EP0506527B1 - Device and method for testing an array antenna during operation - Google Patents

Device and method for testing an array antenna during operation Download PDF

Info

Publication number
EP0506527B1
EP0506527B1 EP92400752A EP92400752A EP0506527B1 EP 0506527 B1 EP0506527 B1 EP 0506527B1 EP 92400752 A EP92400752 A EP 92400752A EP 92400752 A EP92400752 A EP 92400752A EP 0506527 B1 EP0506527 B1 EP 0506527B1
Authority
EP
European Patent Office
Prior art keywords
antenna
site
radiation
pattern
library
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92400752A
Other languages
German (de)
French (fr)
Other versions
EP0506527A1 (en
Inventor
Jean-Michel Skrzypczak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0506527A1 publication Critical patent/EP0506527A1/en
Application granted granted Critical
Publication of EP0506527B1 publication Critical patent/EP0506527B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • G01S13/781Secondary Surveillance Radar [SSR] in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the present invention relates to a method and a device for on-line testing, that is to say in operation of an antenna composed of a plurality of radiating sources.
  • a particular field of application of the invention relates to secondary radar antennas of the monopulse type, making it possible to radiate in space the pulses produced by an IFF (Identification friend or foe) interrogator, that is to say friend identification enemy) and to capture any responses from the aircraft questioned.
  • Such antennas consist of a plurality of radiating elements, called columns. On site, it is very difficult to identify if one or more of these columns are broken down, and, in the event of a drop in antenna performance, we do not know how to precisely locate the column or columns which are the cause.
  • a known practical method of locating faulty columns consists in placing a detector successively in front of each column to check whether their radiation is indeed that expected.
  • the drawback of such a method lies in the interaction of the radiation diagrams of the columns neighboring the column tested, which makes the measurements made imprecise.
  • this method requires the temporary stopping of the antenna in its interrogation and reception of aircraft response functions.
  • the object of the invention is to overcome the above drawbacks by proposing a method and a device for on-site testing of the operation of a multi-source antenna which makes it possible to precisely locate the radiating source or sources which are faulty, without the primary function of this antenna is hampered.
  • Figures 1 and 2 respectively represent the front face and the rear face of a monopulse type secondary radar antenna.
  • This antenna comprises a beam 1 on which are fixed radiating columns (2, 3), for example thirty six in number, the thirty five columns 2 being placed on the front of the antenna, and the column 3 being placed at the back. Radiation can be obtained for example by a plurality of radiating dipoles placed on each column.
  • the antenna is intended on the one hand, to radiate in space the signals produced by an interrogator (not shown) and on the other hand, to receive the responses emanating from the transponders mounted on the planes. For this purpose, it has three radiation diagrams shown diagrammatically in FIG. 3, obtained by different distributions, in amplitude and in phase, of the energy between the thirty six radiating columns.
  • the antenna first radiates a diagram ( ⁇ ) 3 presenting a directive main lobe 4 surrounded by secondary lobes 5, by means of which it emits a pair of interrogation pulses.
  • a third pulse interspersed with the previous ones is emitted according to the almost omnidirectional radiation diagram ( ⁇ ) 6, which completely covers the secondary lobes 5
  • the last diagram 7, or diagram ( ⁇ ) makes it possible to refine the position of the airplane which emits a response.
  • FIG. 4 explains the different stages of the method according to the invention.
  • a first step referenced 11 consists in storing in a library the three diagrams ⁇ i , ⁇ i and ⁇ i measured for example on the antenna site (i representing the column index) in the particular configuration where column i is voluntarily broken down.
  • the index 0 corresponds to the case where no column is broken.
  • the need to use the triplet ( ⁇ , ⁇ , ⁇ ) of the radiation diagrams is justified by the fact that a single diagram is not sufficient for the precise location of a faulty column. Indeed, the energy applied to the input of the channel ( ⁇ ) of the antenna is distributed between the thirty five front columns with the same phase and decreasing amplitudes from the center of the antenna towards the ends. Thus, the diagram ( ⁇ ) makes it possible to detect only the failures of the columns close to the center of the antenna, with moreover an ambiguity on the relative position of these columns with respect to this center. For the radiation diagram ( ⁇ ), the seventeen columns located on the left of the central column are supplied in phase opposition with respect to the seventeen columns located on the right. This removes the previous ambiguity.
  • the amplitude distribution of the ⁇ diagram makes it possible to treat more specifically the columns placed on either side of the center of each half of the antenna.
  • the diagram ( ⁇ ) for which only the rear central column is supplied in phase opposition with respect to the thirty-five other columns, makes it possible to detect the failure of this rear column.
  • the second step of the method according to the invention consists in measuring on site at predetermined times the three radiation patterns ⁇ , ⁇ , ⁇ of the antenna during its operation under IFF interrogation.
  • Steps 44 and 55 thus allow the detection of column i which has failed. More precisely, step 44 makes it possible to calculate the maximum values of the coefficients ⁇ ⁇ i , ⁇ ⁇ i and ⁇ ⁇ i ; these values are not necessarily 1 in practice because the resemblance is never perfect. Column i identified as probably broken down by step 55 corresponds to the highest correlation coefficient. In the case where several columns are faulty, the operation is repeated from step 33 in order to examine all of the columns. Instead of iterating, we could just as easily design a larger library than the previous one, containing fault configurations on more than one column.
  • the invention also provides a device for implementing the method as described above.
  • Steps 11 and 22 of the process are readings of radiation diagrams on site.
  • a beacon on the ground placed within the optical range of the radar (typically between 1 km and 50 km) is used to make this beacon functioning as an aircraft transponder, except that it responds to all the interrogations emitted by the 'antenna.
  • the three diagrams ( ⁇ ), ( ⁇ ) and ( ⁇ ) are read by measuring the peak amplitudes of the three pulses constituting the response of the tag. This reading is done over several antenna turns, which makes it possible to obtain very precise radiation patterns.
  • the idea is based on the fact that the position of the antenna is generally known thanks to an optical encoder for example, comprising n bits, and whose resolution is 360 ° 2 not .
  • Very precise radiation patterns can be obtained by reading the peak amplitudes of the beacon responses for a position of the antenna varying from 0 ° to 360 ° by a step which is as close as possible to the resolution of the encoder. Obtaining all the points requires making the measurements over several antenna turns. However, this is not a constraint because the antenna continues to perform its function of IFF interrogator.
  • This device thus makes it possible to measure very precisely on the one hand, the triplets ( ⁇ i , ⁇ i , ⁇ i ) which must therefore be stored in a library, and on the other hand, the triplet ( ⁇ , ⁇ , ⁇ ) in order to detect one or more possible faults.
  • the rest of the test device can be carried out by any means allowing the calculation of the three correlation coefficients ⁇ calculer i , ⁇ ⁇ i and ⁇ ⁇ i , to search for their maximum, and thus to determine the column probably broken.
  • the invention is absolutely not limited to antennas of secondary radars of the monopulse type and can be extended to all cases of antennas having at least two radiating sources.
  • constitution of the library can also be done by simple mathematical calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne un procédé et un dispositif de test on line, c'est-à-dire en fonctionnement d'une antenne composée d'une pluralité de sources rayonnantes.The present invention relates to a method and a device for on-line testing, that is to say in operation of an antenna composed of a plurality of radiating sources.

Un domaine particulier d'application de l'invention concerne les antennes de radars secondaires de type monopulse, permettant de rayonner dans l'espace les impulsions produites par un interrogateur IFF (Identification friend or foe, c'est-à-dire identification ami-ennemi) et de capter les réponses éventuelles des avions interrogés. De telles antennes sont constituées d'une pluralité d'éléments rayonnants, appelés colonnes. Sur site, il est très difficile d'identifier si une ou plusieurs de ces colonnes sont en panne, et, dans le cas d'une baisse de performance de l'antenne, on ne sait pas localiser précisément la ou les colonnes qui en sont la cause.A particular field of application of the invention relates to secondary radar antennas of the monopulse type, making it possible to radiate in space the pulses produced by an IFF (Identification friend or foe) interrogator, that is to say friend identification enemy) and to capture any responses from the aircraft questioned. Such antennas consist of a plurality of radiating elements, called columns. On site, it is very difficult to identify if one or more of these columns are broken down, and, in the event of a drop in antenna performance, we do not know how to precisely locate the column or columns which are the cause.

Une méthode pratique connue de localisation des colonnes en panne consiste à placer un détecteur successivement devant chaque colonne pour vérifier si leur rayonnement est bien celui escompté. L'inconvénient d'une telle méthode réside dans l'interaction des diagrammes de rayonnements des colonnes avoisinant la colonne testée, ce qui rend peu précises les mesures effectuées. De plus, cette méthode nécessite l'arrêt temporaire de l'antenne dans ses fonctions d'interrogation et de réception de réponses des avions.A known practical method of locating faulty columns consists in placing a detector successively in front of each column to check whether their radiation is indeed that expected. The drawback of such a method lies in the interaction of the radiation diagrams of the columns neighboring the column tested, which makes the measurements made imprecise. In addition, this method requires the temporary stopping of the antenna in its interrogation and reception of aircraft response functions.

Il existe également différentes méthodes travaillant directement sur le diagramme de rayonnement de l'antenne et fondées sur les principes suivants :

  • le niveau moyen des lobes secondaires peut permettre de détecter une panne. En fait, cette méthode est écartée car elle ne permet pas d'extraire une information fiable concernant les colonnes d'extrémités pour lesquelles les variations du niveau moyen sur les lobes secondaires sont trop faibles ;
  • la fonction caractéristique de l'alignement des dipôles s'annule autant de fois qu'il y a d'éléments rayonnants dans l'alignement. L'observation du nombre de zéros devrait donc permettre la détection de pannes. Cependant, c'est une méthode peu fiable en ce sens qu'en pratique, des réflexions sur obstacles peuvent faire disparaître des zéros ;
  • le diagramme de rayonnement d'une antenne se déduit de la Transformée de Fourier de l'éclairement de cette antenne. En calculant la Transformée de Fourier inverse, on devrait donc pouvoir reconstituer l'aspect de l'éclairement de l'antenne, et détecter ainsi des trous à l'endroit des colonnes en panne. En fait, cette méthode n'est pas exploitable car on ne peut pas récupérer l'information essentielle du signal, à savoir sa phase.
There are also different methods working directly on the antenna radiation pattern and based on the following principles:
  • the average level of the secondary lobes can make it possible to detect a failure. In fact, this method is discarded because it does not allow to extract reliable information concerning the end columns for which the variations of the level medium on the side lobes are too weak;
  • the characteristic function of the alignment of the dipoles is canceled as many times as there are radiating elements in the alignment. Observing the number of zeros should therefore allow the detection of faults. However, it is an unreliable method in the sense that in practice, reflections on obstacles can make zeros disappear;
  • the radiation pattern of an antenna is deduced from the Fourier Transform from the illumination of this antenna. By calculating the inverse Fourier Transform, we should therefore be able to reconstruct the aspect of the illumination of the antenna, and thus detect holes at the location of the faulty columns. In fact, this method is not usable because we cannot recover the essential information of the signal, namely its phase.

La Transformée de Fourier inverse est p. ex. utilisée dans le document IEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 36, n°6, juin 1988, pages 884-889, New York, US, J.J. LEE et al. : "Near-Field Probe Used as a Diagnostic Tool to Locate Defective Elements in an Array Antenna".The inverse Fourier transform is p. ex. used in the document IEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 36, No. 6, June 1988, pages 884-889, New York, US, J.J. LEE et al. : "Near-Field Probe Used as a Diagnostic Tool to Locate Defective Elements in an Array Antenna".

L'objet de l'invention est de pallier les inconvénients précédents en proposant un procédé et un dispositif de test sur site du fonctionnement d'une antenne multi-sources qui permettent de localiser précisément la ou les sources rayonnantes qui sont en panne, sans que la fonction première de cette antenne soit gênée.The object of the invention is to overcome the above drawbacks by proposing a method and a device for on-site testing of the operation of a multi-source antenna which makes it possible to precisely locate the radiating source or sources which are faulty, without the primary function of this antenna is hampered.

Bien que la description du procédé et du dispositif selon l'invention soit faite dans le cadre de l'application à une antenne de radar secondaire, il est d'ores et déjà important de noter que l'invention ne se limite pas à cette application particulière, comme nous le verrons par la suite.Although the description of the method and the device according to the invention is made in the context of the application to a secondary radar antenna, it is already important to note that the invention is not limited to this application particular, as we will see later.

L'invention a plus précisément pour objet un procédé de test sur site d'une antenne comportant une pluralité de sources rayonnantes, caractérisé en ce qu'il consiste à :

  • constituer une bibliothèque de diagrammes de rayonnement de l'antenne d'une part, lorsque toutes les sources rayonnantes fonctionnent normalement et d'autre part, lorsqu'au moins l'une desdites sources est mise volontairement en panne ;
  • relever le diagramme de rayonnement de l'antenne lors de son fonctionnement sur site ;
  • calculer le coefficient de corrélation dudit diagramme de rayonnement avec chacun des diagrammes de rayonnement contenus dans ladite bibliothèque ;
  • calculer la valeur maximale du coefficient de corrélation, de façon à détecter une panne éventuelle d'une ou de plusieurs desdites sources rayonnantes.
The subject of the invention is more precisely a method for testing on site an antenna comprising a plurality of radiating sources, characterized in that it consists in:
  • build up a library of antenna radiation patterns on the one hand, when all the radiating sources are operating normally and on the other hand, when at least one of said sources is voluntarily broken down;
  • take note of the antenna radiation pattern when on-site operation;
  • calculating the correlation coefficient of said radiation pattern with each of the radiation patterns contained in said library;
  • calculating the maximum value of the correlation coefficient, so as to detect a possible failure of one or more of said radiating sources.

L'invention concerne également un dispositif de test sur site d'une antenne comportant une pluralité de sources rayonnantes, caractérisé en ce qu'il comporte :

  • des premiers moyens de mesures et de mémorisation dans une bibliothèque des diagrammes de rayonnement de l'antenne d'une part, lorsque toutes les sources rayonnantes fonctionnent, et d'autre part, lorsqu'au moins l'une desdites sources est mise volontairement en panne ;
  • des seconds moyens de mesure du diagramme de rayonnement de l'antenne lors de son fonctionnement sur site ;
  • des moyens de calcul du coefficient de corrélation du diagramme de rayonnement de l'antenne et de chaque diagramme contenu dans ladite bibliothèque ;
  • des moyens de calcul de la valeur maximale du coefficient de corrélation pour détecter une panne éventuelle.
The invention also relates to an on-site test device for an antenna comprising a plurality of radiating sources, characterized in that it comprises:
  • first means of measurement and storage in a library of antenna radiation diagrams on the one hand, when all the radiating sources are working, and on the other hand, when at least one of said sources is voluntarily activated breakdown ;
  • second means for measuring the radiation pattern of the antenna during its operation on site;
  • means for calculating the correlation coefficient of the antenna radiation diagram and of each diagram contained in said library;
  • means for calculating the maximum value of the correlation coefficient to detect a possible failure.

Le procédé et le dispositif de test seront mieux compris lors de la description qui suit, relative aux figures suivantes :

  • la figure 1 est une représentation de la face avant d'une antenne de radar secondaire ;
  • la figure 2 est une représentation de la face arrière de cette même antenne ;
  • la figure 3 représente les trois diagrammes de rayonnement de l'antenne précédente ;
  • la figure 4 est une structure de blocs représentative des étapes à effectuer pour le test selon l'invention.
The test method and device will be better understood during the description which follows, relating to the following figures:
  • Figure 1 is a representation of the front face of a secondary radar antenna;
  • Figure 2 is a representation of the rear face of the same antenna;
  • Figure 3 shows the three radiation patterns of the previous antenna;
  • FIG. 4 is a block structure representative of the steps to be carried out for the test according to the invention.

Les figures 1 et 2 représentent respectivement la face avant et la face arrière d'une antenne de radar secondaire de type monopulse. Cette antenne comporte une poutre 1 sur laquelle sont fixées des colonnes rayonnantes (2, 3), par exemple au nombre de trente six, les trente cinq colonnes 2 étant placées sur l'avant de l'antenne, et la colonne 3 étant placée à l'arrière. Le rayonnement peut être obtenu par exemple par une pluralité de dipôles rayonnants placés sur chaque colonne. L'antenne est destinée d'une part, à rayonner dans l'espace les signaux élaborés par un interrogateur (non représenté) et d'autre part, à capter les réponses émanant des transpondeurs montés sur les avions. Dans ce but, elle possède trois diagrammes de rayonnement schématisés sur la figure 3, obtenus par des répartitions différentes, en amplitude et en phase, de l'énergie entre les trente six colonnes rayonnantes. L'antenne rayonne tout d'abord un diagramme (Σ) 3 présentant un lobe principal directif 4 entouré de lobes secondaires 5, grâce auquel elle émet une paire d'impulsions d'interrogation. Pour éviter qu'un transpondeur à bord d'un avion proche réponde aux impulsions émises par les lobes secondaires 5, une troisième impulsion intercalée aux précédentes est émise selon le diagramme de rayonement (Ω) quasi omnidirectionnel 6, lequel recouvre complètement les lobes secondaires 5. Ainsi, seuls les avions situés dans la zone de couverture du lobe principal 4 sont amenés à répondre aux interrogations de l'antenne. Le dernier diagramme 7, ou diagramme (Δ), permet d'affiner la position de l'avion qui émet une réponse.Figures 1 and 2 respectively represent the front face and the rear face of a monopulse type secondary radar antenna. This antenna comprises a beam 1 on which are fixed radiating columns (2, 3), for example thirty six in number, the thirty five columns 2 being placed on the front of the antenna, and the column 3 being placed at the back. Radiation can be obtained for example by a plurality of radiating dipoles placed on each column. The antenna is intended on the one hand, to radiate in space the signals produced by an interrogator (not shown) and on the other hand, to receive the responses emanating from the transponders mounted on the planes. For this purpose, it has three radiation diagrams shown diagrammatically in FIG. 3, obtained by different distributions, in amplitude and in phase, of the energy between the thirty six radiating columns. The antenna first radiates a diagram (Σ) 3 presenting a directive main lobe 4 surrounded by secondary lobes 5, by means of which it emits a pair of interrogation pulses. To prevent a transponder on board a nearby aircraft from responding to the pulses emitted by the secondary lobes 5, a third pulse interspersed with the previous ones is emitted according to the almost omnidirectional radiation diagram (Ω) 6, which completely covers the secondary lobes 5 Thus, only the aircraft located in the coverage area of the main lobe 4 are required to respond to the interrogations of the antenna. The last diagram 7, or diagram (Δ), makes it possible to refine the position of the airplane which emits a response.

La figure 4 explicite les différentes étapes du procédé selon l'invention.FIG. 4 explains the different stages of the method according to the invention.

Une première étape référencée 11 consiste à mettre en mémoire dans une bibliothèque les trois diagrammes Σi, Ωi et Δi mesurés par exemple sur site de l'antenne (i représentant l'indice de colonne) dans la configuration particulière où la colonne i est mise volontairement en panne. L'indice 0 correspond au cas où aucune colonne n'est en panne.A first step referenced 11 consists in storing in a library the three diagrams Σ i , Ω i and Δ i measured for example on the antenna site (i representing the column index) in the particular configuration where column i is voluntarily broken down. The index 0 corresponds to the case where no column is broken.

La nécessité d'utiliser le triplet (Σ, Δ, Ω) du diagrammes de rayonnement se justifie par le fait qu'un seul diagramme ne suffit pas à la localisation précise d'une colonne en panne. En effet, l'énergie appliquée à l'entrée de la voie (Σ) de l'antenne se répartit entre les trente cinq colonnes avant avec la même phase et des amplitudes décroissantes du centre de l'antenne vers les extrémités. Ainsi, le diagramme (Σ) ne permet de détecter que les pannes des colonnes proches du centre de l'antenne, avec de plus une ambiguité sur la position relative de ces colonnes par rapport à ce centre. Pour le diagramme de rayonnement (Δ), les dix sept colonnes situées à gauche de la colonne centrale sont alimentées en opposition de phase par rapport aux dix sept colonnes situées à droite. Ceci permet de lever l'ambiguité précédente. De plus, la répartition en amplitude du diagramme Δ permet de traiter plus spécifiquement les colonnes placées de part et d'autre du centre de chaque moitié de l'antenne. Enfin, le diagramme (Ω), pour lequel seule la colonne centrale arrière est alimentée en opposition de phase par rapport aux trente cinq autres colonnes, permet de détecter la panne de cette colonne arrière.The need to use the triplet (Σ, Δ, Ω) of the radiation diagrams is justified by the fact that a single diagram is not sufficient for the precise location of a faulty column. Indeed, the energy applied to the input of the channel (Σ) of the antenna is distributed between the thirty five front columns with the same phase and decreasing amplitudes from the center of the antenna towards the ends. Thus, the diagram (Σ) makes it possible to detect only the failures of the columns close to the center of the antenna, with moreover an ambiguity on the relative position of these columns with respect to this center. For the radiation diagram (Δ), the seventeen columns located on the left of the central column are supplied in phase opposition with respect to the seventeen columns located on the right. This removes the previous ambiguity. In addition, the amplitude distribution of the Δ diagram makes it possible to treat more specifically the columns placed on either side of the center of each half of the antenna. Finally, the diagram (Ω), for which only the rear central column is supplied in phase opposition with respect to the thirty-five other columns, makes it possible to detect the failure of this rear column.

La deuxième étape du procédé selon l'invention, référencée 22, consiste à mesurer sur site à des temps prédéterminés les trois diagrammes de rayonnement Σ, Ω, Δ de l'antenne lors de son fonctionnement en interrogation IFF.The second step of the method according to the invention, referenced 22, consists in measuring on site at predetermined times the three radiation patterns Σ, Ω, Δ of the antenna during its operation under IFF interrogation.

La troisième étape notée 44 est le calcul du coefficient de corrélation pour chaque couple de signaux (Σi, Σ), (Δi, Δ), (Ωi, Ω), sachant que ce coefficient de corrélation pour un couple de signaux (xi(t), (x(t)) est donné par la relation : ρ x i = x i (t) x(t) x i 2 (t) ¯ . x²(t) ¯

Figure imgb0001
The third step noted 44 is the calculation of the correlation coefficient for each pair of signals (Σ i , Σ), (Δ i , Δ), (Ω i , Ω), knowing that this correlation coefficient for a pair of signals (x i (t), (x (t)) is given by the relation: ρ x i = x i (t) x (t) x i 2 (t) ¯ . x² (t) ¯
Figure imgb0001

Ce coefficient ρxi permet d'évaluer la ressemblance des deux signaux x(t) et xi(t), sachant que le maximum de ressemblance est atteint théoriquement pour ρxi = 1, et la décorrélation totale pour ρxi = 0.This coefficient ρ x i allows to assess the resemblance of the two signals x (t) and x i (t), knowing that the maximum resemblance is theoretically reached for ρ x i = 1, and the total decorrelation for ρ x i = 0.

Les étapes 44 et 55 permettent ainsi la détection de la colonne i en panne. Plus précisément, l'étape 44 permet de calculer les valeurs maxima des coefficients ρΣi , ρΔi et ρΩi ; ces valeurs n'étant pas forcément 1 en pratique car la ressemblance n'est jamais parfaite. La colonne i identifiée comme probablement en panne par l'étape 55 correspond au coefficient de corrélation le plus élevé. Dans le cas où plusieurs colonnes sont en panne, on réitère l'opération à partir de l'étape 33 afin d'examiner l'ensemble des colonnes. Au lieu de procéder par itération, on pourrait tout aussi bien concevoir une bibliothèque plus importante que la précédente, contenant des configurations de panne sur plus d'une colonne.Steps 44 and 55 thus allow the detection of column i which has failed. More precisely, step 44 makes it possible to calculate the maximum values of the coefficients ρ Σ i , ρ Δ i and ρ Ω i ; these values are not necessarily 1 in practice because the resemblance is never perfect. Column i identified as probably broken down by step 55 corresponds to the highest correlation coefficient. In the case where several columns are faulty, the operation is repeated from step 33 in order to examine all of the columns. Instead of iterating, we could just as easily design a larger library than the previous one, containing fault configurations on more than one column.

L'invention propose également un dispositif de mise en oeuvre du procédé tel que décrit précédemment.The invention also provides a device for implementing the method as described above.

Les étapes 11 et 22 du procédé sont des relevés de diagrammes de rayonnement sur site. On utilise pour se faire une balise au sol placée dans la portée optique du radar (typiquement entre 1 km et 50 km), cette balise fonctionnant comme un transpondeur d'avions, à ceci près qu'elle répond à toutes les interrogations émises par l'antenne. Le relevé des trois diagrammes (Σ), (Δ) et (Ω) se fait par mesure des amplitudes crêtes des trois impulsions constituant la réponse de la balise. Ce relevé se fait sur plusieurs tours d'antenne, ce qui permet d'obtenir des diagrammes de rayonnement très précis. L'idée repose sur le fait que la position de l'antenne est généralement connue grâce à un codeur optique par exemple, comportant n bits, et dont la résolution est de 360° 2 n

Figure imgb0002
. On peut obtenir des diagrammes de rayonnement très précis en relevant les amplitudes crêtes des réponses de la balise pour une position de l'antenne variant de 0° à 360° par un pas qui se rapproche le plus possible de la résolution du codeur. L'obtention de tous les points nécessite de faire les mesures sur plusieurs tours d'antenne. Cependant, il ne s'agit pas d'une contrainte car l'antenne continue d'assurer sa fonction d'interrogateur IFF.Steps 11 and 22 of the process are readings of radiation diagrams on site. A beacon on the ground placed within the optical range of the radar (typically between 1 km and 50 km) is used to make this beacon functioning as an aircraft transponder, except that it responds to all the interrogations emitted by the 'antenna. The three diagrams (Σ), (Δ) and (Ω) are read by measuring the peak amplitudes of the three pulses constituting the response of the tag. This reading is done over several antenna turns, which makes it possible to obtain very precise radiation patterns. The idea is based on the fact that the position of the antenna is generally known thanks to an optical encoder for example, comprising n bits, and whose resolution is 360 ° 2 not
Figure imgb0002
. Very precise radiation patterns can be obtained by reading the peak amplitudes of the beacon responses for a position of the antenna varying from 0 ° to 360 ° by a step which is as close as possible to the resolution of the encoder. Obtaining all the points requires making the measurements over several antenna turns. However, this is not a constraint because the antenna continues to perform its function of IFF interrogator.

Ce dispositif permet ainsi de mesurer très précisément d'une part, les triplets (Σi, Δi, Ωi) qu'il faut par suite mémoriser dans une bibliothèque, et d'autre part, le triplet (Σ, Δ, Ω) dans le but de détecter une ou plusieurs pannes éventuelles. Le reste du dispositif de test peut être réalisé par tous moyens permettant de calculer les trois coefficients de corrélation ρΣi , ρΔi et ρΩi , de rechercher leur maximum, et de déterminer ainsi la colonne probablement en panne.This device thus makes it possible to measure very precisely on the one hand, the triplets (Σ i , Δ i , Ω i ) which must therefore be stored in a library, and on the other hand, the triplet (Σ, Δ, Ω ) in order to detect one or more possible faults. The rest of the test device can be carried out by any means allowing the calculation of the three correlation coefficients ρ calculer i , ρ Δ i and ρ Ω i , to search for their maximum, and thus to determine the column probably broken.

Comme nous l'avons déjà fait remarquer précédemment, l'invention ne se limite absolument pas aux antennes de radars secondaires de type monopulse et peut s'étendre à tous les cas d'antennes possédant au moins deux sources rayonnantes.As we have already pointed out previously, the invention is absolutely not limited to antennas of secondary radars of the monopulse type and can be extended to all cases of antennas having at least two radiating sources.

De plus, la constitution de la bibliothèque peut se faire également par simple calcul mathématique.In addition, the constitution of the library can also be done by simple mathematical calculation.

Claims (9)

  1. Method for on-site test of an antenna including a plurality of radiating sources, characterized in that it consists in:
    - compiling a library of radiation patterns of the antenna on the one hand, when all the radiating sources are operating normally and, on the other hand, when at least one of the said sources is deliberately made unserviceable (11);
    - plotting the radiation pattern of the antenna when it is operating on site (22);
    - calculating the coefficient of correlation of the said radiation pattern with each of the radiation patterns contained in the said library (33);
    - calculating the maximum value of the coefficient of correlation (44), so as to detect a possible failure of one or more of the said radiating sources (55).
  2. Test method according to Claim 1, characterized in that the library includes the radiation patterns of the antenna when each of the radiating sources is made unserviceable in turn.
  3. Test method according to one of the preceding claims, characterized in that the radiation patterns contained in the said library are plotted on site.
  4. Test method according to any one of the preceding claims, characterized in that the said antenna is a monopulse-type secondary radar antenna, and in that its operation is represented by a triplet of radiation patterns.
  5. Test method according to Claim 4, characterized in that the said triplet consists of a sum (Σ) pattern, of a difference (Δ) pattern and of a quasi-omnidirectional (Ω) pattern.
  6. Test method according to any one of Claims 4 and 5, characterized in that the calculation of the coefficient of the correlation is done for each radiation pattern constituting the said triplet.
  7. Device for on-site test of an antenna consisting of a plurality of radiating sources, characterized in that it includes:
    - first means for measurement and memory storage in a library of the radiation patterns of the antenna on the one hand, when all the radiating sources are operating, and, on the other hand, when at least one of the said sources is deliberately made unserviceable;
    - second means for measuring the radiation pattern of the antenna when it is operating on site;
    - means of calculating the coefficient of correlation of the radiation pattern of the antenna and of each pattern contained in the said library;
    - means of calculating the maximum value of the coefficient of correlation in order to detect a possible failure.
  8. Test device according to Claim 7, characterized in that the said first means perform the radiation pattern measurements on site.
  9. Test device according to any one of Claims 7 or 8, characterized in that the said antenna is a monopulse-type secondary radar antenna and in that the said means for on-site measurement of the radiation patterns consist of a ground beacon placed within the optical range of the radar, and responding to all the interrogations from the antenna, and of means for measuring the peak amplitude of the responses from the said beacon over several antenna revolutions.
EP92400752A 1991-03-26 1992-03-20 Device and method for testing an array antenna during operation Expired - Lifetime EP0506527B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9103623 1991-03-26
FR9103623A FR2674635B1 (en) 1991-03-26 1991-03-26 METHOD AND DEVICE FOR TESTING A MULTI-SOURCE ANTENNA IN OPERATION.

Publications (2)

Publication Number Publication Date
EP0506527A1 EP0506527A1 (en) 1992-09-30
EP0506527B1 true EP0506527B1 (en) 1995-07-12

Family

ID=9411112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400752A Expired - Lifetime EP0506527B1 (en) 1991-03-26 1992-03-20 Device and method for testing an array antenna during operation

Country Status (8)

Country Link
US (1) US5198821A (en)
EP (1) EP0506527B1 (en)
JP (1) JPH06213949A (en)
CA (1) CA2063764A1 (en)
DE (1) DE69203369T2 (en)
ES (1) ES2076010T3 (en)
FR (1) FR2674635B1 (en)
GR (1) GR3017052T3 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517200A (en) * 1994-06-24 1996-05-14 The United States Of America As Represented By The Secretary Of The Air Force Method for detecting and assessing severity of coordinated failures in phased array antennas
JPH0915281A (en) * 1995-06-28 1997-01-17 Hitachi Ltd Electromagnetic field analysis method and analyzer
GB2334625A (en) * 1998-02-24 1999-08-25 Motorola Ltd Calibrating antenna array
US6166638A (en) * 1998-04-03 2000-12-26 Intermec Ip Corp. RF/ID transponder with squinted beam radiation pattern using dipole-over-ground plane antenna
US6285330B1 (en) 1998-07-14 2001-09-04 Sensis Corporation Antenna field tester
CN1804643B (en) * 2005-01-11 2010-04-14 华为技术有限公司 Antenna failure recognition system and antenna failure recognition method
US10107844B2 (en) * 2013-02-11 2018-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Antennas with unique electronic signature
FR3018923B1 (en) * 2014-03-20 2016-03-04 Thales Sa SECONDARY RADAR BI-FUNCTION, AND RADAR SYSTEM COMPRISING SUCH A RADAR
FR3019905A1 (en) * 2014-04-11 2015-10-16 Thales Sa SECONDARY SURFACE MONITORING RADAR WITH LOW COST OF REFRESH
DE102017114822A1 (en) * 2017-07-04 2019-01-10 Dfs Deutsche Flugsicherung Gmbh Method for testing antennas with at least one measuring probe
FR3075398B1 (en) 2017-12-19 2020-01-10 Thales METHOD FOR MEASURING ANTENNA DIAGRAMS OF A SECONDARY RADAR AND SECONDARY RADAR IMPLEMENTING SUCH A METHOD
CN110045340A (en) * 2019-02-28 2019-07-23 西南电子技术研究所(中国电子科技集团公司第十研究所) The coordinate measurement and calculation method of beacon antenna in Planar Phased Array Antenna
CN116679269B (en) * 2023-08-03 2023-11-28 中国科学技术大学 Method for characterizing Q value of sweep-frequency random radiation source and method for determining frequency scanning interval
CN117420520B (en) * 2023-12-18 2024-03-29 中国电子科技集团公司第十研究所 Secondary radar interrogation antenna detection method based on signal processing information

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089133A (en) * 1980-12-03 1982-06-16 Marconi Co Ltd Secondary radar antenna
JPS57108772A (en) * 1980-12-26 1982-07-06 Mitsubishi Electric Corp Phased array radar
US4517570A (en) * 1983-03-02 1985-05-14 The United States Of America As Represented By The Secretary Of The Air Force Method for tuning a phased array antenna
US4639732A (en) * 1985-02-22 1987-01-27 Allied Corporation Integral monitor system for circular phased array antenna
US4926186A (en) * 1989-03-20 1990-05-15 Allied-Signal Inc. FFT-based aperture monitor for scanning phased arrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
884-889, New York, US; J.J. LEE et al.: "Near-field probe used as a diagnostictool to locate defective elements in an array antenna" *

Also Published As

Publication number Publication date
EP0506527A1 (en) 1992-09-30
CA2063764A1 (en) 1992-09-27
US5198821A (en) 1993-03-30
DE69203369D1 (en) 1995-08-17
JPH06213949A (en) 1994-08-05
FR2674635B1 (en) 1993-12-03
GR3017052T3 (en) 1995-11-30
ES2076010T3 (en) 1995-10-16
FR2674635A1 (en) 1992-10-02
DE69203369T2 (en) 1995-12-21

Similar Documents

Publication Publication Date Title
EP0506527B1 (en) Device and method for testing an array antenna during operation
Allison et al. First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array
EP2296006B1 (en) Airborne radar with wide angular coverage, in particular for the function for detecting and avoiding obstacles
EP2122388B1 (en) Device and method for locating a mobile approaching a surface reflecting electromagnetic waves
Morales Power spectrum sensitivity and the design of epoch of reionization observatories
Lowe et al. First spaceborne observation of an Earth-reflected GPS signal
EP0215940B1 (en) Imaging doppler interferometer
EP2217944B1 (en) Device for detecting objects, particularly dangerous objects
Alonso-Arroyo et al. On the correlation between GNSS-R reflectivity and L-band microwave radiometry
FR2741451A1 (en) MULTI-TARGET TELEMETRIC SYSTEM
EP2344902A1 (en) Method of determining the direction of arrival in terms of bearing of a high-frequency electromagnetic wave
EP2435847B1 (en) Method and system for determining the direction of arrival of an electromagnetic wave having any polarisation
Lazio et al. Hyperstrong radio-wave scattering in the galactic center. I. A survey for extragalactic sources seen through the galactic center
Jacobson et al. Bimodal radio frequency pulse distribution of intracloud‐lightning signals recorded by the FORTE satellite
EP0852734B1 (en) Method and device for geodetic surveying and/or earth imaging by satellite signal processing
US20170343670A1 (en) Low power lidar system
WO2009065957A2 (en) Mapping method implementing a passive radar
EP3417310B1 (en) Method for locating electromagnetic pulse emission sources in an environment including reflectors
EP1227333B1 (en) Method and device to locate a ground-based emitter from a satellite
FR3113951A1 (en) Bi-static or multi-static radar system for aerial surveillance with spatial illumination
Mutel et al. Is the radio core of BL lacertae precessing?
EP1742078B1 (en) Vehicle localisation device using radiowave transmission
Petry et al. Lyα Absorption in the Quasar Triplet Q0107− 025A, Q0107− 025B, and Q0107− 0232: Data Calibration and Line Selection
FR2715230A1 (en) Real time precision location of mobile on earth's surface by gps
US20170052267A1 (en) Fourier Domain LOCKIN Imaging for high accuracy and low signal Continuous Wave Sounding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB GR IT LI SE

17P Request for examination filed

Effective date: 19921211

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19941011

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB GR IT LI SE

REF Corresponds to:

Ref document number: 69203369

Country of ref document: DE

Date of ref document: 19950817

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076010

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950915

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3017052

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110311

Year of fee payment: 20

Ref country code: CH

Payment date: 20110314

Year of fee payment: 20

Ref country code: IT

Payment date: 20110316

Year of fee payment: 20

Ref country code: FR

Payment date: 20110317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110225

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110316

Year of fee payment: 20

Ref country code: DE

Payment date: 20110316

Year of fee payment: 20

Ref country code: BE

Payment date: 20110311

Year of fee payment: 20

Ref country code: ES

Payment date: 20110414

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69203369

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69203369

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: *THOMSON-CSF

Effective date: 20120320

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120321

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 950402176

Country of ref document: GR

Effective date: 20120321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120319

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120321