EP0507246A2 - Optical sending and receiving device - Google Patents

Optical sending and receiving device Download PDF

Info

Publication number
EP0507246A2
EP0507246A2 EP92105498A EP92105498A EP0507246A2 EP 0507246 A2 EP0507246 A2 EP 0507246A2 EP 92105498 A EP92105498 A EP 92105498A EP 92105498 A EP92105498 A EP 92105498A EP 0507246 A2 EP0507246 A2 EP 0507246A2
Authority
EP
European Patent Office
Prior art keywords
waveguide
optical
receiving device
width
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92105498A
Other languages
German (de)
French (fr)
Other versions
EP0507246A3 (en
EP0507246B1 (en
Inventor
Thomas Dipl.-Ing. Schwander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, ANT Nachrichtentechnik GmbH filed Critical Robert Bosch GmbH
Publication of EP0507246A2 publication Critical patent/EP0507246A2/en
Publication of EP0507246A3 publication Critical patent/EP0507246A3/en
Application granted granted Critical
Publication of EP0507246B1 publication Critical patent/EP0507246B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Definitions

  • the invention relates to an optical transmitting and receiving device with a laser, a monitor diode, a wavelength-selective directional coupler, a receiving diode and with optical fibers required for light guidance.
  • an optical transmitter and receiver unit with a transmitter element, a receiver element and an optical fiber directional coupler is known.
  • the transmission path is interconnected with the receiving and the transmitting element via the directional coupler in such a way that the receiving element is decoupled from the transmitted signal.
  • the use of the optical waveguide directional coupler enables duplex operation of an optical transmission link with a single optical fiber, via which transmit signals propagate in one direction and receive signals in the opposite direction.
  • an optoelectronic transmission and reception device is also known.
  • the optical receiver In the transmitting and receiving device with the optical transmitter, the optical receiver, a wavelength-selective beam splitter, a coupling optics with connecting fiber and a control device, which comprises a control circuit for the transmitter and a preamplification circuit for the receiver as many individual components as possible are combined or integrated in a semiconductor component.
  • the optical transmitter is inserted into a silicon wafer as a laser chip consisting of III / V compound semiconductor material
  • the optical receiver is inserted into the silicon wafer as a receiving diode chip consisting of III / V compound semiconductor material or monolithically integrated into the silicon wafer as a metal semiconductor diode.
  • the wave-selective beam splitters, the control device, the optical fibers required for light guidance and the coupling optics are monolithically integrated into the silicon wafer.
  • the III / V compound semiconductor material is suggested to be InP / InGaAsP.
  • the use of a monitor diode for measuring and converting the light guide is proposed.
  • the optoelectric transmission and reception device consists of III / V semiconductor base material, preferably InP / InGaAsP.
  • III / V semiconductor base material preferably InP / InGaAsP.
  • electro-optical and Optoelectric converters as well as optical fibers, but also other electronic components can be produced monolithically.
  • the directional coupler thus serves for the lateral separation of the receiving and transmitting optoelectric components.
  • a selective directional coupler that meets the requirements of the invention is known from DE 31 08 742 C2.
  • This directional coupler consists of two optical fibers to be coupled with one another, between which a further optical fiber is arranged, such that the coupling wave of the central optical fiber is phase-synchronous with the waves in the other two optical fibers at the desired coupling frequency and that the two waveguides to be coupled are only connected to the Intermediate waveguides are coupled.
  • a waveguide transition is provided for field matching between the integrated optical fibers with very small dimensions and the much larger glass fiber.
  • Such a waveguide transition is described for example in P 41 03 896.7.
  • An optical waveguide transition is described below which enables low-loss coupling of an optical fiber to a planar waveguide of an integrated optical circuit, the planar waveguide having a considerably smaller transverse field width than the optical fiber.
  • the waveguide transition is realized on a substrate (eg made of n+-Inp).
  • a substrate eg made of n+-Inp.
  • a trench is etched into the substrate, which extends in the intended direction of wave propagation. Whose cross section can change along the direction of wave propagation so that the most homogeneous field transition possible.
  • This trench is then overgrown with an optically active material (eg n ⁇ -InP) having a slightly higher refractive index than the substrate, whereby a rib of a rib waveguide formed in the course of the further process is formed.
  • an optically active material eg n ⁇ -InP
  • the cross section of this rib waveguide is to be chosen so large at one end of the waveguide transition that its field width is matched to that of a waveguide to be coupled (for example optical fiber).
  • a trench is etched into the fin, which belongs to a fin waveguide, the cross section of which is considerably smaller than the aforementioned fin waveguide.
  • the rib with its normal cross-section belonging to the rib waveguide with a large field width begins at one end of the waveguide transition and widens after a certain distance in the direction of the opposite end.
  • the rib has a constant width before it widens. However, before the widening, the width of the rib can first be narrowed in order to achieve the most homogeneous possible transition of the field from one waveguide to the other. The widening occurs only by increasing the rib width while keeping the rib depth constant.
  • a change in a layer width can be implemented with the known epitaxy methods with considerably less effort than a change in the layer thickness.
  • the trench for the rib waveguide to be introduced in a next step begins with a cross section which is adapted to the required small field width.
  • the trench gradually decreases in width (at constant depth) until it completely disappears.
  • the rib e.g. made of InGaAsP
  • a layer of the same material as the rib grow in the trench.
  • the layer and the rib rising above it together form the rib waveguide with the small field width.
  • FIG. 1 shows a top view in schematic form.
  • the material system InGaAsP / InP offers the possibility of the monolithic integration of optical (laser, waveguide, etc.) and electronic (transistor, diode ...) components in what is interesting for optical communication Wavelength range from 1.3 to 1.55 ⁇ m.
  • the figure shows the integration of a waveguide transition consisting of waveguides 8 and 6 for field matching between a glass fiber 10 and a system waveguide 6, a wavelength-selective directional coupler 3 for separating the wavelengths 1.3 ⁇ m and 1.55 ⁇ m, a laser 1 (1.3 ⁇ m ) with a monitor diode 2 (1.3 ⁇ m) and a receiving diode 4 (1.55 ⁇ m).
  • the directional coupler consists of the two optical fibers 5 and 6 to be coupled and an intermediate waveguide.
  • the directional coupler is used for the lateral separation between the optical waveguides 5 and 6 to be coupled and thus also for the separation between the optoelectronic components on the receiving and transmitting sides. A further separation of the optical fibers 5 and 6 by bending the optical fibers is not necessary.
  • the system waveguide 6 of the optical transmission and reception device is of very small dimensions, in contrast to the core of the glass fiber 10, which is connected to the transmission and reception device. For this reason, a waveguide transition is provided. It consists of the system waveguide 6 and a further optical waveguide 8. The system waveguide 6 decreases more and more towards the core of the glass fiber 10 until it finally disappears. The other waveguide takes on ever larger dimensions in the direction of the directional coupler.
  • the waveguide 8 also increases slightly in the direction of the core of the glass fiber 10. However, this takes place much more slowly than in the direction of the coupler 3.
  • the glass fiber 10 is blunt on the waveguide 8 coupled.
  • the core of the glass fiber 10 has a diameter d of approximately 10 ⁇ m and the waveguide 8 has a width c of approximately 9 ⁇ m.
  • the glass fiber simultaneously carries light of different wavelengths, namely the light emanating from the optical transmitter and receiver with 1300 nm and the light arriving with the optical transmitter and receiver with 1550 nm.
  • the extent of the optical transmitter and receiver is shown in the figure by Letters a and b marked. B is less than 2 mm in the present case, while a is approximately 100 ⁇ m. The solution presented is therefore extremely compact.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

2.1 Optical transmitting and receiving device having a laser, a monitor diode, a wavelength-selective directional coupler, a receiver diode, and optical waveguides required for light guidance. In order to configure such an optical transmitting and receiving device as compactly as possible, a high degree of integration is required. 2.2 All components are integrated monolithically on a substrate. A transition of the waveguide from the system waveguide (6) onto a glass fibre (10) is provided. A directional coupler (3) which consists of two optical waveguides (5, 6) which are to be coupled to one another, and an intermediate waveguide (7) is likewise provided. 2.3 Integrated subscriber's connection. <IMAGE>

Description

Die Erfindung betrifft eine optische Sende- und Empfangsvorrichtung mit einem Laser, einer Monitordiode, einem wellenlängenselektiven Richtkoppler, einer Empfangsdiode und mit zur Lichtführung erforderlichen Lichtwellenleitern.The invention relates to an optical transmitting and receiving device with a laser, a monitor diode, a wavelength-selective directional coupler, a receiving diode and with optical fibers required for light guidance.

Aus der DE 33 26 406 A1 ist eine optische Sende- und Empfangseinheit mit einem Sendeelement, einem Empfangselement und einem Lichtwellenleiter-Richtkoppler bekannt. Die Übertragungsstrecke ist mit dem Empfangs- und dem Sendeelement so über den Richtkoppler zusammengeschaltet, daß das Empfangselement vom Sendesignal entkoppelt ist. Durch den Einsatz des Lichtwellenleiter-Richtkopplers ist ein Duplex-Betrieb einer optischen Übertragungsstrecke mit einer einzigen Lichtleitfaser möglich, über die sich Sendesignale in der einen und Empfangssignale in der entgegengesetzten Richtung ausbreiten.From DE 33 26 406 A1 an optical transmitter and receiver unit with a transmitter element, a receiver element and an optical fiber directional coupler is known. The transmission path is interconnected with the receiving and the transmitting element via the directional coupler in such a way that the receiving element is decoupled from the transmitted signal. The use of the optical waveguide directional coupler enables duplex operation of an optical transmission link with a single optical fiber, via which transmit signals propagate in one direction and receive signals in the opposite direction.

Aus der DE 38 33 311 A1 ist ebenfalls eine optoelektronische Sende- und Empfangsvorrichtung bekannt. In der Sende- und Empfangsvorrichtung mit dem optischen Sender, dem optischen Empfänger, einem wellenlängenselektiven Strahlteiler, einer Koppeloptik mit Anschlußfaser und einer Steuereinrichtung, die eine Ansteuerschaltung für den Sender und eine Vorverstärkungsschaltung für den Empfänger umfaßt, sollen möglichst viele Einzelbauteile in einem Halbleiterbauelement zusammengefaßt bzw. intergriert werden. Der optische Sender ist als ein aus III/V-Verbindungshalbleitermaterial bestehender Laserchip in eine Siliziumscheibe eingesetzt, der optische Empfänger ist als ein aus III/V-Verbindungshalbleitermaterial bestehender Empfangsdiodenchip in die Siliziumscheibe eingesetzt oder als Metallhalbleiterdiode in die Siliziumscheibe monolithisch integriert. In die Siliziumscheibe sind die wellenselektiven Strahlteiler, die Steuereinrichtung, zur Lichtführung erforderliche Lichtwellenleiter und Koppeloptik monolithisch integriert. Es wird vorgeschlagen, daß das III/V-Verbindungshalbleitermaterial InP/InGaAsP ist. Der Einsatz einer Monitordiode zum Messen und Wandeln der Lichtleitung wird vorgeschlagen.From DE 38 33 311 A1 an optoelectronic transmission and reception device is also known. In the transmitting and receiving device with the optical transmitter, the optical receiver, a wavelength-selective beam splitter, a coupling optics with connecting fiber and a control device, which comprises a control circuit for the transmitter and a preamplification circuit for the receiver as many individual components as possible are combined or integrated in a semiconductor component. The optical transmitter is inserted into a silicon wafer as a laser chip consisting of III / V compound semiconductor material, the optical receiver is inserted into the silicon wafer as a receiving diode chip consisting of III / V compound semiconductor material or monolithically integrated into the silicon wafer as a metal semiconductor diode. The wave-selective beam splitters, the control device, the optical fibers required for light guidance and the coupling optics are monolithically integrated into the silicon wafer. The III / V compound semiconductor material is suggested to be InP / InGaAsP. The use of a monitor diode for measuring and converting the light guide is proposed.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine möglichst einfach aufgebaute und kompakte optische Sende- und Empfangsvorrichtung anzugeben.Based on this prior art, it is an object of the invention to provide a compact and simple optical transmission and reception device.

Die Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The object is achieved by the features of claim 1. Advantageous further developments are specified in the subclaims.

Während in der aus der DE 38 33 311 A1 bekannten optoelektronischen Sende- und Empfangsvorrichtung mindestens ein Baustein, nämlich der elektrooptische Wandler und gegebenenfalls auch die optoelektrischen Wandler nicht integriert, sondern als Chip eingesetzt sind, sind erfindungsgemäß sämtliche Komponenten auf einem Substrat monolithisch integriert. Die optoelektrische Sende- und Empfangsvorrichtung besteht dabei aus III/V-Halbleitergrundmaterial, vorzugsweise aus InP/InGaAsP. In diesem Grundmaterial sind sowohl elektrooptische und optoelektrische Wandler, sowie Lichtwellenleiter, aber auch weitere elektronische Komponenten monolithisch herstellbar. Durch die Verwendung eines Richtkopplers mit Zwischenwellenleiter ist es möglich, an die zu koppelnden Wellenleiter direkt, ohne diese zu krümmen und auseinanderzuführen, die elektrooptischen bzw. optoelektrischen Wandler anzubringen. Der Richtkoppler dient also zur lateralen Trennung der empfangs- und sendeseitigen optoelektrischen Bauelemente. Ein selektiver Richtkoppler, der die erfindungsgemäßen Anforderungen erfüllt, ist aus der DE 31 08 742 C2 bekannt. Dieser Richtkoppler besteht aus zwei miteinander zu verkoppelnden Lichtwellenleiter, zwischen denen ein weiterer Lichtwellenleiter angeordnet ist, derart, daß die Koppelwelle des mittleren Lichtwellenleiters bei der gewünschten Koppelfrequenz phasensynchron mit den Wellen in den beiden anderen Lichtwellenleitern ist und daß die beiden zu verkoppelnden Wellenleiter nur mit dem Zwischenwellenleiter verkoppelt sind.While in the optoelectronic transmitting and receiving device known from DE 38 33 311 A1, at least one component, namely the electro-optical converter and possibly also the optoelectric converter, are not integrated but are used as a chip, according to the invention all components are monolithically integrated on a substrate. The optoelectric transmission and reception device consists of III / V semiconductor base material, preferably InP / InGaAsP. In this basic material are both electro-optical and Optoelectric converters, as well as optical fibers, but also other electronic components can be produced monolithically. By using a directional coupler with an intermediate waveguide, it is possible to attach the electro-optical or opto-electrical transducers directly to the waveguides to be coupled, without bending and diverging them. The directional coupler thus serves for the lateral separation of the receiving and transmitting optoelectric components. A selective directional coupler that meets the requirements of the invention is known from DE 31 08 742 C2. This directional coupler consists of two optical fibers to be coupled with one another, between which a further optical fiber is arranged, such that the coupling wave of the central optical fiber is phase-synchronous with the waves in the other two optical fibers at the desired coupling frequency and that the two waveguides to be coupled are only connected to the Intermediate waveguides are coupled.

Zur Feldanpassung zwischen den integrierten Lichtwellenleitern mit sehr geringen Abmessungen und der wesentlich größeren Glasfaser ist ein Wellenleiterübergang vorgesehen. Ein solcher Wellenleiterübergang wird beispielsweise in der P 41 03 896.7 beschrieben. Nachfolgend wird ein optischer Wellenleiterübergang beschrieben, der eine verlustarme Ankopplung einer Lichtleitfaser an einen planaren Wellenleiter einer integrierten optischen Schaltung ermöglicht, wobei der planare Wellenleiter eine erheblich kleinere transversale Feldweite aufweist als die Lichtleitfaser. Der Wellenleiterübergang ist auf einem Substrat (z.B. aus n⁺-Inp) realisiert. In einem ersten Prozeßschritt wird, wie ein Querschnitt durch das Substrat zeigt, ein Graben in das Substrat geätzt, der sich in die vorgesehene Wellenausbreitungsrichtung erstreckt. Dessen Querschnitt kann sich entlang der Wellenausbreitungsrichtung so ändern, daß ein möglichst homogener Feldübergang erzielt wird. Darauf wird dieser Graben mit einem optisch wirksamen Material (z.B. n⁻-InP) geringfügig höherer Brechzahl als das Substrat besitzt zugewachsen, wodurch eine Rippe eines im Laufe des weiteren Verfahrens entstehenden Rippenwellenleiters gebildet wird. Der Querschnitt dieses Rippenwellenleiters ist an einem Ende des Wellenleiterübergangs so groß zu wählen, daß seine Feldweite an die eines anzukoppelnden Wellenleiters (z.B. Lichtleitfaser) angepaßt ist.A waveguide transition is provided for field matching between the integrated optical fibers with very small dimensions and the much larger glass fiber. Such a waveguide transition is described for example in P 41 03 896.7. An optical waveguide transition is described below which enables low-loss coupling of an optical fiber to a planar waveguide of an integrated optical circuit, the planar waveguide having a considerably smaller transverse field width than the optical fiber. The waveguide transition is realized on a substrate (eg made of n⁺-Inp). In a first process step, as a cross section through the substrate shows, a trench is etched into the substrate, which extends in the intended direction of wave propagation. Whose cross section can change along the direction of wave propagation so that the most homogeneous field transition possible. This trench is then overgrown with an optically active material (eg n⁻-InP) having a slightly higher refractive index than the substrate, whereby a rib of a rib waveguide formed in the course of the further process is formed. The cross section of this rib waveguide is to be chosen so large at one end of the waveguide transition that its field width is matched to that of a waveguide to be coupled (for example optical fiber).

Im nächsten Prozeßschritt wird in die Rippe ein Graben eingeätzt, der zu einem Rippenwellenleiter gehört, dessen Querschnitt erheblich kleiner ist als der zuvor erwähnte Rippenwellenleiter. Die zum Rippenwellenleiter mit großer Feldweite gehörende Rippe mit ihrem Normalquerschnitt (der an die anzukoppelnde Lichtleitfaser angepaßte Querschnitt) beginnt an einem Ende des Wellenleiterübergangs und weitet sich nach einer gewissen Strecke in Richtung auf das gegenüberliegende Ende hin auf. Die Rippe besitzt, bevor sie sich aufweitet, eine konstante Breite. Es kann aber auch vor der Aufweitung zunächst eine Breitenverjüngung der Rippe erfolgen, um einen möglichst homogenen Übergang des Feldes von einem Wellenleiter auf den anderen zu erreichen. Die Aufweitung geschieht nur durch Zunahme der Rippenbreite bei konstant gehaltener Rippentiefe. Eine Änderung einer Schichtbreite läßt sich mit den bekannten Epitaxieverfahren mit erheblich geringerem Aufwand realisieren als eine Änderung der Schichtdicke. An dem Ende, zu dem hin sich die Rippe aufweitet, beginnt der Graben für den in einem nächsten Schritt darin einzubringenden Rippenwellenleiter mit einem Querschnitt, der an die erforderliche kleine Feldweite angepaßt ist. In Richtung zum gegenüberliegenden Ende des Wellenleiterübergangs hin nimmt der Graben in seiner Breite (bei konstanter Tiefe) allmählich ab bis er ganz verschwindet.In the next process step, a trench is etched into the fin, which belongs to a fin waveguide, the cross section of which is considerably smaller than the aforementioned fin waveguide. The rib with its normal cross-section belonging to the rib waveguide with a large field width (the cross-section adapted to the optical fiber to be coupled) begins at one end of the waveguide transition and widens after a certain distance in the direction of the opposite end. The rib has a constant width before it widens. However, before the widening, the width of the rib can first be narrowed in order to achieve the most homogeneous possible transition of the field from one waveguide to the other. The widening occurs only by increasing the rib width while keeping the rib depth constant. A change in a layer width can be implemented with the known epitaxy methods with considerably less effort than a change in the layer thickness. At the end to which the rib widens, the trench for the rib waveguide to be introduced in a next step begins with a cross section which is adapted to the required small field width. Towards the opposite end of the Towards the waveguide transition, the trench gradually decreases in width (at constant depth) until it completely disappears.

In den Graben läßt man nun die Rippe (z.B. aus InGaAsP) und darüber noch eine Schicht aus dem gleichen Material wie die Rippe wachsen. Die Schicht und die sich darüber erhebende Rippe bilden zusammen den Rippenwellenleiter mit der kleinen Feldweite.Now let the rib (e.g. made of InGaAsP) and a layer of the same material as the rib grow in the trench. The layer and the rib rising above it together form the rib waveguide with the small field width.

Zur Herstellung der erfindungsgemäßen optischen Sende- und Empfangsvorrichtung ist kaum Justieraufwand notwendig. Ein erheblicher Kostenfaktor liegt in den Justagearbeiten. Bei der monolithischen Integration erfolgt diese Justage im Herstellungsprozeß. Außerdem kann eine Vielzahl gleicher Komponenten in einem Arbeitsgang hergestellt werden. Dadurch wird ein optoelektronischer Teilnehmeranschluß kostengünstig herstellbar. Zu dem ist ein integrierter Baustein gegenüber äußeren Einflüssen wie Temperaturänderungen und Erschütterungen weniger empfindlich als hybridintegrierte Lösungen. Weiterhin ist die geringe Größe der Vorrichtung von Vorteil. Die erfindungsgemäße Lösung ist extrem kompakt, da bei dem verwendeten Wellenlängenmultiplexer keine weiteren Wellenleiterkrümmungen benötigt werden. Die hohen Montagekosten entfallen, da eine Glasfaser einfach stumpf an die Vorrichtung angekoppelt werden kann.Almost no adjustment effort is required to manufacture the optical transmitting and receiving device according to the invention. A considerable cost factor lies in the adjustment work. With monolithic integration, this adjustment is made in the manufacturing process. In addition, a large number of identical components can be manufactured in one operation. This makes it possible to produce an optoelectronic subscriber connection at low cost. In addition, an integrated module is less sensitive to external influences such as temperature changes and vibrations than hybrid-integrated solutions. Furthermore, the small size of the device is advantageous. The solution according to the invention is extremely compact since no further waveguide curvatures are required in the wavelength multiplexer used. The high assembly costs are eliminated because a glass fiber can be simply butt-coupled to the device.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung erläutert. Die Figur zeigt eine Aufsicht in schematischer Form.An embodiment of the invention is explained with reference to the drawing. The figure shows a top view in schematic form.

Das Materialsystem InGaAsP/InP bietet die Möglichkeit der monolithischen Integration optischer (Laser, Wellenleiter usw.) und elektronischer (Transistor, Diode...) Bauelemente im für die optische Nachrichtenübertragung interessanten Wellenlängenbereich von 1,3 bis 1,55 µm. Die Figur zeigt die Integration eines Wellenleiterübergangs bestehend aus Wellenleitern 8 und 6 zur Feldanpassung zwischen einer Glasfaser 10 und einem Systemwellenleiter 6, eines wellenlängenselektiven Richtkopplers 3 zur Trennung der Wellenlängen 1,3 µm und 1,55 µm, eines Lasers 1 (1,3 µm) mit einer Monitordiode 2 (1,3 µm) und einer Empfangsdiode 4 (1,55 µm). Es ist möglich als weitere Integrationsstufe Transistoren zur Laserregelung oder Teile der Empfangselektronik auf dem Substrat 9 vorzusehen. Die entsprechende Gegenseite zu dieser Sende- und Empfangsvorrichtung ergibt sich durch vertauschen der Arme des Richtkopplers, Laser und Monitordiode (1,55 µm) und Empfangsdiode (1,3 µm). Aus der Figur ist ersichtlich, daß der Richtkoppler aus den beiden zu verkoppelnden Lichtwellenleitern 5 und 6 und einem Zwischenwellenleiter besteht. Der Richtkoppler dient zur lateralen Trennung zwischen den zu verkoppelnden Lichtwellenleitern 5 und 6 und somit auch Trennung zwischen den empfangs- und sendeseitigen optoelektronischen Bauelementen. Eine weitere Auseinanderführung der Lichtwellenleiter 5 und 6 durch Krümmung der Lichtwellenleiter ist nicht notwendig. Der Systemwellenleiter 6 der optischen Sende- und Empfangsvorrichtung ist von sehr geringer Ausdehnung im Gegensatz zum Kern der Glasfaser 10, die an die Sende- und Empfangsvorrichtung angeschlossen wird. Aus diesem Grund ist ein Wellenleiterübergang vorgesehen. Er besteht aus dem Systemwellenleiter 6 und aus einem weiteren Lichtwellenleiter 8. Der Systemwellenleiter 6 nimmt in Richtung zum Kern der Glasfaser 10 hin immer stärker ab, bis er schließlich verschwindet. Der andere Wellenleiter nimmt in Richtung zum Richtkoppler immer größere Ausmaße an. Auch in Richtung zum Kern der Glasfaser 10 nimmt der Wellenleiter 8 geringfügig zu. Dies erfolgt jedoch wesentlich langsamer als in Richtung zum Koppler 3. Die Glasfaser 10 ist stumpf an den Wellenleiter 8 angekoppelt. Dabei weist der Kern der Glasfaser 10 einen Durchmesser d von ca. 10 µm und der Wellenleiter 8 eine Breite c von ca. 9 µm auf. Die Glasfaser führt gleichzeitig Licht verschiedener Wellenlängen, nämlich das von der optischen Sende- und Empfangsvorrichtung abgehende Licht mit 1300 nm und das zur optischen Sende- und Empfangsvorrichtung ankommende Licht mit 1550 nm. Die Ausdehnung der optischen Sende- und Empfangsvorrichtung ist in der Figur durch die Buchstaben a und b gekennzeichnet. B beträgt im vorliegenden Fall weniger als 2 mm, während a ungefähr 100 µm beträgt. Die vorgestellte Lösung ist also extrem kompakt.The material system InGaAsP / InP offers the possibility of the monolithic integration of optical (laser, waveguide, etc.) and electronic (transistor, diode ...) components in what is interesting for optical communication Wavelength range from 1.3 to 1.55 µm. The figure shows the integration of a waveguide transition consisting of waveguides 8 and 6 for field matching between a glass fiber 10 and a system waveguide 6, a wavelength-selective directional coupler 3 for separating the wavelengths 1.3 µm and 1.55 µm, a laser 1 (1.3 µm ) with a monitor diode 2 (1.3 µm) and a receiving diode 4 (1.55 µm). It is possible to provide transistors for laser control or parts of the receiving electronics on the substrate 9 as a further integration stage. The corresponding opposite side to this transmitting and receiving device results from swapping the arms of the directional coupler, laser and monitor diode (1.55 µm) and receiving diode (1.3 µm). From the figure it can be seen that the directional coupler consists of the two optical fibers 5 and 6 to be coupled and an intermediate waveguide. The directional coupler is used for the lateral separation between the optical waveguides 5 and 6 to be coupled and thus also for the separation between the optoelectronic components on the receiving and transmitting sides. A further separation of the optical fibers 5 and 6 by bending the optical fibers is not necessary. The system waveguide 6 of the optical transmission and reception device is of very small dimensions, in contrast to the core of the glass fiber 10, which is connected to the transmission and reception device. For this reason, a waveguide transition is provided. It consists of the system waveguide 6 and a further optical waveguide 8. The system waveguide 6 decreases more and more towards the core of the glass fiber 10 until it finally disappears. The other waveguide takes on ever larger dimensions in the direction of the directional coupler. The waveguide 8 also increases slightly in the direction of the core of the glass fiber 10. However, this takes place much more slowly than in the direction of the coupler 3. The glass fiber 10 is blunt on the waveguide 8 coupled. The core of the glass fiber 10 has a diameter d of approximately 10 μm and the waveguide 8 has a width c of approximately 9 μm. The glass fiber simultaneously carries light of different wavelengths, namely the light emanating from the optical transmitter and receiver with 1300 nm and the light arriving with the optical transmitter and receiver with 1550 nm. The extent of the optical transmitter and receiver is shown in the figure by Letters a and b marked. B is less than 2 mm in the present case, while a is approximately 100 μm. The solution presented is therefore extremely compact.

Claims (7)

Optische Sende- und Empfangsvorrichtung mit einem Laser (1), einer Monitordiode (2), einem wellenlängenselektiven Richtkoppler (3), einer Empfangsdiode (4), und mit zur Lichtführung erforderlichen Lichtwellenleitern (5 bis 8), dadurch gekennzeichnet, daß sämtliche Komponenten gemeinsam auf einem Substrat (9) monolithisch integriert sind, daß ein Wellenleiterübergang zur Feldanpassung zwischen Lichtwellenleiter (6) und Glasfaser (10) vorgesehen ist und daß der Richtkoppler (3) aus den beiden miteinander zu verkoppelnden Lichtwellenleitern (5,6) und einem Zwischenwellenleiter (7) besteht, wobei die zu verkoppelnden Lichtwellenleiter (5,6) nur mit dem Zwischenwellenleiter (7) verkoppelt sind.Optical transmitting and receiving device with a laser (1), a monitor diode (2), a wavelength-selective directional coupler (3), a receiving diode (4), and with optical fibers (5 to 8) required for light guidance, characterized in that all components together Monolithically integrated on a substrate (9) that a waveguide transition is provided for field matching between the optical waveguide (6) and glass fiber (10) and that the directional coupler (3) consists of the two optical waveguides (5,6) to be coupled together and an intermediate waveguide ( 7), the optical waveguides (5,6) to be coupled being coupled only to the intermediate waveguide (7). Optische Sende- und Empfangsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die monolithische Integration in InP/InGaAsP-Technik durchgeführt ist.Optical transmitting and receiving device according to claim 1, characterized in that the monolithic integration is carried out in InP / InGaAsP technology. Optische Sende- und Empfangsvorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß weitere elektronische Komponenten, beispielsweise der Empfangselektronik oder zur Ansteuerung oder Regelung des Lasers (1) auf dem Substrat (9) monolothisch integriert sind.Optical transmission and reception device according to one of Claims 1 or 2, characterized in that further electronic components, for example the reception electronics or for controlling or regulating the laser (1) are monolothically integrated on the substrate (9). Optische Sende- und Empfangsvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Richtkoppler (3) zur lateralen Trennung der empfangs- und sendeseitigen optoelektronischen Bauelemente (1,2,4) dient.Optical transmitting and receiving device according to one of claims 1 to 3, characterized in that the Directional coupler (3) for the lateral separation of the receiving and transmitting optoelectronic components (1,2,4) is used. Optische Sende- und Empfangsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Glasfaser stumpf an den Lichtwellenleiter (8), der an dem Ende des Wellenleiterübergangs mit der großen Feldweite einen daran angepaßten Querschnitt aufweist, angekoppelt ist.Optical transmitting and receiving device according to one of Claims 1 to 4, characterized in that the glass fiber is butt-coupled to the optical waveguide (8) which has a cross-section adapted to it at the end of the waveguide transition with the large field width. Optische Sende- und Empfangsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Wellenleiterübergang aus zwei Lichtwellenleitern (6,8) besteht, von denen ein erster (6) mindestens auf einer Seite von einem gegenüber ihm schwach wellenführenden zweiten Lichtwellenleiter (8), der einen größeren Querschnitt als der erste aufweist, überdeckt ist und daß die Breite des ersten Lichtwellenleiters (6), der an dem Ende des Wellenleiterübergangs mit der kleineren Feldweite einen daran angepaßten Querschnitt aufweist, in Richtung auf das andere Ende des Wellenleiterübergangs hin allmählich abnimmt und daß die Breite des zweiten Lichtwellenleiters (8), der an dem Ende des Wellenleiterleiterübergangs mit der großen Feldweite einen daran angepaßten Querschnitt aufweist, in Richtung auf das gegenüberliegende Ende des Wellenleiterübergangs zunimmt.Optical transmitting and receiving device according to one of Claims 1 to 5, characterized in that the waveguide transition consists of two optical waveguides (6, 8), of which a first (6) on at least one side of a second optical waveguide (8) which weakly guides it ), which has a larger cross-section than the first, is covered and that the width of the first optical waveguide (6), which has an adapted cross-section at the end of the waveguide transition with the smaller field width, gradually towards the other end of the waveguide transition decreases and that the width of the second optical waveguide (8), which has an adapted cross-section at the end of the waveguide transition with the large field width, increases in the direction of the opposite end of the waveguide transition. Optische Sende- und Empfangsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Breite des zweiten Wellenleiters (8), der an dem Ende des Wellenleiterübergangs mit der großen Feldweite einen daran angepaßten Querschnitt aufweist, in Richtung auf die Glasfaser zunimmt.Optical transmission and reception device according to Claim 6, characterized in that the width of the second waveguide (8), which has a cross section adapted to it at the end of the waveguide transition with the large field width, increases in the direction of the glass fiber.
EP19920105498 1991-04-05 1992-03-31 Optical sending and receiving device Expired - Lifetime EP0507246B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914111095 DE4111095C1 (en) 1991-04-05 1991-04-05
DE4111095 1991-04-05

Publications (3)

Publication Number Publication Date
EP0507246A2 true EP0507246A2 (en) 1992-10-07
EP0507246A3 EP0507246A3 (en) 1993-04-21
EP0507246B1 EP0507246B1 (en) 1996-06-05

Family

ID=6428907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920105498 Expired - Lifetime EP0507246B1 (en) 1991-04-05 1992-03-31 Optical sending and receiving device

Country Status (5)

Country Link
EP (1) EP0507246B1 (en)
DE (2) DE4111095C1 (en)
DK (1) DK0507246T3 (en)
ES (1) ES2089272T3 (en)
GR (1) GR3020690T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352558A (en) * 1999-06-23 2001-01-31 Bookham Technology Ltd An optical transmitter
WO2003001626A2 (en) * 2001-06-22 2003-01-03 Massachusetts Institute Technology Monolithic integration of micro-optics circuits and rf circuits

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234485C1 (en) * 1992-10-13 1993-09-30 Ant Nachrichtentech Device with two optical inputs and four optical outputs and polarization diversity receiver for optical heterodyne reception
DE4234486C1 (en) * 1992-10-13 1993-09-30 Ant Nachrichtentech Arrangement for splitting an optical input signal into two signals with mutually orthogonal polarization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238082A2 (en) * 1986-03-19 1987-09-23 Siemens Aktiengesellschaft Integrated optical semiconductor device
EP0256388A2 (en) * 1986-08-20 1988-02-24 Hitachi, Ltd. Optical multi/demultiplexer
EP0284910A1 (en) * 1987-03-30 1988-10-05 Siemens Aktiengesellschaft Integrated-optical device for bi-directional optical communications- or signal- transmission
EP0331338A2 (en) * 1988-03-03 1989-09-06 AT&T Corp. Subassemblies for optoelectronic hybrid integrated circuits

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3108742C2 (en) * 1981-03-07 1985-11-14 ANT Nachrichtentechnik GmbH, 7150 Backnang Selective directional coupler
DE3326406A1 (en) * 1983-07-22 1985-02-07 ANT Nachrichtentechnik GmbH, 7150 Backnang Optical transmitting and receiving unit
DE3605248A1 (en) * 1986-02-19 1987-09-03 Standard Elektrik Lorenz Ag OPTICAL TRANSMITTER / RECEIVER MODULE
DE3833311A1 (en) * 1988-09-30 1990-04-19 Siemens Ag OPTOELECTRONIC TRANSMITTER AND RECEIVER
DE3916962A1 (en) * 1989-05-24 1990-11-29 Siemens Ag Monolithically integrated laser diode-waveguide combination - forming branched planar closed curve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238082A2 (en) * 1986-03-19 1987-09-23 Siemens Aktiengesellschaft Integrated optical semiconductor device
EP0256388A2 (en) * 1986-08-20 1988-02-24 Hitachi, Ltd. Optical multi/demultiplexer
EP0284910A1 (en) * 1987-03-30 1988-10-05 Siemens Aktiengesellschaft Integrated-optical device for bi-directional optical communications- or signal- transmission
EP0331338A2 (en) * 1988-03-03 1989-09-06 AT&T Corp. Subassemblies for optoelectronic hybrid integrated circuits

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS vol. 24, no. 5, 3 March 1988, ENAGE GB pages 284 - 285 R.A. PATTIE, M.W. AUSTIN 'fabrication of tapered couplers in GaAs/GaAlAs waveguides' *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B vol. B9, no. 6, December 1991, NEW YORK US pages 3459 - 3463 , XP268564 R.ZENGERLE ET AL 'fabrication of optical beamwidth transformers for guided waves on InP using wedge-shaped taper structures' *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352558A (en) * 1999-06-23 2001-01-31 Bookham Technology Ltd An optical transmitter
GB2352558B (en) * 1999-06-23 2001-11-07 Bookham Technology Ltd Optical transmitter with back facet monitor
WO2003001626A2 (en) * 2001-06-22 2003-01-03 Massachusetts Institute Technology Monolithic integration of micro-optics circuits and rf circuits
WO2003001626A3 (en) * 2001-06-22 2003-12-31 Massachusetts Inst Technology Monolithic integration of micro-optics circuits and rf circuits
US7031561B2 (en) 2001-06-22 2006-04-18 Massachusetts Institute Of Technology Monolithic integration of micro-optics circuits and RF circuits

Also Published As

Publication number Publication date
GR3020690T3 (en) 1996-10-31
DE4111095C1 (en) 1992-05-27
DE59206453D1 (en) 1996-07-11
DK0507246T3 (en) 1996-10-07
ES2089272T3 (en) 1996-10-01
EP0507246A3 (en) 1993-04-21
EP0507246B1 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0475013B1 (en) Optical fibre gyroscope
DE68918133T2 (en) Subunits for hybrid integrated optoelectronic circuits.
DE19819164C1 (en) Optical data communication module
DE3877597T2 (en) CONNECTION OF OPTICAL FIBERS.
DE10105943B4 (en) Fiber optic lens system for coupling fibers with surface mounted devices
DE3605248C2 (en)
EP0743721B1 (en) Optical amplifier
DE3239011A1 (en) METHOD FOR MANUFACTURING AN OPTICAL COUPLING DEVICE, IN PARTICULAR METHOD FOR REDUCING THE WALL THICKNESS OF SHEETS OF LIGHTWAVE LADDER FIBERGLASS EXISTING FROM QUARTZ GLASS
EP0507246B1 (en) Optical sending and receiving device
EP0703472A1 (en) Integrated optical coupling device with fold mirror
DE19607107A1 (en) Light conductor to opto-electronic component coupling apparatus for optical communications
EP0499066B1 (en) Optical fiber amplifier
DE3737251C2 (en) Semiconductor carrier element for an electro-optical module
DE102009023071A1 (en) Micro-optical coupling element for orthogonal or diagonal micro-optical coupling of optical radiation, has base body formed from layer of thin glasses and exhibiting additional layers with electrical and/or fluid function
EP0874482B1 (en) Arrangement for transmitting and receiving optical signals
DE10044521C2 (en) Opto-electronically integrated photo receiver
DE202015106860U1 (en) Optical multi-channel transmitting and / or receiving module, in particular for high bit rate digital optical signals
DE2446152A1 (en) ADJUSTABLE COUPLING ARRANGEMENT FOR CONNECTING AND ALIGNMENT OF AT LEAST TWO LIGHT WAVE GUIDES OF AN OPTICAL MESSAGE TRANSFER SYSTEM ON A COMMON OPTICAL AXIS
DE3432743A1 (en) Optical coupling element
EP1090319B1 (en) Optical coupling element
DE10123137C1 (en) Integrated optical field width transformer for adiabatic monomode field matching uses integrated optical waveguide with opposing vertical and lateral tapers
DE112018006281T5 (en) ADIABATICALLY COUPLED PHOTONIC SYSTEMS WITH VERTICALLY BEVELED WAVE GUIDES
EP0737872A2 (en) Optical branching element
DE102019009399B4 (en) Optical device
DE102013223230B4 (en) Connection element for multiple core fibers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK ES FR GB GR IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19930320

17Q First examination report despatched

Effective date: 19941005

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB GR IT NL SE

REF Corresponds to:

Ref document number: 59206453

Country of ref document: DE

Date of ref document: 19960711

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960813

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3020690

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089272

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089272

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970319

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970321

Year of fee payment: 6

Ref country code: GR

Payment date: 19970321

Year of fee payment: 6

Ref country code: DK

Payment date: 19970321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970331

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 92105498.7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050513

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003