EP0510341B1 - Process for controlling the operation of a gazifying reactor - Google Patents

Process for controlling the operation of a gazifying reactor Download PDF

Info

Publication number
EP0510341B1
EP0510341B1 EP19920104134 EP92104134A EP0510341B1 EP 0510341 B1 EP0510341 B1 EP 0510341B1 EP 19920104134 EP19920104134 EP 19920104134 EP 92104134 A EP92104134 A EP 92104134A EP 0510341 B1 EP0510341 B1 EP 0510341B1
Authority
EP
European Patent Office
Prior art keywords
fuel
gasification
ash
gasification reactor
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920104134
Other languages
German (de)
French (fr)
Other versions
EP0510341A1 (en
Inventor
Eberhard Dr. Kuske
Theo Von Tolkacz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0510341A1 publication Critical patent/EP0510341A1/en
Application granted granted Critical
Publication of EP0510341B1 publication Critical patent/EP0510341B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • the invention relates to a method for controlling the operating sequence of a gasification reactor operating according to the entrained flow method for the gasification of finely divided carbonaceous fuels, in particular fine-grained to dusty coal, in which fuel and gasification agent are fed to the gasification reactor in a quantity ratio set as a function of the temperature in the gasification reactor.
  • the operating conditions are normally set so that the slag can run off in the liquid state from the lower part of the gasification reactor, while the product gas produced, consisting mainly of carbon monoxide and hydrogen, is withdrawn upward from the gasification reactor.
  • the operating temperature in the gasification reactor must therefore always be about 100 - 400 ° C above the slag melting temperature, whereby the gasification can be operated both under increased pressure and under normal pressure. Because of the short residence times of the reactants in the gasification reactor, the aim is to supply fuel and gasification agents, such as air, oxygen, water vapor and carbon dioxide, to the gasification reactor in a constant quantitative ratio throughout the process.
  • the quantity ratio must be set so that neither a lack of fuel nor an excess of fuel occurs.
  • the operating temperature can only be reached if this condition is met be kept in the gasification reactor within the range specified above.
  • a lack of fuel leads to the undesirable formation of carbon dioxide with increasing operating temperature and thus to a deterioration in the ratio of the calorific efficiency of the product gas produced to the calorific value of the fuel used.
  • excess fuel reduces the degree of gasification of the carbon due to the presence of non-gasified carbon.
  • the temperature in the gasification reactor drops and can reach such low values that the liquid slag becomes pasty to solid, the slag removal is at risk and the operation is finally interrupted due to clogging of the slag removal.
  • the invention is therefore based on the object of improving the method of the type mentioned in such a way that, even in the event of sudden changes in the ash and / or water content of the fuel used, the temperature and operating conditions in the gasification reactor can be stabilized in such a way that the negative effects described above Consequences are avoided.
  • the method of the type mentioned at the outset which is used to achieve this object is characterized in that the ash and water content of the fuel is determined simultaneously and continuously before it enters the gasification reactor and that the ratio of fuel to the processing of both measured values in a process computer Gasifying agent is adapted to the amount of combustible substance actually present in the fuel.
  • the ash content can be determined by radiometric determination.
  • This measuring method is already used in coal processing and is described, for example, in the journal "Hommeaufungs-Technik", No. 11/1988, pages 648-653.
  • the principle of measurement is that the fuel to be examined is irradiated simultaneously or at short distance from two radioactive sources, the radiation on different Send out energy levels. They are preferably Cs 137 and Am 241 lamps.
  • the high-energy radiation of cesium has the property of being absorbed to the same extent by all atom types present in the fuel.
  • the americium radiation is weakened by the atoms (Si, Al, Fe, Ca) which are characteristic of the ash substance, much more than by the atoms of the combustible substance (C, H, O, N).
  • C, H, O, N the atoms of the combustible substance
  • the difference between the signals of the Cs 137 and Am 241 emitters is also a measure of how much the ash content at the measuring point differs from that in the calibration state.
  • the difference signal can therefore be defined as the ash content of the fuel and used to correct the ratio of fuel flow to gasification medium flow.
  • the capacitive measuring method which takes advantage of the high dielectric constant of the water compared to the dry substance, is particularly suitable for determining the water content. This is about 2 to 5 for coal and ash and about 80 for water.
  • the dielectric constant is determined by means of a capacitive probe for the fuel flow in the measuring cross section.
  • the measurement can only be achieved if the density of the fuel flow in the measuring section is additionally determined by radiometric density measurement, for example using a cesium emitter.
  • the water content of the fuel can be determined by combining the two measured values.
  • the measurement method described above fails when the fuel used has a high electrolyte content.
  • the determination of the water content is expediently carried out using microwaves.
  • the measuring probes for determining the ash and water content in the feed line of the fuel are arranged close to the gasification reactor in close proximity to one another.
  • Another design option is to also install the two measuring probes in the immediate vicinity of one another in the feed line close to the outlet of the supply container. If necessary, the measuring probes can finally also be installed in the allotment container itself.
  • the figure shows the flow diagram of a plant for carrying out the method according to the invention, in which the measuring probes for determining the ash and water content of the fuel are arranged in close proximity to one another in the feed line close to the outlet of the supply container for the fuel.
  • the gasification reactor 1 has two gasification burners 2.
  • the number of gasification burners 2 can of course be arbitrary.
  • the gasification burners 2 are supplied with fuel via the lines 3 and with gasification agent via the lines 4.
  • the lines 3 branch off from the distributor 5, which in turn is connected to the supply container 7 for the fuel via the feed line 6.
  • the measuring probes 8, 9 and 10 are installed in close proximity to one another.
  • the delivery density of the fuel flow in the feed line 6 is determined radiometrically by the measuring probe 8, which contains a Cs 137 radiator.
  • the measuring probe 9, which contains an Am 241 radiator makes it possible to determine the ash content in the fuel stream using the reference signal of the measuring probe 8, which is carried out in the manner described above.
  • the measuring probe 10 is finally used to determine the water content by the capacitive method or microwave method in connection with the density measurement by the measuring probe 8.
  • the measuring results found are transferred from the measuring probes 8 to 10 to the process computer 11, where the ash and Water content of the fuel is determined.
  • the fuel mass flow is determined by the measuring device 12 installed in line 3. All data are therefore known which are necessary for the determination of the combustible substance actually present (ash and water-free).
  • the result obtained is transferred from the process computer 11 to the control circuit 13, by means of which the gasification agent supply in line 4 is adapted to the target value of combustible substance and gasification agent.
  • the measuring device 14 is used to measure the amount of gasification in the line 4, which amount can be controlled by the control valve 15.
  • a control valve 16 is also installed in the line 3 and forms with the measuring device 12 the control circuit 17 for the fuel supply, so that the required adaptation to the target value of combustible substance and gasifying agent can optionally also be carried out by changing the fuel supply.
  • the regulation described above only for one gasification burner 2 must also apply to the second and any further Gasification burners of the gasification reactor 1 apply.
  • the clear advantages of the method according to the invention are, on the one hand, a minimized risk of an interruption of operation of the gasification reactor due to an unbalanced ratio of fuel flow to gasification gas flow, and, on the other hand, the lower operating costs which are due to the optimization of this ratio at every moment of the operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung des Betriebsablaufes eines nach dem Flugstromverfahren arbeitenden Vergasungsreaktors zur Vergasung von feinzerteilten kohlenstoffhaltigen Brennstoffen, insbesondere feinkörniger bis staubförmiger Kohle, bei dem Brennstoff und Vergasungsmittel in einem in Abhängigkeit von der Temperatur im Vergasungsreaktor eingestellten Mengenverhältnis dem Vergasungsreaktor zugeführt werden.The invention relates to a method for controlling the operating sequence of a gasification reactor operating according to the entrained flow method for the gasification of finely divided carbonaceous fuels, in particular fine-grained to dusty coal, in which fuel and gasification agent are fed to the gasification reactor in a quantity ratio set as a function of the temperature in the gasification reactor.

Bei dem Vergasungsverfahren der vorstehend genannten Art werden die Betriebsbedingungen normalerweise so eingestellt, daß die Schlacke im flüssigen Zustand aus dem Unterteil des Vergasungsreaktors ablaufen kann, während das erzeugte, hauptsächlich aus Kohlenmonoxid und Wasserstoff bestehende Produktgas nach oben aus dem Vergasungsreaktor abgezogen wird. Die Betriebstemperatur im Vergasungsreaktor muß deshalb stets um etwa 100 - 400°C über der Schlackeschmelztemperatur liegen, wobei die Vergasung sowohl unter erhöhtem Druck als auch unter Normaldruck betrieben werden kann. Wegen der kurzen Verweilzeiten der Reaktionspartner im Vergasungsreaktor wird dabei angestrebt, Brennstoff und Vergasungsmittel, wie beispielsweise Luft, Sauerstoff, Wasserdampf und Kohlendioxid, dem Vergasungsreaktor während des gesamten Verfahrensablaufes in einem konstanten Mengenverhältnis zuzuführen. Um einen störungsfreien Betriebsablauf zu gewährleisten, muß das Mengenverhältnis hierbei so eingestellt werden, daß weder ein Brennstoffmangel noch ein Brennstoffüberschuß auftritt. Nur wenn diese Bedingung erfüllt ist, kann die Betriebstemperatur im Vergasungsreaktor innerhalb des weiter oben angegebenen Bereiches gehalten werden. Brennstoffmangel führt dagegen bei steigender Betriebstemperatur zur unerwünschten Bildung von Kohlendioxid und damit zur Verschlechterung des als Kaltgaswirkungsgrad bezeichneten Verhältnisses von Brennwert des erzeugten Produktgases zum Brennwert des eingesetzten Brennstoffes. Brennstoffüberschuß vermindert demgegenüber den Vergasungsgrad des Kohlenstoffes durch Vorliegen von unvergastem Kohlenstoff. Dabei sinkt die Temperatur im Vergasungsreaktor und kann so tiefe Werte erreichen, daß die flüssige Schlacke teigig bis fest wird, der Schlackeabzug gefährdet ist und es schließlich zur Unterbrechung des Betriebsablaufes durch Verstopfung des Schlackeabzuges kommt.In the gasification process of the type mentioned above, the operating conditions are normally set so that the slag can run off in the liquid state from the lower part of the gasification reactor, while the product gas produced, consisting mainly of carbon monoxide and hydrogen, is withdrawn upward from the gasification reactor. The operating temperature in the gasification reactor must therefore always be about 100 - 400 ° C above the slag melting temperature, whereby the gasification can be operated both under increased pressure and under normal pressure. Because of the short residence times of the reactants in the gasification reactor, the aim is to supply fuel and gasification agents, such as air, oxygen, water vapor and carbon dioxide, to the gasification reactor in a constant quantitative ratio throughout the process. To ensure a trouble-free operation, the quantity ratio must be set so that neither a lack of fuel nor an excess of fuel occurs. The operating temperature can only be reached if this condition is met be kept in the gasification reactor within the range specified above. On the other hand, a lack of fuel leads to the undesirable formation of carbon dioxide with increasing operating temperature and thus to a deterioration in the ratio of the calorific efficiency of the product gas produced to the calorific value of the fuel used. In contrast, excess fuel reduces the degree of gasification of the carbon due to the presence of non-gasified carbon. The temperature in the gasification reactor drops and can reach such low values that the liquid slag becomes pasty to solid, the slag removal is at risk and the operation is finally interrupted due to clogging of the slag removal.

Um den vorstehend geschilderten Bedingungen zu genügen, ist es deshalb beim Vergasungsverfahren der eingangs genannten Art bereits bekannt, den in den Vergasungsreaktor eingeleiteten Brennstoffstrom, der neben der brennbaren Substanz auch noch Asche und Wasser enthält, sowie den Vergasungsmittelstrom zu messen, wobei beide Stoffströme in einem solchen Mengenverhältnis in den Vergasungsreaktor eingeleitet werden, daß die Betriebstemperatur innerhalb des weiter oben genannten Temperaturbereiches gehalten werden kann. Aus der EP-A-0 350 658, der EP-A-0 308 027 und der DE-A-33 16 368 ist es hierbei bekannt, für die Ermittlung des Brennstoff-Massen-stromes eine radiometrische Dichtemessung des in einem Fluidisiergas suspendierten Brennstoffes durchzuführen. Schwankungen in der Beschaffenheit des Brennstoffes werden bei den in den Entgegenhaltungen beschriebenen Verfahren lediglich durch einen Korrekturfaktor berücksichtigt, der nur sporadisch ermittelt wird. Für die ordnungsgemäße Einstellung der Betriebstemperatur im Vergasungsreaktor ist es jedoch erforderlich, daß das Mengenverhältnis von Brennstoff zu Vergasungsmittel aus der brennbaren Substanz des Brennstoffes, das heißt ohne dessen Asche- und Wassergehalt, gebildet wird. Zusätzlich muß daher der Asche- und Wassergehalt des jeweils eingesetzten Brennstoffes bekannt sein. Bisher war es jedoch üblich, daß der Asche- und Wassergehalt des Brennstoffes ebenfalls nur in unregelmäßigen Abständen durch Laboranalysen an Einzelproben ermittelt wurde. Diese Analysenergebnisse sind daher nur mit erheblicher Zeitverzögerung zur Steuerung des Betriebsablaufes des Vergasungsreaktors verfügbar. Mit dieser Arbeitsweise läßt sich daher der Verfahrens- und Betriebsablauf des Vergasungsreaktors nur solange ausreichend sicher beherrschen, wie sich die Zusammensetzung des Brennstoffes nicht oder nur unwesentlich verändert und somit nur sehr geringe Schwankungen des Asche- und/oder Wassergehaltes des Brennstoffes auftreten.In order to meet the conditions described above, it is therefore already known in the gasification process of the type mentioned at the outset to measure the fuel stream introduced into the gasification reactor, which in addition to the combustible substance also contains ash and water, and the gasification agent stream, both streams in one such quantity ratio are introduced into the gasification reactor that the operating temperature can be kept within the temperature range mentioned above. From EP-A-0 350 658, EP-A-0 308 027 and DE-A-33 16 368 it is known here for the determination of the fuel mass flow a radiometric density measurement of the fuel suspended in a fluidizing gas perform. Fluctuations in the nature of the fuel are only taken into account in the methods described in the references by means of a correction factor that is only determined sporadically. However, for the correct setting of the operating temperature in the gasification reactor, it is necessary that the quantitative ratio of fuel to gasifying agent is formed from the combustible substance of the fuel, that is to say without its ash and water content. In addition, the ash and water content of the fuel used must therefore be known. So far, however, it has been common for the ash and water content of the fuel to be determined only at irregular intervals by laboratory analyzes on individual samples. These analysis results are therefore only with a considerable time delay for controlling the operating sequence of the gasification reactor available. With this method of operation, the process and operating sequence of the gasification reactor can therefore only be controlled with sufficient certainty as long as the composition of the fuel does not change or changes only insignificantly and thus only very slight fluctuations in the ash and / or water content of the fuel occur.

Die Erfahrungen in der Praxis haben jedoch gezeigt, daß während des Betriebes eines Vergasungsreaktors tatsächlich aus den unterschiedlichsten Gründen zum Teil erhebliche und plötzliche Änderungen des Asche- und/oder Wassergehaltes des Brennstoffes auftreten können. Hierfür können beispielsweise folgende Gründe vorliegen:

  • Der Wassergehalt ändert sich durch Störungen im Betriebsablauf der Mahltrocknung der Kohle;
  • der Aschegehalt verändert sich durch den Übergang von einer Kohlensorte auf eine andere Kohlensorte;
  • der Aschegehalt schwankt infolge schlechter Homogenisierung der Kohle, z.B. auf dem Mischbett.
Experience in practice has shown, however, that during the operation of a gasification reactor, for a variety of reasons, considerable and sudden changes in the ash and / or water content of the fuel can actually occur. The following reasons may exist for this:
  • The water content changes due to disturbances in the operational drying of the coal;
  • the ash content changes due to the transition from one type of coal to another type of coal;
  • the ash content fluctuates due to poor homogenization of the coal, for example on the mixed bed.

Diese plötzlichen Änderungen des Asche- und/oder Wassergehaltes des Brennstoffes können aber mit der bisher üblichen Art der Regelung des Mengenverhältnisses von Brennstoff zu Vergasungsmittel nicht ausgeglichen werden, da die diskontinuierlich im Labor ermittelten Werte für den Asche- und Wassergehalt viel zu spät vorliegen. Ein erhöhter Asche- und/oder Wassergehalt kann jedoch im Vergasungsreaktor zu Brennstoffmangel und ein erniedrigter Asche- und/oder Wassergehalt zu Brennstoffüberschuß mit den bereits weiter oben beschriebenen negativen Folgen führen. Beide Betriebsabläufe sind deshalb äußerst unerwünscht, wobei in dem einen Falle infolge zu hoher Betriebstemperatur ein vorzeitiger Verschleiß der Wand des Vergasungsreaktors und im anderen Falle infolge zu niedriger Betriebstemperatur eine Unterbrechung des Betriebsablaufes durch Verstopfung des Schlackenabzuges auftreten kann.However, these sudden changes in the ash and / or water content of the fuel cannot be compensated for with the previously customary type of regulation of the fuel to gasification agent quantity ratio, since the ash and water content values determined discontinuously in the laboratory are far too late. However, an increased ash and / or water content in the gasification reactor can lead to a lack of fuel and a reduced ash and / or water content to excess fuel with the negative consequences already described above to lead. Both operating procedures are therefore extremely undesirable, with premature wear of the wall of the gasification reactor due to excessive operating temperature in the one case and interruption of the operating procedure due to clogging of the slag discharge in the other case due to operating temperature being too low.

Der Erfindung liegt daher die Aufgabe zugrunde, das Verfahren der eingangs genannten Art dahingehend zu verbessern, daß auch bei plötzlichen Änderungen des Asche-und/oder Wassergehaltes des eingesetzten Brennstoffes die Temperatur- und Betriebsbedingungen im Vergasungsreaktor so stabilisiert werden können, daß die vorstehend beschriebenen negativen Folgen vermieden werden.The invention is therefore based on the object of improving the method of the type mentioned in such a way that, even in the event of sudden changes in the ash and / or water content of the fuel used, the temperature and operating conditions in the gasification reactor can be stabilized in such a way that the negative effects described above Consequences are avoided.

Das der Lösung dieser Aufgabe dienende Verfahren der eingangs genannten Art ist erfindungsgemäß dadurch gekennzeichnet, daß gleichzeitig und kontinuierlich der Asche- und Wassergehalt des Brennstoffes vor dessen Eintritt in den Vergasungsreaktor bestimmt wird und daß durch die Verarbeitung beider Meßwerte in einem Prozeßrechner das Verhältnis von Brennstoff zu Vergasungsmittel jeweils an die tatsächlich im Brenstoff vorhandene Menge an brennbarer Substanz angepaßt wird.The method of the type mentioned at the outset which is used to achieve this object is characterized in that the ash and water content of the fuel is determined simultaneously and continuously before it enters the gasification reactor and that the ratio of fuel to the processing of both measured values in a process computer Gasifying agent is adapted to the amount of combustible substance actually present in the fuel.

Der Aschegehalt kann hierbei durch radiometrische Bestimmung ermittelt werden. Diese Meßmethode wird bereits bei der Kohleaufbereitung angewandt und ist beispielsweise in der Zeitschrift "Aufbereitungs-Technik", Nr. 11/1988, Seiten 648 - 653, beschrieben. Das Meßprinzip besteht darin, daß der zu untersuchende Brennstoff gleichzeitig oder aber in kurzem Abstand von zwei radioaktiven Quellen durchstrahlt wird, die Strahlung auf unterschiedlichen Energieniveaus aussenden. Es handelt sich vorzugsweise um Cs 137- und Am 241-Strahler. Die energiereichere Strahlung des Caesiums hat dabei die Eigenschaft, von allen im Brennstoff vorhandenen Atomsorten in erster Näherung gleich stark absorbiert zu werden. Dagegen wird die Americium-Strahlung von den für die Aschesubstanz charakteristischen Atomen (Si, Al, Fe, Ca) deutlich stärker geschwächt als von den Atomen der brennbaren Substanz (C, H, O, N). Auf diese Weise erhält man zwei Signale, die jeweils der Dichte des Kohlenstaubes am Meßort proportional sind. Die Differenz der Signale des Cs 137- und des Am 241-Strahlers ist darüber hinaus ein Maß dafür, wie stark der Aschegehalt am Meßort von dem im Kalibrierzustand abweicht. Das Differenzsignal kann daher als Aschegehalt des Brennstoffes definiert und zur Korrektur des Verhältnisses Brennstoffstrom zu Vergasungsmittelstrom herangezogen werden.The ash content can be determined by radiometric determination. This measuring method is already used in coal processing and is described, for example, in the journal "Aufaufungs-Technik", No. 11/1988, pages 648-653. The principle of measurement is that the fuel to be examined is irradiated simultaneously or at short distance from two radioactive sources, the radiation on different Send out energy levels. They are preferably Cs 137 and Am 241 lamps. The high-energy radiation of cesium has the property of being absorbed to the same extent by all atom types present in the fuel. In contrast, the americium radiation is weakened by the atoms (Si, Al, Fe, Ca) which are characteristic of the ash substance, much more than by the atoms of the combustible substance (C, H, O, N). In this way two signals are obtained, each of which is proportional to the density of the coal dust at the measuring point. The difference between the signals of the Cs 137 and Am 241 emitters is also a measure of how much the ash content at the measuring point differs from that in the calibration state. The difference signal can therefore be defined as the ash content of the fuel and used to correct the ratio of fuel flow to gasification medium flow.

Für die Bestimmung des Wassergehaltes eignet sich insbesondere das kapazitive Meßverfahren, das die im Vergleich zur Trockensubstanz hohe Dielektrizitätskonstante des Wassers ausnutzt. Diese liegt für Kohle und Asche bei etwa 2 bis 5 und für Wasser dagegen bei etwa 80. Die Dielektrizitätskonstante wird dabei mittels einer kapazitiven Sonde für den im Meßquerschnitt befindlichen Brennstoffstrom ermittelt. Da jedoch die Rohrleitung in der Meßstrecke nur teilweise mit Brennstoff gefüllt ist, gelingt die Messung nur, wenn zusätzlich die Dichte des Brennstoffstromes in der Meßstrecke durch radiometrische Dichtemessung, beispielsweise mittels eines Caesiumstrahlers, bestimmt wird. Durch Kombination beider Meßwerte kann der Wassergehalt des Brennstoffes ermittelt werden.The capacitive measuring method, which takes advantage of the high dielectric constant of the water compared to the dry substance, is particularly suitable for determining the water content. This is about 2 to 5 for coal and ash and about 80 for water. The dielectric constant is determined by means of a capacitive probe for the fuel flow in the measuring cross section. However, since the pipeline in the measuring section is only partially filled with fuel, the measurement can only be achieved if the density of the fuel flow in the measuring section is additionally determined by radiometric density measurement, for example using a cesium emitter. The water content of the fuel can be determined by combining the two measured values.

Die vorstehend beschriebene Meßmethode versagt allerdings dann, wenn der eingesetzte Brennstoff einen hohen Elektrolytgehalt aufweist. In diesem Falle wird die Ermittlung des Wassergehaltes zweckmäßigerweise unter Anwendung von Mikrowellen ausgeführt. Bezüglich weiterer Einzelheiten dieser Meßmethode wird auf den Aufsatz in der Zeitschrift "Aufbereitungstechnik - Mineral Processing", Heft 1 (1987), Seiten 10 - 16, verwiesen.However, the measurement method described above fails when the fuel used has a high electrolyte content. In this case, the determination of the water content is expediently carried out using microwaves. With regard to further details of this measurement method, reference is made to the article in the journal "Aufbereitungstechnik - Mineral Processing", Issue 1 (1987), pages 10-16.

Zur Durchführung des erfindungsgemäßen Verfahrens ist es vorteilhaft, wenn die Meßsonden zur Bestimmung des Asche- und des Wassergehaltes in der Einspeiseleitung des Brennstoffes nahe am Vergasungsreaktor in unmittelbarer Nähe zueinander angeordnet sind. Eine andere Ausgestaltungsmöglichkeit besteht darin, die beiden Meßsonden ebenfalls in unmittelbarer Nähe zueinander in die Einspeiseleitung nahe am Auslauf des Zuteilbehälters einzubauen. Gegebenenfalls kann der Einbau der Meßsonden schließlich auch im Zuteilbehälter selbst erfolgen.To carry out the method according to the invention, it is advantageous if the measuring probes for determining the ash and water content in the feed line of the fuel are arranged close to the gasification reactor in close proximity to one another. Another design option is to also install the two measuring probes in the immediate vicinity of one another in the feed line close to the outlet of the supply container. If necessary, the measuring probes can finally also be installed in the allotment container itself.

Die Abbildung zeigt das Fließschema einer Anlage zur Durchführung des erfindungsgemäßen Verfahrens, bei der die Meßsonden zur Ermittlung des Asche- und des Wassergehaltes des Brennstoffes in unmittelbarer Nähe zueinander in der Einspeiseleitung nahe am Auslauf des Zuteilbehälters für den Brennstoff angeordnet sind.The figure shows the flow diagram of a plant for carrying out the method according to the invention, in which the measuring probes for determining the ash and water content of the fuel are arranged in close proximity to one another in the feed line close to the outlet of the supply container for the fuel.

Der Vergasungsreaktor 1 weist in diesem Falle zwei Vergasungsbrenner 2 auf. In der Praxis kann die Zahl der Vergasungsbrenner 2 natürlich beliebig sein. Über die Leitungen 3 werden die Vergasungsbrenner 2 mit Brennstoff und über die Leitungen 4 mit Vergasungsmittel versorgt. Die Leitungen 3 zweigen dabei vom Verteiler 5 ab, der seinerseits über die Einspeiseleitung 6 mit dem Zuteilbehälter 7 für den Brennstoff in Verbindung steht. In die Einspeiseleitung 6 sind die Meßsonden 8, 9 und 10 in unmittelbarer Nähe zueinander eingebaut. Durch die Meßsonde 8, die einen Cs 137-Strahler enthält, wird dabei die Förderdichte des Brennstoffstromes in der Einspeiseleitung 6 radiometrisch ermittelt. Die Meßsonde 9, die einen Am 241-Strahler enthält, ermöglicht unter Verwendung des Referenzsignals der Meßsonde 8 die Bestimmung des Aschegehaltes im Brennstoffstrom, die in der weiter oben beschriebenen Art und Weise durchgeführt wird. Die Meßsonde 10 dient schließlich der Ermittlung des Wassergehaltes durch die kapazitive Methode oder Mikrowellenverfahren in Verbindung mit der Dichtemessung durch die Meßsonde 8. Die gefundenen Meßergebnisse werden von den Meßsonden 8 bis 10 auf den Prozeßrechner 11 übertragen, wo mit Hilfe bekannter Berechnungsmethoden der Asche- und Wassergehalt des Brennstoffes ermittelt wird. Gleichzeitig wird der Brennstoffmassenstrom durch das in der Leitung 3 installierte Meßgerät 12 ermittelt. Es sind somit alle Daten bekannt, die für die Ermittlung der tatsächlich vorhandenen brennbaren Substanz (asche- und wasserfrei) erforderlich sind. Das ermittelte Ergebnis wird hierbei vom Prozeßrechner 11 auf den Regelkreis 13 übertragen, durch den die Vergasungsmittelzufuhr in der Leitung 4 an den Sollwert von brennbarer Substanz und Vergasungsmittel angepaßt wird. Das Meßgerät 14 dient der Mengenmessung der Vergasungsmittelzufuhr in der Leitung 4, wobei diese Menge durch das Regelventil 15 gesteuert werden kann. Ein Regelventil 16 ist auch in der Leitung 3 installiert und bildet mit dem Meßgerät 12 den Regelkreis 17 für die Brennstoffzufuhr, so daß die erforderliche Anpassung an den Sollwert von brennbarer Substanz und Vergasungsmittel gegebenenfalls auch über eine Veränderung der Brennstoffzufuhr erfolgen kann. Selbstverständlich muß die vorstehend nur für einen Vergasungsbrenner 2 beschriebene Regelung auch für den zweiten und jeden weiteren Vergasungsbrenner des Vergasungsreaktors 1 gelten.In this case, the gasification reactor 1 has two gasification burners 2. In practice, the number of gasification burners 2 can of course be arbitrary. The gasification burners 2 are supplied with fuel via the lines 3 and with gasification agent via the lines 4. The lines 3 branch off from the distributor 5, which in turn is connected to the supply container 7 for the fuel via the feed line 6. In the feed line 6, the measuring probes 8, 9 and 10 are installed in close proximity to one another. The delivery density of the fuel flow in the feed line 6 is determined radiometrically by the measuring probe 8, which contains a Cs 137 radiator. The measuring probe 9, which contains an Am 241 radiator, makes it possible to determine the ash content in the fuel stream using the reference signal of the measuring probe 8, which is carried out in the manner described above. The measuring probe 10 is finally used to determine the water content by the capacitive method or microwave method in connection with the density measurement by the measuring probe 8. The measuring results found are transferred from the measuring probes 8 to 10 to the process computer 11, where the ash and Water content of the fuel is determined. At the same time, the fuel mass flow is determined by the measuring device 12 installed in line 3. All data are therefore known which are necessary for the determination of the combustible substance actually present (ash and water-free). The result obtained is transferred from the process computer 11 to the control circuit 13, by means of which the gasification agent supply in line 4 is adapted to the target value of combustible substance and gasification agent. The measuring device 14 is used to measure the amount of gasification in the line 4, which amount can be controlled by the control valve 15. A control valve 16 is also installed in the line 3 and forms with the measuring device 12 the control circuit 17 for the fuel supply, so that the required adaptation to the target value of combustible substance and gasifying agent can optionally also be carried out by changing the fuel supply. Of course, the regulation described above only for one gasification burner 2 must also apply to the second and any further Gasification burners of the gasification reactor 1 apply.

Die eindeutigen Vorteile des erfindungsgemäßen Verfahrens liegen zum einen in einem minimierten Risiko einer Betriebsunterbrechung des Vergasungsreaktors durch ein unausgeglichenes Verhältnis von Brennstoffstrom zu Vergasungsmittelstrom und zum anderen in den geringeren Betriebskosten, die durch die Optimierung dieses Verhältnisses in jedem Augenblick des Betriebsablaufes bedingt sind.The clear advantages of the method according to the invention are, on the one hand, a minimized risk of an interruption of operation of the gasification reactor due to an unbalanced ratio of fuel flow to gasification gas flow, and, on the other hand, the lower operating costs which are due to the optimization of this ratio at every moment of the operation.

Claims (5)

  1. Method of controlling the operating cycle of a gasification reactor employing the entrained-bed process for the gasification of finely divided, carbon-containing fuels, in particular fine-grained coal to coal dust, in which method fuel and gasification medium are fed to the gasification reactor in a quantitative ratio adjusted as a function of the temperature in the gasification reactor, characterized in that the ash and water contents of the fuel are determined simultaneously and continuously before the latter enters the gasification reactor, and in that, as a result of processing both measured values in a process computer, the ratio of fuel to gasification medium is always matched to the quantity of combustible substance actually present in the fuel.
  2. Method according to Claim 1, characterized in that the ash content of the fuel is found by radiometric determination.
  3. Method according to Claims 1 and 2, characterized in that the water content of the fuel is determined by the capacitive measurement method or by microwave methods.
  4. Method according to Claims 1 to 3, characterized in that the ash and water contents of the fuel are determined by measuring probes mounted in the immediate vicinity of one another.
  5. Method according to Claims 1 to 4, characterized in that the ash and water contents of the fuel are determined either in the immediate vicinity of the gasification reactor or at the outlet of the feed container.
EP19920104134 1991-04-25 1992-03-11 Process for controlling the operation of a gazifying reactor Expired - Lifetime EP0510341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914113447 DE4113447A1 (en) 1991-04-25 1991-04-25 METHOD FOR CONTROLLING THE OPERATING PROCEDURE OF A GASIFICATION REACTOR
DE4113447 1991-04-25

Publications (2)

Publication Number Publication Date
EP0510341A1 EP0510341A1 (en) 1992-10-28
EP0510341B1 true EP0510341B1 (en) 1994-06-08

Family

ID=6430297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920104134 Expired - Lifetime EP0510341B1 (en) 1991-04-25 1992-03-11 Process for controlling the operation of a gazifying reactor

Country Status (4)

Country Link
EP (1) EP0510341B1 (en)
DE (2) DE4113447A1 (en)
DK (1) DK0510341T3 (en)
ES (1) ES2055626T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135247B2 (en) * 2009-03-30 2012-03-13 General Electric Company Packaged sensors and harsh environment systems with packaged sensors
DE102009015736B4 (en) * 2009-03-31 2013-05-23 Siemens Aktiengesellschaft Adjustment of the gasification parameters for high-flow entrainment gasifiers
DE102010031528B4 (en) * 2010-07-19 2013-04-25 Klaus Seeger System for determining an energy content of a solid fuel and use of the system
EP3726202B1 (en) * 2019-04-15 2022-12-21 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Method for on-line control of a slag forming gasification process and installation for a gasification process
CN117610890B (en) * 2024-01-19 2024-04-30 天津美腾科技股份有限公司 Dynamic calculation method, device, equipment and medium for parameters of coal preparation plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3316368A1 (en) * 1983-01-21 1984-07-26 Krupp-Koppers Gmbh, 4300 Essen METHOD AND DEVICE FOR DETERMINING AND MONITORING THE FUEL MASS CURRENT WHICH IS ADMITTED TO THE CARBURETOR IN THE PARTIAL OXIDATION (GASIFICATION) OF FINE-GRAINED TO DUST-SHAPED FUELS
DD267880A3 (en) * 1987-08-17 1989-05-17 Freiberg Brennstoffinst METHOD FOR THE COMMON GASIFICATION OF LIQUID AND SOLID, DUST-SOUND FUELS
US5127772A (en) * 1987-09-18 1992-07-07 Shell Oil Company Method and apparatus for the control of suspension density by use of a radiation source
DE3823773A1 (en) * 1988-07-14 1990-01-18 Krupp Koppers Gmbh METHOD FOR DETERMINING AND CONTROLLING THE FUEL MASS CURRENT IN PARTIAL OXIDATION (GASIFICATION) OF FINE-GRAINED TO DUST-SHAPED FUELS
DE4004874A1 (en) * 1990-02-16 1991-08-29 Krupp Koppers Gmbh METHOD FOR OPERATING A PLANT FOR GASIFYING SOLID FUELS

Also Published As

Publication number Publication date
ES2055626T3 (en) 1994-08-16
DE59200219D1 (en) 1994-07-14
DE4113447A1 (en) 1992-10-29
EP0510341A1 (en) 1992-10-28
DK0510341T3 (en) 1994-09-26

Similar Documents

Publication Publication Date Title
DE69117210T2 (en) Method and device for determining the mass flow of pneumatically conveyed solids
DE2654662C3 (en) Method and device for feeding coal dust into an airborne storm carburetor
EP0350658B1 (en) Process for metering and controlling the mass flow of fuels in the partial oxidation of finely divided to powdery fuels
DE4308694C2 (en) Method and device for determining the height of a fluidized bed produced in a container
DE2539888C2 (en) Process for the gasification of oil containing finely dispersed solids by partial oxidation with flame formation and the device for its implementation
EP0718553A1 (en) Method of combustion of wastes
DE3212972C2 (en)
EP0510341B1 (en) Process for controlling the operation of a gazifying reactor
DE3883671T2 (en) Density control of a suspension using a radiation source.
EP3726202B1 (en) Method for on-line control of a slag forming gasification process and installation for a gasification process
DE2757032C2 (en)
DE3316368C2 (en)
DE2933069C2 (en) Method for operating a battery of coking ovens
DD284962A5 (en) METHOD AND DEVICE FOR COMPLIANCE WITH A CONSTANT RULE SIZE IN A SWITCH LAYERING SYSTEM
DE2642537C2 (en) Process for determining and controlling the fuel flow fed to the gasifier during the partial oxidation of fine-grained to dusty fuels
EP0499771A1 (en) Process and apparatus for gasifying finely devided to powdery fuel with recycling of the fly ash
DE2741805A1 (en) Gasification of solid fuel in fluidised bed reactor - with admission of reactants at various points to control temp. profile
EP0030323B1 (en) Process for operating a fluidized bed reactor for gasifying carbonaceous material
EP4063732A1 (en) Method and assembly for observing flames in a heater operable with hydrogen or hydrogen-containing fuel gas
DE3728982C1 (en) Process for regulating the height of a fluidized bed
DE4004874C2 (en)
DE1592864C3 (en) Method of making FurnaceruB
DE2214737C2 (en) Process and device for regulating and safely monitoring the inert gas overpressure in the bunker and allocation system of a plant for the suspension gasification of finely divided solid fuels
DE3340892A1 (en) MULTI-STAGE METHOD FOR THE INTEGRATION OF GAS-SHAPED SUBSTANCES CONTAINED IN SMOKE GASES
DE3831268A1 (en) METHOD AND DEVICE FOR CONTROLLING THE MOISTURE CONTENT OF A SOLID SUPPLIED BY A REACTOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB NL

17Q First examination report despatched

Effective date: 19930507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940614

REF Corresponds to:

Ref document number: 59200219

Country of ref document: DE

Date of ref document: 19940714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2055626

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980218

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000224

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101