auf dem Sensorstreifen vom Punkt der optischen Achse auf dem Sensorstreifen ist ein Mass für den Winkel β der Lichtquelle bezüglich der optischen Achse zu diesem Punkt. Zur Filterung von Störlicht sind erfindungsgemäss zusätzlich vor der Linse 2 Farbfilter 6 und Polarisationsfilter 7, 8 angebracht. Damit kann erreicht werden, dass nur Licht einer bestimmten Lichtquelle auf die Sensorstreifen fällt und ein eindeutiges Signal erzeugt werden kann. Insbesondere bei der Verwendung von hochempfindlichen CCD (Charge Coupled Device) - Sensoren darf nur noch eine verhältnismässig kleine Lichtmenge auf die Sensoren treffen. Indem die beiden Polarisationsfilter 7, 8 gegen 90° zueinander verdreht eingestellt werden, wird ein sehr grosser Teil des einfallenden Lichtes absorbiert. Wenn nun sehr starke Lichtquellen verwendet werden, so wird nur noch ein schwacher Teil dieser Lichtstrahlen auf die Sensoren durchgelassen und alle anderen Fremdlichtquellen werden ausgefiltert. Durch die Anordnung je einer Linse und eines Sensorstreifens auf jeder Seite der optischen Achse können die Winkel je einer oder mehrerer Lichtquellen zu beiden Seiten der Messanordnung bezüglich der optischen Achse erfasst und ausgewertet werden. In der dargestellten Ausführungsform ist die optische Achse eigentlich eine Ebene, für die vollständige Vermessung des Winkels der Lichtquelle bezüglich zweier optischen Ebenen sind sinngemäss zwei der geschilderten Messeinrichtungen notwendig, deren optische Ebenen in einem bestimmten Winkel, vorzugsweise 90°, zueinander verdreht angeordnet sind. Ebenfalls ist es aber auch denkbar, nur eine Messeinrichtung, welche um ihre optische Achse drehbar in einem Gehäuse gelagert ist, zu verwenden, und mit jeweils zwei zeitlich verschobenen Messungen die zwei Winkel zu erfassen oder quadratische Sensoren zu verwenden, welche bei entsprechender Optik, zum Beispiel Bikonvex-Linse, durch das punktförmig gebündelte Licht beide Achsen gleichzeitig misst.A sensor strip 4, 5 is arranged in the middle of the optical axis 3 formed from two lenses 1, 2 which are semicircular in cross section. These strips are arranged in such a way that the light rays collected by the lenses, depending on the position of the corresponding light sources, are projected as a fine line of light along the sensor strips. In the example, the light source A lying on the optical axis 3 is projected onto the point A 'of the sensor strip 5. A light source B lying outside the optical axis 3 is correspondingly projected onto the point B 'of the sensor strip 5. The distance of the projected point on the sensor strip from the point of the optical axis on the sensor strip is a measure of the angle β of the light source with respect to the optical axis to this point. According to the invention, 2 color filters 6 and polarization filters 7, 8 are additionally mounted in front of the lens for filtering stray light. This means that only light from a specific light source falls on the sensor strips and a clear signal can be generated. In particular when using highly sensitive CCD (Charge Coupled Device) sensors, only a relatively small amount of light may be incident on the sensors. By setting the two polarization filters 7, 8 rotated relative to one another by 90 °, a very large part of the incident light is absorbed. If very strong light sources are now used, only a weak part of these light beams are transmitted to the sensors and all other extraneous light sources are filtered out. By arranging a lens and a sensor strip on each side of the optical axis, the angles can one or more light sources on both sides of the measuring arrangement with respect to the optical axis are detected and evaluated. In the embodiment shown, the optical axis is actually one plane; for the complete measurement of the angle of the light source with respect to two optical planes, two of the measuring devices described are correspondingly necessary, the optical planes of which are rotated relative to one another at a certain angle, preferably 90 °. However, it is also conceivable to use only one measuring device which is rotatably mounted in a housing about its optical axis, and to record the two angles with two measurements which are shifted in time, or to use square sensors which, with appropriate optics, for Example biconvex lens, through which point-focused light measures both axes at the same time.

Bei einer ebenfalls denkbaren Ausführungsform ist eine Verdoppelung der geschilderten Messvorrichtung mit je zwei um vorzugsweise 90° zueinander verdrehten Zylinderlinsenpaaren mit den entsprechend zugeordneten Sensorstreifenpaaren zwecks Bestimmung des Einfallswinkels des Lichts in zwei optischen Ebenen vorgesehen, wobei die so verdoppelte Messeinrichtung um ihre optische Längsachse mit einem bestimmten Winkel, vorzugsweise 45°, gegenüber einer Ebene, zum Beispiel einer horizontalen Ebene, verdreht angeordnet ist. Mit dieser Ausführungsform wird erreicht, dass mehrere in derselben Ebene liegenden Lichtquellen von den Sensorstreifen unterscheidbar erfasst und ausgewertet werden können.In an embodiment which is also conceivable, the described measuring device is doubled with two pairs of cylindrical lenses, preferably rotated by 90 ° to one another, with the correspondingly assigned sensor strip pairs for the purpose of determining the angle of incidence of the light in two optical planes, the measuring device thus doubled around its optical longitudinal axis with a specific one Angle, preferably 45 °, is rotated relative to a plane, for example a horizontal plane. With this embodiment it is achieved that a plurality of light sources lying in the same plane can be detected and evaluated distinguishably from the sensor strips.

Die Art der Auswertung wird anhand der Figur 2 verdeutlicht. Zur besseren Anschaulichkeit sind dabei die beiden Sensorstreifen mit ihrer Wirkfläche nebeneinander dargestellt. Ein Sensorstreifen besteht hier beispielsweise aus 2000 einzelnen lichtempfindlichen Zellen. Dabei werden alle Zellen zyklisch von Zelle 0 bis Zelle 2000 mittels einer Impulsgeberlogik auf ihren Zustand abgefragt. Die erste Zelle 0 ist dabei bei den hintereinander angeordneten Sensorstreifen 4, 5 am jeweils entgegengesetzten Ende des Sensorstreifens angeordnet. Als Zustand wird entsprechend der Lichtintensität des auf jede einzelne Zelle fallenden Lichtes ein bestimmter Spannungswert abgegeben. Im in Figur 2a dargestellten Beispiel liegen beide Lichtquellen A und C auf der optischen Achse der Messeinrichtung. Der jeweils durch die Optik gesammelte Lichtstrahl beleuchtet auf beiden Sensorstreifen die Zelle 1000. Dies bedeutet, dass bei der zyklischen Abfrage des Zustandes jeweils die Zellen 0 bis 999 und 1001 bis 2000 beider Sensorstreifen 4, 5 keine Spannung abgeben und jede der Zellen 1000 einen bestimmten Spannungswert abgibt. Die Abfragezyklen beider Sensorstreifen werden nun synchronisiert, und gleichzeitig ist noch ein Zählbaustein vorgesehen, welcher bei einem ersten positiven Signal einer Zelle des einen Sensorstreifens entsprechend dem Abfragezyklus mit dem Zählvorgang beginnt und beim zweiten Eintreffen eines Signals einer Zelle des anderen Sensorstreifens den Zählvorgang abbricht. Dabei wird die Zählrichtung, das heisst das Vorzeichen des Zählers, vom jeweiligen Sensorstreifen fest bestimmt. Beispielsweise lässt ein Signal des Sensorstreifens 4 den Zähler vorwärts zählen und ein Signal des Sensorstreifens 5 den Zähler rückwärts zählen. Der Zähler ist derart aufgebaut, dass bei gleichzeitigem Eintreffen eines Signales von beiden Sensorstreifen das Signal unterdrückt wird. So entspricht der nach einem vollständigen Abfragezyklus erreichte Wert des Zählers dem Differenzwinkel zwischen den beiden relativen Winkeln der Lichtquellen A und C von der optischen Achse, wobei das Vorzeichen die entsprechende Seite des Winkels bestimmt, also nach oben oder nach unten. Vor dem Beginn eines Abfragezykluses wird der Wert des Zählers jeweils auf Null gesetzt. Entsprechend der Anzahl und dem Abstand der Zellen auf dem Sensorstreifen und der Auslegung der Linsen kann ein direkter Bezug zwischen dem Zählerwert und dem relativen Winkel in Grad bestimmt und mittels geeigneter Mittel angezeigt oder in einer weiteren Auswertungslogik verarbeitet werden. Der Vorteil der direkten Messung des relativen Winkels liegt insbesondere darin, dass damit ein Versatz der optischen Achse ausgeglichen wird. Liegen nämlich die beiden Lichtquellen auf einer Achse, welche durch das optische Zentrum der Messeinrichtung führt, so wird als Differenzwinkel richtigerweise 0 ausgegeben.The type of evaluation is illustrated in FIG. 2. For better clarity, the two sensor strips are shown next to each other with their active surface. For example, a sensor strip consists of 2000 individual light-sensitive cells. All cells are cyclically queried for their status from cell 0 to cell 2000 using pulse generator logic. In the case of the sensor strips 4, 5 arranged one behind the other, the first cell 0 is arranged at the opposite end of the sensor strip. A certain voltage value is output as the state corresponding to the light intensity of the light falling on each individual cell. In the example shown in FIG. 2a, both light sources A and C lie on the optical axis of the measuring device. The light beam collected by the optics illuminates cell 1000 on both sensor strips. This means that when the status is cyclically queried, cells 0 to 999 and 1001 to 2000 of both sensor strips 4, 5 emit no voltage and each of cells 1000 determines a particular one Delivers voltage value. The polling cycles of both sensor strips are now synchronized, and at the same time a counter module is also provided, which begins the counting process when the first signal of a cell of one sensor strip corresponds to the polling cycle and stops the counting process when a signal from a cell of the other sensor strip arrives a second time. The counting direction, i.e. the sign of the counter, is determined by the respective sensor strip. For example, a signal from sensor strip 4 makes the counter count up and a signal from sensor strip 5 counts down the counter. The counter is constructed in such a way that when a signal from both sensor strips arrives at the same time, the signal is suppressed. The value of the counter reached after a complete interrogation cycle corresponds to the difference angle between the two relative angles of the light sources A and C from the optical axis, the sign determining the corresponding side of the angle, that is to say upwards or downwards. Before the start of an interrogation cycle, the value of the counter is set to zero. Depending on the number and spacing of the cells on the sensor strip and the design of the lenses, a direct relationship between the counter value and the relative angle can be determined in degrees and displayed using suitable means or processed in a further evaluation logic. The advantage of direct measurement of the relative angle is in particular that it compensates for an offset of the optical axis. If the two light sources lie on an axis which leads through the optical center of the measuring device, 0 is correctly output as the difference angle.

Bei einer Lichtquellenanordnung bezüglich der Messeinrichtung entsprechend Figur 2b wird der Zähler nach 500 Impulsen jedes Abfragezyklus durch ein Signal des Sensorstreifens 5 mit dem Vorwärtszählen beginnen. Nach weiteren 500 Impulsen, bei der Impulszahl 1000, wird der Zählvorgang durch ein Signal des Sensorstreifens 4 gestoppt. Der Zählerstand beträgt demnach 500 Einheiten, was einem bestimmten Winkelwert in Grad gegen oben zwischen der Verbindung der Lichtquelle C mit der Messeinrichtung und der Verbindung der Lichtquelle A mit der Messeinrichtung entspricht. Dieser Wert wird schliesslich zur Kontrolle der Messpunkte und gegebenenfalls zur Korrektur der Linienführung der Geleise verwendet.In the case of a light source arrangement with respect to the measuring device according to FIG. 2b, the counter will start counting up after 500 pulses every polling cycle by a signal from the sensor strip 5. After a further 500 pulses, at the pulse number 1000, the counting process is stopped by a signal from the sensor strip 4. The counter reading is therefore 500 units, which corresponds to a certain angular value in degrees upwards between the connection of the light source C with the measuring device and the connection of the light source A with the measuring device. Finally, this value is used to check the measuring points and, if necessary, to correct the track layout.

Anstelle von CCD-Sensoren können auch andere Sensoren, z.B. PSD (Position-Sensitive Detectors)-Sensoren verwendet werden.Instead of CCD sensors, other sensors, e.g. PSD (Position Sensitive Detectors) sensors are used.

Claims (12)

Messeinrichtung für Geleisebaumaschinen, welche eine optische Empfangseinrichtung für den Empfang von Lichtwellen, die durch auf beiden Seiten der Messeinrichtung im Abstand dazu befindlichen Lichtquellen abgegeben werden, und eine Auswertungseinrichtung enthält, dadurch gekennzeichnet, dass zwei im Abstand zueinander in einer Achse angeordnete Linsen vorgesehen sind, und dass zwischen den beiden Linsen je mindestens ein Sensor mit mehreren lichtempfindlichen Punkten derart angeordnet ist, dass durch die jeweilige Linse einfallende Lichtstrahlen entsprechend ihrem Eintrittswinkel auf die Linse auf die entsprechende Zone des Sensors projiziert werden, und dass eine Auswertungslogik vorgesehen ist, welche die von den Sensoren produzierten Signale zusammenführt und auswertet.Measuring device for track construction machines, which contains an optical receiving device for receiving light waves that are emitted by light sources on both sides of the measuring device and an evaluation device, characterized in that two lenses arranged at a distance from one another are provided, and that at least one sensor with a plurality of light-sensitive points is arranged between the two lenses in such a way that light rays incident through the respective lens are projected onto the corresponding zone of the sensor according to their entry angle onto the lens, and that an evaluation logic is provided which corresponds to that of the signals produced by the sensors are merged and evaluated. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass vor den Linsen jeweils ein Farbglasfilter positioniert ist.Measuring device according to claim 1, characterized in that a colored glass filter is positioned in front of the lenses. Messeinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass vor den Linsen zwei Polarisationsfilter positioniert sind.Measuring device according to one of claims 1 or 2, characterized in that two polarization filters are positioned in front of the lenses. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensoren CCD (Charged Coupled Device)-Sensoren mit mehr als 1000 lichtempfindlichen Zellen sind.Measuring device according to one of claims 1 to 3, characterized in that the sensors are CCD (Charged Coupled Device) sensors with more than 1000 light-sensitive cells. Messeinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die CCD-Sensoren farbtaugliche Sensoren mit mehreren Reihen lichtempfindlicher Zellen sind.Measuring device according to claim 4, characterized in that the CCD sensors are color-compatible sensors with a plurality of rows of light-sensitive cells. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensoren PSD (Position-Sensitive Detecors)- Sensoren mit kontinuierlicher Signalübermittlung sind.Measuring device according to one of claims 1 to 3, characterized in that the sensors are PSD (Position-Sensitive Detecors) - sensors with continuous signal transmission. Messeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Sensoren polydimensional sind.Measuring device according to one of claims 1 to 6, characterized in that the sensors are polydimensional. Messeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Linsen Zylinderlinsen mit Halbkreisquerschnitt, und damit linienförmiger Projektion der einfallenden Lichtstrahlen, vorgesehen sind.Measuring device according to one of claims 1 to 7, characterized in that cylindrical lenses with a semicircular cross section and thus linear projection of the incident light beams are provided as lenses. Messeinrichtung nach dem Anspruch 8, dadurch gekennzeichnet, dass parallel zu der Längsachse der Messeinrichtung eine zweite gleichartige Messeinrichtung vorgesehen ist, welche ihrerseits um ihre Längsachse mit annähernd 90° gegenüber der ersten Messeinrichtung verdreht angeordnet ist.Measuring device according to claim 8, characterized in that a second similar measuring device is provided parallel to the longitudinal axis of the measuring device, which in turn is arranged rotated about its longitudinal axis at approximately 90 ° with respect to the first measuring device. Messeinrichtung nach dem Anspruch 9, dadurch gekennzeichnet, dass die Messeinrichtung um ihre Längsachse gegenüber einer von der Lage der Lichtquellen bestimmten Ausgangsebene bis zu 45° verdreht angeordnet ist.Measuring device according to claim 9, characterized in that the measuring device is arranged rotated up to 45 ° about its longitudinal axis with respect to an output plane determined by the position of the light sources. Messeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei der Verwendung von Flächen-Sensoren als Linsen runde Bikonvex-Linsen vorgesehen sind.Measuring device according to one of claims 1 to 7, characterized in that round biconvex lenses are provided when using surface sensors as lenses. Messeinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Auswertungseinrichtung eine Impulsgeberlogik, welche die Sensoren ansteuert, und eine Zähllogik vorhanden ist, welche die von den Sensoren erhaltenen Signale auswertet.Measuring device according to one of claims 1 to 11, characterized in that a pulse generator logic which controls the sensors and a counting logic which evaluates the signals received by the sensors is present as the evaluation device.
EP92810441A 1991-06-10 1992-06-09 Measuring device for track maintenance machines Expired - Lifetime EP0518822B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1721/91A CH683109A5 (en) 1991-06-10 1991-06-10 Measuring device for track construction machines.
CH1721/91 1991-06-10

Publications (2)

Publication Number Publication Date
EP0518822A1 true EP0518822A1 (en) 1992-12-16
EP0518822B1 EP0518822B1 (en) 1995-11-08

Family

ID=4217052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810441A Expired - Lifetime EP0518822B1 (en) 1991-06-10 1992-06-09 Measuring device for track maintenance machines

Country Status (4)

Country Link
US (1) US5255066A (en)
EP (1) EP0518822B1 (en)
CH (1) CH683109A5 (en)
DE (1) DE59204233D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798347A1 (en) 1999-09-09 2001-03-16 Matisa Materiel Ind Sa VEHICLE FOR MEASURING THE GEOMETRIC STATE OF A RAILWAY
DE102008062458B4 (en) * 2007-12-20 2016-01-14 Hochschule Magdeburg-Stendal (Fh) Measuring method for laser-based measurement of workpieces, assemblies and tools
EP2960371B1 (en) 2014-06-27 2017-08-09 HP3 Real GmbH Device for measuring tracks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804621B1 (en) * 2003-04-10 2004-10-12 Tata Consultancy Services (Division Of Tata Sons, Ltd) Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155643A5 (en) * 1971-10-08 1973-05-18 Plasser Bahnbaumasch Franz
GB2020418A (en) * 1978-05-01 1979-11-14 Alcyon Equip Sa Measurement of interior profiles
EP0051338A1 (en) * 1980-11-04 1982-05-12 Matisa Materiel Industriel S.A. Method and means for measuring the position of a railway rail
US5000564A (en) * 1990-03-09 1991-03-19 Spectra-Physics, Inc. Laser beam measurement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT379432B (en) * 1983-06-24 1986-01-10 Voest Alpine Ag DEVICE FOR CONTROLLING THE POSITION OF A TRACK DRIVING MACHINE
JPH0685387B2 (en) * 1986-02-14 1994-10-26 株式会社東芝 Alignment method
US4936678A (en) * 1988-03-21 1990-06-26 The Ohio State University Position detection system for use with agricultural and construction equipment
JPH0269641A (en) * 1988-09-05 1990-03-08 Tokyo Electron Ind Co Ltd Device for incorporating reflected light of object to be measured

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155643A5 (en) * 1971-10-08 1973-05-18 Plasser Bahnbaumasch Franz
GB2020418A (en) * 1978-05-01 1979-11-14 Alcyon Equip Sa Measurement of interior profiles
EP0051338A1 (en) * 1980-11-04 1982-05-12 Matisa Materiel Industriel S.A. Method and means for measuring the position of a railway rail
US5000564A (en) * 1990-03-09 1991-03-19 Spectra-Physics, Inc. Laser beam measurement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 258 (P-1055)(4201) 4. Juni 1990 & JP-A-02 069 641 ( TOKYO ELECTRON ) 8. März 1990 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798347A1 (en) 1999-09-09 2001-03-16 Matisa Materiel Ind Sa VEHICLE FOR MEASURING THE GEOMETRIC STATE OF A RAILWAY
DE102008062458B4 (en) * 2007-12-20 2016-01-14 Hochschule Magdeburg-Stendal (Fh) Measuring method for laser-based measurement of workpieces, assemblies and tools
EP2960371B1 (en) 2014-06-27 2017-08-09 HP3 Real GmbH Device for measuring tracks

Also Published As

Publication number Publication date
US5255066A (en) 1993-10-19
DE59204233D1 (en) 1995-12-14
EP0518822B1 (en) 1995-11-08
CH683109A5 (en) 1994-01-14

Similar Documents

Publication Publication Date Title
DE2624308C2 (en) Device for scanning glass bottles for the purpose of shape recognition
DE2325457C3 (en) Device for measuring the thickness of a transparent object
DE2635563A1 (en) METHOD AND DEVICE FOR AUTOMATIC COMPARISON OF TWO IMAGES
DE2431206A1 (en) DEVICE FOR OPTICAL READING OF A DRAFT TRACK
DE2256736B2 (en) Measuring arrangement for the automatic testing of the surface quality and evenness of a workpiece surface
DE2952106A1 (en) LIGHT ELECTRIC INCREMENTAL POSITIONING DEVICE
DE3642377A1 (en) METHOD AND DEVICE FOR MEASURING THE THICKNESS OF A FILM OR LEAF-LIKE MATERIAL
DE2820661C2 (en)
DE3926349A1 (en) Optical defect inspection arrangement for flat transparent material - passes light via mirror forming image of illumination pupil on camera lens of photoreceiver
DE4444079A1 (en) Method and device for carrying out this method for measuring the position of a web or sheet
DE2913410C2 (en) Photoelectric measuring device
WO1996026417A1 (en) Web or sheet edge position measurement process and device
DE3203788C2 (en)
EP0518822B1 (en) Measuring device for track maintenance machines
CH626720A5 (en)
EP0689664B1 (en) Device for determining the position of a body to be positioned with respect to a reference body
DE2526110C3 (en) Device for measuring small deflections of a light beam
EP0600048B1 (en) Process for measuring relative angles
DE2340688C3 (en) Reading device for optically detectable digital codes
DE2614374C3 (en) Arrangement for toe and camber measurement on motor vehicles
EP0225625A2 (en) Device for determining positions of light-spots on a plane light sensor
DE2922163A1 (en) OPTICAL DEVICE FOR DETERMINING THE GUETE OF A SURFACE
DE3526302A1 (en) Automatic device for determining the position of the weft thread and/or the alignment of the stitches in webs of knitted and woven fabrics and for controlling the weft-directing appliances
DE19936181A1 (en) Optical position measuring device
DE2428594B2 (en) Device for the detection of areas with a different surface structure on workpieces with an otherwise smooth surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930320

17Q First examination report despatched

Effective date: 19940418

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59204233

Country of ref document: DE

Date of ref document: 19951214

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960208

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100705

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59204233

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59204233

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120608