EP0512263B1 - Circuit for generating very weak currents - Google Patents

Circuit for generating very weak currents Download PDF

Info

Publication number
EP0512263B1
EP0512263B1 EP92105905A EP92105905A EP0512263B1 EP 0512263 B1 EP0512263 B1 EP 0512263B1 EP 92105905 A EP92105905 A EP 92105905A EP 92105905 A EP92105905 A EP 92105905A EP 0512263 B1 EP0512263 B1 EP 0512263B1
Authority
EP
European Patent Office
Prior art keywords
current
transistor
component
current mirror
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92105905A
Other languages
German (de)
French (fr)
Other versions
EP0512263A1 (en
Inventor
Rudolf Koblitz
Volker Neiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Publication of EP0512263A1 publication Critical patent/EP0512263A1/en
Application granted granted Critical
Publication of EP0512263B1 publication Critical patent/EP0512263B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Definitions

  • the invention relates to a circuit for generating very small currents.
  • DE-A-3124289 describes a circuit which contains a current mirror.
  • EP-A-0366253 describes a circuit with a noise-insensitive current mirror for generating a mirrored output current.
  • DE-A-3139166 describes a current source which can be controlled by means of a current mirror and has limiter properties.
  • US-4,673,867 describes a current mirror circuit whose output current has a temperature-independent relationship to a reference current. None of these documents contain a stepped current mirror for generating very small currents.
  • the invention has for its object to provide a circuit with which very small currents can be generated. This object is achieved by the circuit according to the invention specified in claim 1.
  • the solution according to the invention is that means for current mirroring (13, 23, 33) are connected to means for changing the amount (14, 24, 34) of the mirrored current, the ratio of a reference current fed into the means for current mirroring (I ref ) can be set to a current provided by the means for changing the amount (I out / I out ') with one or more components (R, R') contained in the means for changing the amount, the means for current mirroring one or more transistors (13, 23, 28, 33, 38) and the means for changing the amount can contain one or more transistors (14, 24, 27, 34, 37) and the component contained in the means for changing the amount for adjusting from a resistor (R) or consist of several resistors (R, R ').
  • the ratio of the reference current of the current mirror circuit to the first output current at the collector of the output transistor can be set by dimensioning a first resistor R in the emitter of the output transistor of a current mirror circuit.
  • FIG. 1 shows a current mirror circuit with a first current mirror transistor 13 and a first transistor 14. From an operating voltage 10, the collector of the first current mirror transistor is fed with a reference current I ref via a current source 11. The base and the collector of the first current mirror transistor are connected to the base of the first transistor. The emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R. The open collector of the first transistor supplies the output current I out .
  • FIG. 2 shows a stepped current mirror circuit with a first current mirror transistor 23 and a first transistor 24.
  • the collector of the first current mirror transistor is fed with a reference current I ref via a current source 21.
  • the base and the collector of the first current mirror transistor are connected to the base of the first transistor and to a second resistor R '.
  • the emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R.
  • the open collector of the first transistor supplies the output current I out .
  • the other side of the second resistor R ' is connected to the base of a second transistor 27 and to the collector and base of a second current mirror transistor 28.
  • the emitter of the second current mirror transistor is grounded and the emitter of the second transistor is connected to the emitter of the first transistor.
  • current sources e.g. for the range from 1 ... 500nA.
  • Such current sources can be used, for example, to implement fully integrated integrator circuits with long integration times, e.g. in the range, 0.015 ... 0.06s, and very small integration capacities, e.g. in the range 5 ... 20pF.
  • FIG. 3 shows a stepped current mirror circuit with a first current mirror transistor 33 and a first transistor 34. From an operating voltage 30, the collector of the first current mirror transistor is fed with a reference current I ref via a current source 31. The base and the collector of the first current mirror transistor are connected to the base of the first transistor and to a second resistor R '. The emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R. The open collector of the first transistor supplies the output current I out . The other side of the second resistor R 'is connected to the base of a second transistor 37 and to the collector and base of a second current mirror transistor 38.
  • the emitter of the second current mirror transistor is grounded and the emitter of the second transistor is connected to the emitter of the first transistor.
  • the open collector of the second transistor delivers the reduced output current I out '.
  • I out * R approximately ⁇ 0.5 V.

Description

Die Erfindung betrifft eine Schaltung zur Generierung sehr kleiner Ströme.The invention relates to a circuit for generating very small currents.

Stand der TechnikState of the art

In DE-A-3124289 ist eine Schaltung beschrieben, die einen Stromspiegel enthält. EP-A-0366253 beschreibt eine Schaltung mit einem rausch-unempfindlichen Stromspiegel zur Erzeugung eines gespiegelten Ausgangsstromes. DE-A-3139166 beschreibt eine mittels eines Stromspiegels steuerbare Stromquelle mit Begrenzer-Eigenschaften. US-4,673,867 beschreibt eine Stromspiegelschaltung, deren Ausgangsstrom ein temperatur-unabhängiges Verhältnis zu einem Referenzstrom hat. Keines dieser Dokumente enthält einen gestuften Stromspiegel zur Erzeugung sehr kleiner Ströme.DE-A-3124289 describes a circuit which contains a current mirror. EP-A-0366253 describes a circuit with a noise-insensitive current mirror for generating a mirrored output current. DE-A-3139166 describes a current source which can be controlled by means of a current mirror and has limiter properties. US-4,673,867 describes a current mirror circuit whose output current has a temperature-independent relationship to a reference current. None of these documents contain a stepped current mirror for generating very small currents.

Erfindunginvention

Der Erfindung liegt die Aufgabe zugrunde, eine Schaltung anzugeben, mit der sehr kleine Ströme generiert werden können. Diese Aufgabe wird durch die in Anspruch 1 angegebene erfindungsgemäße Schaltung gelöst.The invention has for its object to provide a circuit with which very small currents can be generated. This object is achieved by the circuit according to the invention specified in claim 1.

Zur Generierung von sehr kleinen Strömen, z.B. im nA-Bereich, kann zwar eine mehrfache Stromspiegelung mit Hilfe von Mehrfachemittern eingesetzt werden, aber die damit generierten Ströme sind abhängig von Parametertoleranzen und von Temperaturen. Außerdem benötigen solche Schaltungen eine relativ große Chipfläche, wenn sie in einem integrierten Schaltkreis implementiert sind.
Im Prinzip besteht die erfindungsgemäße Lösüng darin, daß Mittel zur Stromspiegelung (13, 23, 33) mit Mitteln zur Betragsänderung (14, 24, 34) des gespiegelten Stromes verbunden sind, wobei das Verhältnis von einem in die Mittel zur Stromspiegelung eingespeisten Referenzstrom (Iref) zu einem mit den Mitteln zur Betragsänderung zur Verfügung gestellten Strom (Iout/ Iout′) mit einem oder mehreren in den Mitteln zur Betragsänderung enthaltenen Bauelementen (R, R′) eingestellt werden kann, wobei die Mittel zur Stromspiegelung einen oder mehrere Transistoren (13, 23, 28, 33, 38) und die Mittel zur Betragsänderung einen oder mehrere Transistoren (14, 24, 27, 34, 37) enthalten können und das in den Mitteln zur Betragsänderung enthaltene Bauelement zur Einstellung aus einem Widerstand (R) oder aus mehreren Widerständen (R, R′) bestehen kann.
To generate very small currents, eg in the nA range, multiple current mirroring with the help of multiple emitters can be used, but the currents generated with this depend on parameter tolerances and temperatures. In addition, such circuits require a relatively large chip area when implemented in an integrated circuit.
In principle, the solution according to the invention is that means for current mirroring (13, 23, 33) are connected to means for changing the amount (14, 24, 34) of the mirrored current, the ratio of a reference current fed into the means for current mirroring (I ref ) can be set to a current provided by the means for changing the amount (I out / I out ') with one or more components (R, R') contained in the means for changing the amount, the means for current mirroring one or more transistors (13, 23, 28, 33, 38) and the means for changing the amount can contain one or more transistors (14, 24, 27, 34, 37) and the component contained in the means for changing the amount for adjusting from a resistor (R) or consist of several resistors (R, R ').

Vorteilhafte Weiterbildungen der erfindungsgemäßen Schaltung ergeben sich aus den Unteransprüchen 2 bis 9.Advantageous developments of the circuit according to the invention result from subclaims 2 to 9.

Über die Dimensionierung eines ersten Widerstands R im Emitter des Ausgangstransistors einer Stromspiegelschaltung läßt sich das Verhältnis von Referenzstrom der Stromspiegelschaltung zu erstem Ausgangsstrom am Kollektor des Ausgangstransistors einstellen. Durch die Hinzufügung einer zweiten Stromspiegelstufe mit einem darin enthaltenen zweiten Widerstand R′ und mit einem zweiten Ausgangsstrom ergibt sich für R = R′ das dem Verhältnis von Referenzstrom zu erstem Ausgangsstrom entsprechende Verhältnis von erstem Ausgangsstrom zu zweitem Ausgangsstrom, wobei bei Verwendung eines integrierten Schaltkreises nur eine relativ kleine Chipfläche benötigt wird.
Vorteilhaft läßt sich diese Untersetzung der Ströme noch vergrößern, indem ein Transistor in der zweiten Stromspiegelstufe als Mehrfachtransistor ausgelegt wird.
The ratio of the reference current of the current mirror circuit to the first output current at the collector of the output transistor can be set by dimensioning a first resistor R in the emitter of the output transistor of a current mirror circuit. By adding a second current mirror stage with a second resistor R 'contained therein and with a second output current, the ratio of the reference current to the first output current, which corresponds to the ratio of the reference current to the first output current, results for R = R', when using an integrated circuit only a relatively small chip area is required.
This reduction in the currents can advantageously be increased further by designing a transistor in the second current mirror stage as a multiple transistor.

Zeichnungendrawings

Anhand der Zeichnungen werden Ausführungsbeispiele der Erfindung beschrieben. Die Zeichnungen zeigen in:

Fig. 1
eine Stromspiegelstufe;
Fig. 2
eine mit einer zweiten Stromspiegelstufe erweiterte Stromspiegel-Schaltung;
Fig. 3
eine mit einer zweiten Stromspiegelstufe erweiterte Stromspiegel-Schaltung mit Ausgangsstrom-Abschaltmöglichkeit.
Exemplary embodiments of the invention are described with the aid of the drawings. The drawings show in:
Fig. 1
a current mirror stage;
Fig. 2
a current mirror circuit expanded with a second current mirror stage;
Fig. 3
a current mirror circuit expanded with a second current mirror stage with output current switch-off possibility.

AusführungsbeispieleEmbodiments

In Fig. 1 ist eine Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 13 und einem ersten Transistor 14 dargestellt. Von einer Betriebsspannung 10 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 11 mit einem Referenzstrom Iref gespeist. Die Basis und der Kollektor des ersten Stromspiegel-Transistors sind mit der Basis des ersten Transistors verbunden. Der Emitter des ersten Stromspiegel-Transistors liegt direkt und der Emitter des ersten Transistors über einen ersten Widerstand R an Masse. Der offene Kollektor des ersten Transistors liefert den Ausgangsstrom Iout. Über die Dimensionierung des ersten Widerstands R läßt sich das Verhältnis von Iref zu Iout einstellen: I out *R = U T *ln(I ref /I out ),

Figure imgb0001

wobei UT die Temperaturspannung ist.1 shows a current mirror circuit with a first current mirror transistor 13 and a first transistor 14. From an operating voltage 10, the collector of the first current mirror transistor is fed with a reference current I ref via a current source 11. The base and the collector of the first current mirror transistor are connected to the base of the first transistor. The emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R. The open collector of the first transistor supplies the output current I out . The ratio of I ref to I out can be set by dimensioning the first resistor R: I. out * R = U T * ln (I ref / I out ),
Figure imgb0001

where U T is the temperature voltage.

Vorteilhaft läßt sich Iout noch verringern, indem man den ersten Transistor 14 als Mehrfachtransistor auslegt. Dann gilt: I out *R = U T *ln(I ref *k/I out ),

Figure imgb0002

wobei k die Anzahl der parallelgeschalteten Transistoren an Stelle des ersten Transistors ist.I out can advantageously also be reduced by designing the first transistor 14 as a multiple transistor. Then: I. out * R = U T * ln (I ref * k / I out ),
Figure imgb0002

where k is the number of transistors connected in parallel instead of the first transistor.

In Fig. 2 ist eine gestufte Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 23 und einem ersten Transistor 24 dargestellt. Von einer Betriebsspannung 20 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 21 mit einem Referenzstrom Iref gespeist. Die Basis und der Kollektor des ersten Stromspiegel-Transistors sind mit der Basis des ersten Transistors und mit einem zweiten Widerstand R′ verbunden. Der Emitter des ersten Stromspiegel-Transistors liegt direkt und der Emitter des ersten Transistors über einen ersten Widerstand R an Masse. Der offene Kollektor des ersten Transistors liefert den Ausgangsstrom Iout.
Die andere Seite des zweiten Widerstands R′ ist mit der Basis eines zweiten Transistors 27 und mit Kollektor und Basis eines zweiten Stromspiegel-Transistors 28 verbunden. Der Emitter des zweiten Stromspiegel-Transistors liegt auf Masse und der Emitter des zweiten Transistors ist an den Emitter des ersten Transistors angeschlossen. Der offene Kollektor des zweiten Transistors liefert den reduzierten Ausgangsstrom Iout′.
Dann gilt (für R = R′): I out *R = U T *ln(I out /I out ′).

Figure imgb0003
FIG. 2 shows a stepped current mirror circuit with a first current mirror transistor 23 and a first transistor 24. From an operating voltage 20, the collector of the first current mirror transistor is fed with a reference current I ref via a current source 21. The The base and the collector of the first current mirror transistor are connected to the base of the first transistor and to a second resistor R '. The emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R. The open collector of the first transistor supplies the output current I out .
The other side of the second resistor R 'is connected to the base of a second transistor 27 and to the collector and base of a second current mirror transistor 28. The emitter of the second current mirror transistor is grounded and the emitter of the second transistor is connected to the emitter of the first transistor. The open collector of the second transistor delivers the reduced output current I out '.
Then (for R = R ′): I. out * R = U T * ln (I out / I out ′).
Figure imgb0003

Vorteilhaft läßt sich Iout′ noch verringern, indem man den zweiten Stromspiegel-Transistor 28 als Mehrfachtransistor auslegt.
Dann gilt (für R = R′): I out *R = U T *ln(I out /(I out ′*n)),

Figure imgb0004

wobei n die Anzahl der parallelgeschalteten Transistoren an Stelle des zweiten Stromspiegel-Transistors ist.Advantageously, I out 'can still be reduced by designing the second current mirror transistor 28 as a multiple transistor.
Then (for R = R ′): I. out * R = U T * ln (I out / (I out ′ * N)),
Figure imgb0004

where n is the number of transistors connected in parallel instead of the second current mirror transistor.

Falls sowohl der erste Transistor 24 als auch der zweite Stromspiegel-Transistor 28 durch k bzw. n Mehrfachtransistoren ersetzt wird, gilt (für R = R′): I out *R = U T *ln(I ref *k/I out ),

Figure imgb0005
I out *R = U T *ln(I out /(I out ′*n)).
Figure imgb0006
If both the first transistor 24 and the second current mirror transistor 28 are replaced by k or n multiple transistors, the following applies (for R = R ′): I. out * R = U T * ln (I ref * k / I out ),
Figure imgb0005
I. out * R = U T * ln (I out / (I out ′ * N)).
Figure imgb0006

Mit R = R′ und k = n = 1 ergibt sich vorteilhaft für Iout/Iout′ das gleiche Stromverhältnis wie für Iref/Iout.With R = R 'and k = n = 1, the same current ratio as for I ref / I out advantageously results for I out / I out '.

Auf diese Weise lassen sich mit geringer Chipfläche Stromquellen z.B. für den Bereich von 1...500nA realisieren. Solche Stromquellen lassen sich beispielsweise für die Realisierung voll-integrierter Integrator-Schaltungen mit langen Integrationszeiten z.B. im Bereich, 0.015...0.06s, und sehr kleinen Integrationskapazitäten, z.B. im Bereich 5...20pF, verwenden.In this way, current sources e.g. for the range from 1 ... 500nA. Such current sources can be used, for example, to implement fully integrated integrator circuits with long integration times, e.g. in the range, 0.015 ... 0.06s, and very small integration capacities, e.g. in the range 5 ... 20pF.

In Fig. 3 ist eine gestufte Stromspiegelschaltung mit einem ersten Stromspiegel-Transistor 33 und einem ersten Transistor 34 dargestellt. Von einer Betriebsspannung 30 aus wird der Kollektor des ersten Stromspiegel-Transistors über eine Stromquelle 31 mit einem Referenzstrom Iref gespeist. Die Basis und der Kollektor des ersten Stromspiegel-Transistors sind mit der Basis des ersten Transistors und mit einem zweiten Widerstand R′ verbunden. Der Emitter des ersten Stromspiegel-Transistors liegt direkt und der Emitter des ersten Transistors über einen ersten Widerstand R an Masse. Der offene Kollektor des ersten Transistors liefert den Ausgangsstrom Iout.
Die andere Seite des zweiten Widerstands R′ ist mit der Basis eines zweiten Transistors 37 und mit Kollektor und Basis eines zweiten Stromspiegel-Transistors 38 verbunden. Der Emitter des zweiten Stromspiegel-Transistors liegt auf Masse und der Emitter des zweiten Transistors ist an den Emitter des ersten Transistors angeschlossen. Der offene Kollektor des zweiten Transistors liefert den reduzierten Ausgangsstrom Iout′.
Es gelten die gleichen Beziehungen wie für Fig. 2, jedoch lassen sich die Ströme Iout und Iout′ durch den zusätzlichen Schaltstrom Ioff abschalten. Es gilt:
Ioff*R ungefähr ≧ 0.5 V.
FIG. 3 shows a stepped current mirror circuit with a first current mirror transistor 33 and a first transistor 34. From an operating voltage 30, the collector of the first current mirror transistor is fed with a reference current I ref via a current source 31. The base and the collector of the first current mirror transistor are connected to the base of the first transistor and to a second resistor R '. The emitter of the first current mirror transistor is located directly and the emitter of the first transistor is connected to ground via a first resistor R. The open collector of the first transistor supplies the output current I out .
The other side of the second resistor R 'is connected to the base of a second transistor 37 and to the collector and base of a second current mirror transistor 38. The emitter of the second current mirror transistor is grounded and the emitter of the second transistor is connected to the emitter of the first transistor. The open collector of the second transistor delivers the reduced output current I out '.
The same relations as for FIG apply. 2, but the currents can I out and out I 'by the additional switching current I off switch off. The following applies:
I off * R approximately ≧ 0.5 V.

Claims (7)

  1. Circuit for generating a reduced current (Iout) with means for current reflection (13, 23, 33) and means for modifying the size (14, 24, 34) of the reflected current connected thereto, whereby the ratio of a reference current (Iref) fed into the current reflection means to the reduced current (Iout) and can be adjusted using a component (R) contained within the size modification means, characterised in that second current mirror means (28, 38) is connected via a second component (R′) to the current reflection means (23, 33) which second means controls second size modification means (27, 37) - in particular a transistor - which is connected to the component (R) in the size modification means and which makes available a current (Iout′) further reduced compared with the reduced current (Iout) and dependent on the reference current (Iref), the further reduced current being variable dependent upon the size of the component (R) and/or the second component (R′) in the size modification means, such that in the case of equality of these components the ratio of the reference current (Iref) to the reduced current (Iout) is equal to the ratio of the reduced current (Iout) to the further reduced current (Iout′).
  2. A circuit according to claim 1, characterised in that the size modifications means contains a transistor or a multiple transistor (24, 34).
  3. A circuit according to claim 1 or 2, characterised in that the second current reflection means contains a multiple transistor (28, 38) or a corresponding number of current mirrors connected in parallel.
  4. A circuit according to one or more of claims 1 to 3, characterised in that the component and/or the second component is a resistor.
  5. A circuit according to one or more of claims 2 to 4, characterised in that the transistor or the multiple transistor in the size modification means (14, 24, 34) is connected to earth via a resistor (R).
  6. A circuit according to one or more of claims 1 to 5, characterised in that the reduced (Iout) or the further reduced (Iout′) current can be switched off by means of a switching current (Ioff) fed into the size modification means (14, 24, 34) or into the second size modification means (27, 37).
  7. A circuit according to one or more of claims 1 to 6, characterised in that the further reduced current (Iout′) lies in the range 1 nA to 500 nA.
EP92105905A 1991-04-10 1992-04-06 Circuit for generating very weak currents Expired - Lifetime EP0512263B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4111584A DE4111584A1 (en) 1991-04-10 1991-04-10 CIRCUIT FOR GENERATING VERY SMALL CURRENTS
DE4111584 1991-04-10

Publications (2)

Publication Number Publication Date
EP0512263A1 EP0512263A1 (en) 1992-11-11
EP0512263B1 true EP0512263B1 (en) 1995-06-21

Family

ID=6429213

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92907750A Pending EP0579652A1 (en) 1991-04-10 1992-04-06 Circuit for generating very low currents
EP92105905A Expired - Lifetime EP0512263B1 (en) 1991-04-10 1992-04-06 Circuit for generating very weak currents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP92907750A Pending EP0579652A1 (en) 1991-04-10 1992-04-06 Circuit for generating very low currents

Country Status (14)

Country Link
US (1) US5426359A (en)
EP (2) EP0579652A1 (en)
JP (1) JP3340433B2 (en)
KR (1) KR100196620B1 (en)
CN (1) CN1036876C (en)
DE (2) DE4111584A1 (en)
ES (1) ES2076600T3 (en)
HK (1) HK68296A (en)
ID (1) ID837B (en)
MX (1) MX9201669A (en)
MY (1) MY122543A (en)
TW (1) TW208762B (en)
WO (1) WO1992018923A1 (en)
ZA (1) ZA922590B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6919466A (en) * 1969-12-25 1971-06-29
US3921013A (en) * 1973-05-30 1975-11-18 Rca Corp Biasing current attenuator
US3867685A (en) * 1973-06-01 1975-02-18 Rca Corp Fractional current supply
US3952257A (en) * 1974-10-29 1976-04-20 Rca Corporation Current proportioning circuits
US4030042A (en) * 1975-06-09 1977-06-14 Rca Corporation Feedback amplifiers
US4055774A (en) * 1975-09-26 1977-10-25 Rca Corporation Current scaling apparatus
US4045694A (en) * 1975-09-26 1977-08-30 Rca Corporation Current divider
US4225816A (en) * 1979-05-21 1980-09-30 Rca Corporation Precision current source
DD156339A3 (en) * 1981-01-12 1982-08-18 Horst Elschner CIRCUIT ARRANGEMENT FOR A CONTROLLABLE POWER SOURCE
US4574233A (en) * 1984-03-30 1986-03-04 Tektronix, Inc. High impedance current source
DE3429138A1 (en) * 1984-08-08 1986-02-20 Telefunken electronic GmbH, 7100 Heilbronn Current balancing circuit of at least three transistors through which different currents flow
US4673867A (en) * 1986-06-30 1987-06-16 Motorola, Inc. Current mirror circuit and method for providing zero temperature coefficient trimmable current ratios
US4866399A (en) * 1988-10-24 1989-09-12 Delco Electronics Corporation Noise immune current mirror

Also Published As

Publication number Publication date
ES2076600T3 (en) 1995-11-01
EP0512263A1 (en) 1992-11-11
DE4111584A1 (en) 1992-10-15
US5426359A (en) 1995-06-20
DE59202592D1 (en) 1995-07-27
JP3340433B2 (en) 2002-11-05
CN1036876C (en) 1997-12-31
MY122543A (en) 2006-04-29
CN1066926A (en) 1992-12-09
MX9201669A (en) 1992-10-01
HK68296A (en) 1996-04-26
KR100196620B1 (en) 1999-06-15
EP0579652A1 (en) 1994-01-26
TW208762B (en) 1993-07-01
ID837B (en) 1992-07-29
ZA922590B (en) 1993-10-11
JPH06506552A (en) 1994-07-21
WO1992018923A1 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
EP0483537B1 (en) Current source circuit
DE1762972B2 (en) CONTROLLABLE VOLTAGE SOURCE
EP0316607B1 (en) Monolithic integrated phase shifter and vco
DE2638638C2 (en) Power supply circuit for the drive circuit of a liquid crystal display device
DE3937501A1 (en) METHOD AND DEVICE FOR GENERATING A PRELOAD
EP0794619A2 (en) Circuit for controlling a field-effect transistor having a load connected to its source
DE2540867C2 (en) Temperature-compensated emitter-coupled multivibrator circuit
CH684855A5 (en) MOSFET analog multiplier.
EP0384938B1 (en) Integrable amplitude-controllable oscillator
EP0512263B1 (en) Circuit for generating very weak currents
DE3447002C2 (en)
DE60009080T2 (en) INTEGRATED GYRATOR SWITCHING
DE3132878A1 (en) PULSE SHAPE CONTROL
AT398010B (en) MOSFET CONTROL MULTIPLIER CIRCUIT
DE2944034A1 (en) FLIP-FLOP CIRCUIT
EP0608694B1 (en) Integratable current source circuit
DE3329665C2 (en)
DE2732498A1 (en) INTEGRATED CRYSTAL OSCILLATOR CIRCUIT
EP0904576A1 (en) Power supply circuit
DE10146849A1 (en) Process for generating an output voltage
EP0093899B1 (en) Circuit for matching test equipment with a test piece
DE3311258C1 (en) Circuit arrangement for monitoring an operating voltage
EP0497106A2 (en) Circuit arrangement for voltage and current regulation
EP0315877B1 (en) Amplifier
DE4310552C2 (en) Colpitts oscillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): PT

17P Request for examination filed

Effective date: 19930426

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT PT

17Q First examination report despatched

Effective date: 19940407

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 92907750.1/0579652 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 30.03.94.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT PT

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 92907750.1/0579652 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 30.03.94.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950623

REF Corresponds to:

Ref document number: 59202592

Country of ref document: DE

Date of ref document: 19950727

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19950921

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076600

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19970808

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070312

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070424

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070427

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070424

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070406