EP0504008B1 - Méthode et dispositif de mise en place de sondes contre la paroi d'un puits cuvelé - Google Patents

Méthode et dispositif de mise en place de sondes contre la paroi d'un puits cuvelé Download PDF

Info

Publication number
EP0504008B1
EP0504008B1 EP92400562A EP92400562A EP0504008B1 EP 0504008 B1 EP0504008 B1 EP 0504008B1 EP 92400562 A EP92400562 A EP 92400562A EP 92400562 A EP92400562 A EP 92400562A EP 0504008 B1 EP0504008 B1 EP 0504008B1
Authority
EP
European Patent Office
Prior art keywords
sonde
accordance
rigid
probe
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92400562A
Other languages
German (de)
English (en)
Other versions
EP0504008A1 (fr
Inventor
Christian Wittrisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0504008A1 publication Critical patent/EP0504008A1/fr
Application granted granted Critical
Publication of EP0504008B1 publication Critical patent/EP0504008B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for displacing a cable or a cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/911Particular well-logging apparatus

Definitions

  • the present invention relates to a method and a device for the temporary placement of one or more measurement probes against the interior wall of a cased well.
  • the well probe according to the invention can be installed in a well, for example for various operations related to the production of hydrocarbons.
  • a well equipped for petroleum production for example, includes a casing or casing tube installed during drilling operations. It is held in place by cement injected into the annular space between it and the borehole. In the cased well, a tubular column or tubing is put in place for the flow of fluids outside the production area.
  • the well probe according to the invention can be used in this flush, to contain seismic or acoustic sensors (accelerometers, geophones, piezoelectric sensors, etc.) that we want to couple with the casing for passive listening of the area put into production to determine its evolution over time for example.
  • seismic or acoustic sensors accelerometers, geophones, piezoelectric sensors, etc.
  • the well probe according to the invention can also be used, for example, in the context of hydraulic fracturing operations in an oil zone where a fluid under pressure is injected into a portion of a well confined so as to create fractures therein, in order to promote its production.
  • a probe provided with directional sensors sensitive to the noise emitted by the rocks subjected to the fracturing fluid, so as to determine the directions of propagation of the fractures.
  • it is also possible to include temperature and pressure sensors.
  • the method according to the invention is suitable for the temporary establishment for intervention in a well provided with a casing tube, of at least one measurement probe connected by conductive means to a control and recording assembly, and its recovery after use, which avoids the drawbacks mentioned above.
  • each probe is carried out by direct contact between it and the rigid drive member.
  • each probe is carried out for example by means of thrust pieces forming stops, fixed to the rigid connecting member on either side of the probe and at a longitudinal distance from each other greater than the greater longitudinal dimension of the probe, and also of radial centering parts to limit the angular movement of said probe relative to the rigid connecting member.
  • the displacement of each probe is carried out by traction on flexible cables connecting said probe to the rigid connecting member.
  • the method may include transmitting the signals received by the sensors of the probe to the control and recording assembly via an intermediate box fixed to said rigid drive member.
  • the transmission is carried out by flexible connection conductors or possibly by a non-material connection between the probe and the intermediate box, and by conductors between the latter and the control and recording assembly.
  • detection means to verify the absence of contact between said probe on the one hand and the thrust parts and the centering parts on the other hand.
  • the method can also include the use of means for measuring the angular orientation of said probe and in this case also, optionally, the angular orientation of the rigid drive member allowing, by comparison, decoupling. mechanical of said probe relative to said drive member.
  • the method according to the invention offers a very safe and simple solution to implement for the installation of a probe and its recovery after intervention in a well.
  • the probe being placed outside and decoupled from the column, it is possible to perform listening for long periods in wells used for injection.
  • the tubular column is completely free for production or various interventions.
  • the column can be used to inject support agents without any risk for the probe which is out of reach in the annular space.
  • the method can be used in the context of operations in production wells for example, in which case a tubular column is advantageously used externally provided with drive means as a rigid member for moving the probe pressed against the casing tube.
  • the column remains entirely free for the circulation of fluids: production of petroleum effluents or active agents for interventions in the production area.
  • the device for implementing the method is characterized in that it comprises at least one probe for measuring instruments or sensors, provided with magnets capable of keeping it pressed against the inner wall of a casing tube in a well and a rigid member associated with drive means for translating said probe pressed against the interior wall along said tube.
  • the drive means comprise for example stops fixed to the rigid member which can be brought to bear against the plated probe by displacement of said column.
  • the drive means may also include flexible slings or cables fixed to the column and to the probe and which can be tensioned by displacement of said column.
  • the device may also include means for controlling the mechanical uncoupling of said probe relative to the drive means.
  • the device may also include an acquisition and transmission assembly connected to said probe by connection means and / or angular measurement means for knowing the position of said probe in the well.
  • the rigid member is for example a column provided towards its base with an expandable closure member, a packer for example.
  • the well equipment can also comprise various auxiliary sensors (such as hydrophones, manometers, temperature probes, etc.) which are placed under the parking lot and which are associated with electrical conductors passing through the shutter member. which provides a more complete set of measures.
  • the method according to the invention can be applied, for example, to the installation of a measurement probe in a well equipped for petroleum production.
  • This well has a casing tube 2 which is held in place by injecting cement into the annular space between it and the well.
  • a production tube 3 provided with an expandable obturation member 4 is lowered into the well as far as the zone which is put into production possibly as a result of hydraulic fracturing operations.
  • a probe connected to a control and recording assembly on the surface by a CL multi-conductor cable, must be lowered to the vicinity of the production area to make various measurements making it possible to monitor the development of the basin.
  • the method according to the invention consists first of all in placing sufficient magnets 5 in the probe to be lowered to keep it pressed against the metal casing 2.
  • magnets made of a samarium-cobalt alloy are used, the power to volume ratio is very favorable.
  • a tubular section 6 provided with drive means. These means consist of two shoulders or stops 6 made of metal or elastomer, the longitudinal spacing of which is greater than the length of the probe to be driven.
  • the drive means may also include two radial extensions 7 when it is desired to angularly position the probe relative to the rigid column. The angular spacing of these two extensions is greater than the angular sector occupied by the probe so that in an intermediate position, it does not touch either of the two.
  • magnets 8 are preferably included in the radial extensions 7.
  • Electromagnetic sensors 9 are also included in the probe to detect any contact between it and the extensions 7.
  • the probe is then introduced into the well by pressing it against the metal casing 3 so that it is between the two shoulders 6 and the two radial extensions 7 of the column section 3.
  • the column is lowered into the well by connections successive sections and, progressively, the CL multi-conductor cable is unwound. In its translation, the column drives the probe pressed against the casing towards the intervention area.
  • the operating means When the probe has reached the chosen location, the operating means are actuated so as to make the column move back over a distance approximately equal to half the longitudinal spacing of the stops 6. In this way, it is possible to deviate from the probes the upper longitudinal drive stop 6 which was used to push it down.
  • the operator can also control the rotation of the column on itself in case contact between the probe and one of the radial extensions is detected by one of the sensors 9. After the planned intervention, the probe can be moved to another intervention point or brought back to the surface by displacement of the column, the lower stop then pressing against the probe to drive it upwards.
  • the probe When the probe is used in the context of production operations, it generally includes acoustic or seismic sensors 10 (accelerometers, geophones, velocimeters, piezoelectric sensors, etc.) making it possible to listen to noises emanating from the tank being production. They may for example be tri-axial geophones making it possible to detect the direction of propagation of the acoustic waves received.
  • acoustic or seismic sensors 10 accelerometers, geophones, velocimeters, piezoelectric sensors, etc.
  • a probe 11 is preferably chosen with an outer wall with a radius of curvature substantially identical to that of the casing (Fig. 2). This rounded wall probe, may be in the form of a greater or lesser angular sector depending on the case.
  • a ring-shaped probe FIG. 3
  • the probe consists for example of two half-shells 11A and 11B joined to each other so that they each retain sufficient mobility to remain in any circumstance pressed against the tube, and each provided with holding magnets against the casing tube.
  • the ring constituting the probe can also of course be subdivided into several angular sectors distributed similarly around the column. Sufficient space is left between the parts to allow the possible passage of fluids.
  • the drive means of the probe are constituted by flexible cables or slings 12 made of steel or nylon.
  • the cables are fixed to the probe on the one hand and to points in column 3.
  • the longitudinal spacing of these cable anchoring points is greater than the length of the probe.
  • the length of the cables is chosen so that they are all relaxed in an intermediate position of the probe and cannot transmit parasitic vibrations to it.
  • the displacement of the probe towards the place of intervention is obtained by traction on the probe by means of the lower cables.
  • the probe is raised (Fig. 5) by traction using the upper cables 12.
  • the probe can be made up of two parts.
  • a first part 13 containing sensors and provided with magnets, is pressed against the casing or casing tube.
  • a second part is contained in a housing 14 which is for example fixed to the rigid column, is connected to the first by flexible electrical conductors 15. This second part is adapted to acquire the signals received by the sensors of the probe 13 and to transmit them on the CL connection cable connected on the surface with the control and recording unit.
  • connection can be replaced by flexible electrical conductors 15 between the probe and the acquisition unit 14 by electromagnetic transmission means, when the flow of the signals to be transmitted is not too great.
  • Means can be used to obtain precise angular positioning of the probe containing the sensors.
  • the angular measurement elements used are for example of the pendulum type with an electric potentiometer to measure the position of the vertical plane where it is placed.
  • two angular measuring elements 16, 17 of this type are used.
  • One, 16, is associated with the probe pressed against the casing and the other, 17, with the electronic unit fixed to the column.
  • the probe is brought into a determined plane and by equalizing the indications provided by the two elements 16, 17, they are placed substantially in the same radial plane.
  • the embodiments described make it possible to obtain a very good coupling between acoustic or seismic sensors and the wall of the well.
  • They can be protected against the so-called tube waves, propagating along the well, by isolating them by one or more acoustic screens 18 fixed to the column, which seal the ring between it and the casing tube.
  • the probe is arranged above and in the vicinity of a parking space 19 confining for example a production area, and it is surmounted by an acoustic screen 18 capable of significantly attenuating the tube waves.
  • the probe section can sometimes be too large for the annular space available. In this case, it is possible to use eccentrics to offset the column laterally at least in the installation area of the probe.
  • the mode of implementation of the method shown diagrammatically in FIGS. 8, 9 provides a more complete set of data.
  • a production column 3 provided towards its base with an expandable obturation member 19 of the parker type for example to confine the underground zone where one intervenes either for its production or for fracturing operations with injection of fracturing agents for example.
  • the electronic unit 15 is connected on the one hand to the probe 1 magnetically coupled to the wall of the casing tube 2 and on the other hand to auxiliary sensors adapted to measure certain parameters in the confined area.
  • the auxiliary sensors may include hydrophones 20 and an element 21 for measuring the pressure prevailing in the confined area. They are connected to the electronic unit 15 by conductors 22 passing through the shutter member 19. These sensors may or may not be coupled with the casing tube.
  • the parker 19 is arranged towards the production area.
  • several sensor housings 13 are pressed against the wall of the casing tube each associated with their thrust stops 6 and their centering extensions 7.
  • the housings for sensors 13 are connected for example to a common acquisition and transmission box 14.
  • On the opposite side of the parking lot one can have a series of auxiliary sensors 20 so as to make measurements at several different depths which, in the case of hydrophones, allows focusing effects.
  • One or more boxes for sensors 13 can optionally be added thereto.
  • the auxiliary sensors 20 and these possible boxes are all connected through the parker 19, by conductors 22, to the common electronic box 14.
  • the shutter member 19 can also be arranged towards the head of the well.
  • the entire measuring device with its boxes for sensors 13, its electronic box 14 and all of the auxiliary sensors, is arranged under the shutter member.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

  • La présente invention concerne une méthode et un dispositif pour la mise en place temporaire d'une ou plusieurs sondes de mesure contre la paroi intérieure d'un puits cuvelé. La sonde de puits selon l'invention peut être installée dans un puits par exemple pour différentes opérations en relation avec la production d'hydrocarbures.
  • Un puits équipé pour la production pétrolière par exemple, comporte un tube de cuvelage ou casing mis en place durant les opérations de forage. Il est tenu en place par du ciment injecté dans l'espace annulaire entre lui et le forage. Dans le puits cuvelé est mis en place une colonne tubulaire ou tubing pour l'écoulement des fluides hors de la zone de production.
  • La sonde de puits selon l'invention peut servir dans ce ras, à contenir des capteurs sismiques ou acoustiques (accéléromètres, géophones, capteurs piézo-électriques, etc) que l'on veut coupler avec le casing pour l'écoute passive de la zone mise en production pour déterminer son évolution au cours du temps par exemple.
  • La sonde de puits selon l'invention peut servir aussi par exemple dans le cadre d'opérations de fracturation hydraulique d'une zone pétrolifère où l'on injecte un fluide sous pression dans une portion de puits confinée de façon à y créer des fractures, dans le but de favoriser sa production. On sait que dans ce type d'opérations, il est utile de mettre en place dans le puits une sonde pourvue de capteurs directifs sensibles aux bruits émis par les roches soumises au fluide de fracturation, de façon à déterminer les directions de propagation des fractures. Dans une telle sonde, on peut aussi inclure des capteurs de température et de pression.
  • Par les brevets US 4,690,214 ; 4,898,237 ; 4,898,240 et 2,898,241, on connait différentes sondes pouvant être utilisées dans le cadre d'opérations de fracturation hydraulique. Elle sont descendues jusque dans la zone d'intervention par une colonne constituée par interconnexion de sections tubulaires et reliées à une installation de commande et d'enregistrement en surface par câble électro-porteur pouvant éventuellement être connecté une fois la sonde déjà descendue dans le puits. L'utilisation d'une telle colonne présente des inconvénients parfois pour certaines applications. C'est le cas pour des opérations de fracturation où l'on doit injecter des agents de soutènement par la colonne qui, on l'observe, ont tendance à éroder le câble électro-porteur et parfois à obstruer la colonne, ce qui empêche parfois de remonter la sonde après usage.
  • Par le brevet US 4,775,009, on connait un procédé et un dispositif d'installation d'un ensemble de réception dans un puits, qui consiste essentiellement à disposer des capteurs à l'extérieur du tube de cuvelage ou casing et à les noyer dans le ciment que l'on injecte dans l'espace annulaire entre lui et le puits. Ce procédé procure un couplage particulièrement bon des capteurs avec les formations environnantes. Il convient pour une installation fixe du fait de son caractère irréversible.
  • La méthode selon l'invention convient pour la mise en place temporaire pour intervention dans un puits pourvu d'un tube de cuvelage, d'au moins une sonde de mesure reliée par des moyens conducteurs à un ensemble de commande et d'enregistrement, et sa récupération après usage, ce qui permet d'éviter les inconvénients ci-dessus mentionnés.
  • La méthode selon le préambule de la revendication 1 est connu du US-A-4898240. Elle est caractérisée en ce qu'elle comporte en combinaison
    • l'adjonction à chaque sonde, de moyens de couplage magnétiques capables de la maintenir plaquée contre la paroi intérieure du tube de cuvelage,
    • le déplacement vers un lieu d'intervention dans le puits de chaque sonde maintenue plaquée à ladite paroi par couplage magnétique, au moyen d'un organe d'entraînement rigide relié à un ensemble de manoeuvre et, avant toute intervention de chaque sonde,
    • son découplage mécanique par rapport audit organe d'entraînement rigide par déplacement longitudinal relatif de celui-ci par rapport à la sonde.
  • Suivant un premier mode de réalisation, le déplacement de chaque sonde est effectué par un contact direct entre celle-ci et l'organe d'entraînement rigide.
  • Le déplacement de chaque sonde est effectué par exemple au moyen de pièces de poussée formant butées, fixées à l'organe de liaison rigide de part et d'autre de la sonde et à une distance longitudinale l'une de l'autre supérieure à la plus grande dimension longitudinale de la sonde, et aussi de pièces radiales de centrage pour limiter le débattement angulaire de ladite sonde par rapport à l'organe de liaison rigide.
  • Suivant un deuxième mode de réalisation, le déplacement de chaque sonde est effectué par traction sur des câbles souples reliant ladite sonde à l'organe de liaison rigide.
  • La méthode peut comporter la transmission des signaux reçus par les capteurs de la sonde à l'ensemble de commande et d'enregistrement par l'intermédiaire d'un boîtier intermédiaire fixé audit organe d'entraînement rigide. Dans ce cas, la transmission est effectuée par des conducteurs de liaison souples ou éventuellement par une liaison immatérielle entre la sonde et le boîtier intermédiaire, et par des conducteurs entre celui-ci et l'ensemble de commande et d'enregistrement.
  • On peut aussi employer des moyens de détection pour vérifier l'absence de contact entre ladite sonde d'une part et les pièces de poussée et les pièces de centrage d'autre part.
  • La méthode peut aussi comporter l'emploi de moyens de mesure de l'orientation angulaire de ladite sonde et dans ce cas en outre éventuellement de l'orientation angulaire de l'organe d'entraînement rigide permettant par comparaison le découplage mécanique de ladite sonde par rapport audit organe d'entraînement.
  • La méthode selon l'invention offre une solution très sûre et simple à mettre en oeuvre pour la mise en place d'une sonde et sa récupération après intervention dans un puits. La sonde étant placée à l'extérieur et découplée de la colonne, on peut effectuer des écoutes sur de longues périodes dans des puits servant à l'injection. La colonne tubulaire est entièrement libre pour la production ou diverses interventions. Dans le cadre d'opérations de fracturations notamment, on peut utiliser la colonne pour injecter des agents de soutènement sans aucun risque pour la sonde qui se trouve hors d'atteinte dans l'espace annulaire.
  • La méthode peut être utilisée dans le cadre d'opérations dans des puits de production par exemple, auquel cas on utilise avantageusement une colonne tubulaire munie extérieurement de moyens d'entraînement comme organe rigide pour déplacer la sonde plaquée contre le tube de cuvelage. La colonne reste entièrement libre pour la circulation de fluides : production d'effluents pétroliers ou agents actifs pour des interventions dans la zone de production.
  • Le dispositif pour la mise en oeuvre de la méthode est caractérisé en ce qu'il comporte au moins une sonde pour des instruments ou capteurs de mesure, pourvus d'aimants capables de la maintenir plaquée contre la paroi intérieure d'un tube de cuvelage dans un puits et un organe rigide associé à des moyens d'entraînement pour translater ladite sonde plaquée contre la paroi intérieure le long dudit tube.
  • Les moyens d'entraînement comportent par exemple des butées fixées à l'organe rigide pouvant être amenées en appui contre la sonde plaquée par déplacement de ladite colonne.
  • Les moyens d'entraînement peuvent comporter aussi des élingues ou câbles souples fixés à la colonne et à la sonde et pouvant être tendus par déplacement de ladite colonne.
  • Le dispositif peut comporter aussi des moyens pour contrôler le désaccouplage mécanique de ladite sonde par rapport aux moyens d'entraînement.
  • Le dispositif peut encore comporter un ensemble d'acquisition et de transmission relié à ladite sonde par des moyens de liaison et/ou des moyens de mesure angulaire pour connaître la position de ladite sonde dans le puits.
  • L'organe rigide est par exemple une colonne pourvue vers sa base, d'un organe d'obturation expansible, un packer par exemple. L'appareillage de puits peut comporter en outre divers capteurs auxiliaires (tels que des hydrophones, manomètres, sondes de température, etc) que l'on dispose sous le parker et qui sont associés à des conducteurs électriques traversant l'organe d'obturation ce qui permet d'obtenir un ensemble de mesures plus complet.
  • D'autres caractéristiques et avantages de la méthode et du dispositif selon l'invention apparaîtront mieux à la lecture de la description ci-après de modes de réalisation décrits à titre d'exemples non limitatifs, en se référant aux dessins annexés où :
    • la Fig.1 montre une sonde de puits d'un type connu qui est couplée magnétiquement avec la paroi d'un tube de cuvelage et des moyens d'entraînement permettant de la déplacer le long d'un puits;
    • la Fig.2 montre une sonde de puits conformée pour obtenir un bon contact avec la paroi du puits, encadrée aussi par des moyens d'entraînement du même type;
    • la Fig.3 montre une sonde de puits de forme annulaire constituée par exemple de deux demi-coquilles de part et d'autre de la colonne tubulaire reliées lâchement l'une à l'autre;
    • la Fig.4 montre un deuxième mode de réalisation où les moyens d'entraînement comportent des câbles de liaison;
    • la Fig.5 montre schématiquement la disposition des mêmes câbles lors d'un mouvement en sens inverse de l'organe de liaison rigide;
    • la Fig.6 montre un mode de réalisation où la sonde contenant les capteurs, est reliée à un boîtier d'acquisition et de transmission fixé à l'organe de liaison rigide; et
    • la Fig.7 montre un mode de réalisation d'un moyen tel qu'un pendule par exemple dans le cas d'un puits dévié, pour contrôler de l'orientation de chaque sonde dans un puits dévié;
    • la Fig.8 montre un mode de mise en oeuvre de la méthode où les moyens employés sont répartis de part et d'autre d'un organe d'obturation du puits;
    • la Fig. 9 montre une variante du mode de mise en oeuvre précédent où les moyens employés sont tous disposés au-dessus d'un organe d'obturation de puits; et
    • la Fig. 10 montre un mode d'utilisation du dispositif avec mise en place d'un écran-acoustique.
  • La méthode selon l'invention peut s'appliquer par exemple à l'installation d'une sonde de mesure dans un puits équipé pour la production pétrolière. Ce puits comporte un tube de cuvelage ou casing 2 qui est tenu en place par injection de ciment dans l'espace annulaire entre lui et le puits. Un tube de production 3 pourvu d'un organe d'obturation expansible 4, est descendu dans le puits jusque dans la zone qui est mise en production éventuellement à la suite d'opérations de fracturation hydraulique. Une sonde reliée à un ensemble de commande et d'enregistrement en surface par un câble multi-conducteurs CL, doit être descendue jusqu'au voisinage de la zone de production pour faire différentes mesures permettant de surveiller l'évolution du bassin.
  • La méthode selon l'invention consiste tout d'abord à disposer dans la sonde à descendre, des aimants 5 en nombre suffisant pour la maintenir plaquer contre le casing métallique 2. On utilise par exemple des aimants en un alliage au samarium-cobalt dont le rapport de la puissance au volume est très favorable. On intercale sur la colonne de production 3, une section tubulaire 6 pourvue de moyens d'entraînement. Ces moyens sont constitués de deux épaulements ou butées 6 en métal ou en élastomère dont l'espacement longitudinal est supérieur à la longueur de la sonde à entraîner. Les moyens d'entraînement peuvent comporter aussi deux extensions radiales 7 quand on veut positionner angulairement la sonde par rapport à la colonne rigide. L'espacement angulaire de ces deux extensions est supérieur au secteur angulaire occupé par la sonde de façon que dans une position intermédiaire, elle ne touche aucune des deux. Des aimants 8 sont de préférence inclus dans les extensions radiales 7. Des capteurs électro-magnétiques 9 sont en outre inclus dans la sonde pour détecter tout contact entre elle et les extensions 7.
  • On introduit alors la sonde dans le puits en la plaquant contre le casing métallique 3 de manière qu'elle se trouve entre les deux épaulements 6 et les deux extensions radiales 7 de la section de colonne 3. On descend la colonne dans le puits par raccordements successifs de sections et, au fur et à mesure, on déroule le câble multi-conducteurs CL. Dans sa translation, la colonne entraîne vers la zone d'intervention la sonde plaquée contre le casing.
  • Lorsque la sonde est parvenue à l'emplacement choisi, on actionne les moyens de manoeuvre de façon à faire reculer la colonne sur une distance approximativement égale à la moitié de l'espacement longitudinal des butées 6. De cette façon, on peut écarter de la sonde la butée longitudinale supérieure d'entraînement 6 qui a servi à la pousser vers le bas. L'opérateur peut aussi commander la rotation de la colonne sur elle-même au cas où un contact entre la sonde et une des extensions radiales est détecté par un des capteurs 9. Après l'intervention prévue, la sonde peut être déplacée vers un autre point d'intervention ou ramenée en surface par déplacement de la colonne, la butée inférieure venant alors en appui contre la sonde pour l'entraîner vers le haut.
  • Quand la sonde est utilisée dans le cadre d'opérations de production, on y inclut généralement des capteurs acoustiques ou sismiques 10 (accéléromètres, géophones, vélocimètres, capteurs piézo-électriques, etc) permettant d'écouter des bruits émanant du réservoir en cours de production. Il peut s'agir par exemple de géophones tri-axiaux permettant de détecter la direction de propagation des ondes acoustiques reçues.
  • La sonde étant plaquée contre le casing un bon couplage acoustique des capteurs avec la formation est obtenu dans la zone de contact. Pour accroître cette zone, on choisit de préférence une sonde 11 avec une paroi extérieure avec un rayon de courbure sensiblement identique à celui du casing (Fig.2). Cette sonde à paroi arrondie, peut être en forme de secteur angulaire plus ou moins grand selon les cas. Quand on veut disposer des capteurs sur toute la périphérie du puits, on utilise une sonde en forme d'anneau (Fig.3), fractionné en plusieurs parties. La sonde est constituée par exemple de deux demi-coquilles 11A et 11B réunies l'une à l'autre de façon qu'elles conservent chacune une mobilité suffisante pour rester en toute circonstance plaquées contre le tube, et pourvues chacune d'aimants de maintien contre le tube de cuvelage. L'anneau constituant la sonde peut aussi bien entendu être subdivisé en plusieurs secteurs angulaires répartis pareillement autour de la colonne. On laisse entre les parties des espacements suffisants pour permettre le passage éventuel de fluides.
  • Suivant un deuxième mode de réalisation, les moyens d'entraînement de la sonde sont constitués par des câbles ou élingues souples 12 en acier ou en nylon. Les câbles sont fixés à la sonde d'une part et à des points de la colonne 3. L'espacement longitudinal de ces points d'ancrage des câbles est supérieur à la longueur de la sonde. La longueur des câbles est choisie de façon qu'ils soient tous détendus dans une position intermédiaire de la sonde et ne puissent lui transmettre des vibrations parasites. Le déplacement de la sonde vers le lieu d'intervention est obtenu par traction sur la sonde au moyen des câbles inférieurs. La remontée de la sonde est obtenue (Fig.5) par traction au moyen des câbles 12 supérieurs.
  • Quel que soit le mode de réalisation, la sonde peut être constituée de deux parties. Une première partie 13 contenant des capteurs et munie d'aimants, est plaquée contre le tube de cuvelage ou casing. Une deuxième partie est contenue dans un boîtier 14 qui est par exemple fixé à la colonne rigide, est reliée à la première par des conducteurs électriques souples 15. Cette deuxième partie est adaptée à acquérir les signaux reçus par les capteurs de la sonde 13 et à les transmettre sur le câble de liaison CL connecté en surface avec l'ensemble de commmande et d'enregistrement.
  • Suivant une variante du mode de réalisation précédente, on peut remplacer la liaison par conducteurs électriques souples 15 entre la sonde et le boîtier d'acquisition 14 par des moyens de transmission électro-magnétiques, quand le débit des signaux à transmettre n'est pas trop grand.
  • On peut utiliser des moyens pour obtenir un positionnement angulaire précis de la sonde contenant les capteurs. Dans le cas où la sonde est placée dans une partie de puits déviée (Fig.7), les éléments de mesure angulaire utilisés sont par exemple du type à pendule avec un potentiomètre électrique pour mesurer la position du plan vertical où il se place.
  • Suivant un mode de réalisation, on utilise deux éléments de mesure angulaire 16, 17 de ce type. L'un, 16, est associé à la sonde plaquée contre le casing et l'autre, 17, au boîtier électronique fixé à la colonne. Par une rotation de la colonne sur elle-même, on amène la sonde dans un plan déterminé et en égalisant les indications fournies par les deux éléments 16, 17, on les place sensiblement dans le même plan radial.
  • Les modes de réalisation décrits permettent d'obtenir un très bon couplage entre des capteurs acoustiques ou sismiques et la paroi du puits. Pour accroître leur efficacité dans la détection des bruits émanant des formations environnantes, on peut les prémunir contre les ondes dites de tube, se propageant le long du puits, en les isolant par un ou plusieurs écrans acoustiques 18 fixés à la colonne, qui obturent l'annulaire entre elle et le tube de cuvelage.
  • Suivant le mode de réalisation de la Fig. 10, la sonde est disposée au-dessus et au voisinage d'un parker 19 confinant par exemple une zone de production, et elle est surmontée d'un écran acoustique 18 capable d'atténuer de façon importante les ondes de tube.
  • La section de la sonde peut parfois être trop importante pour l'espace annulaire dont on dispose. Dans ce cas, on peut utiliser des excentreurs pour décaler latéralement la colonne au moins dans la zone d'installation de la sonde.
  • Le mode de mise en oeuvre de la méthode schématisé aux Fig. 8, 9 permet d'obtenir un ensemble de données plus complet. Il convient pour certaines applications notamment dans des puits de production pétrolière où l'on descend, une colonne de production 3 pourvue vers sa base d'un organe d'obturation expansible 19 du type parker par exemple pour confiner la zone souterraine où l'on intervient soit pour sa mise en production soit pour des opérations de fracturation avec injection d'agents de fracturation par exemple. Dans ces cas, le boîtier électronique 15 est connecté d'une part à la sonde 1 couplée magnétiquement à la paroi du tube de cuvelage 2 et d'autre part à des capteurs auxiliaires adaptés à mesurer certains paramètres dans la zone confinée.
  • Les capteurs auxiliaires peuvent comporter des hydrophones 20 et un élément 21 de la mesure de la pression régnant dans la zone confinée. Ils sont reliés au boîtier électronique 15 par des conducteurs 22 traversant l'organe d'obturation 19. Ces capteurs peuvent être ou non couplés avec le tube de cuvelage.
  • Par la méthode selon l'invention, on peut mettre en place des dispositifs de mesure plus ou moins complexes. Suivant le mode de mise en oeuvre à la Fig. 8, le parker 19 est disposé vers la zone de production. Au-dessus de lui un ou selon le cas plusieurs boîtiers de capteurs 13 sont plaqués contre la paroi du tube de cuvelage associés chacun à leurs butées de poussée 6 et leurs extensions de centrage 7. Les boîtiers pour capteurs 13 sont connectés par exemple à un boîtier commun d'acquisition et de transmission 14. Du côté opposé du parker, on peut disposer un chapelet de capteurs auxiliaires 20 de façon à faire des mesures à plusieurs profondeurs différentes ce qui dans le ras d'hydrophones, permet des effets de focalisation. On peut leur adjoindre éventuellement un ou plusieurs boîtiers pour capteurs 13. Les capteurs auxiliaires 20 et ces boîtiers éventuels sont tous connectés au travers du parker 19, par des conducteurs 22, au boîtier électronique commun 14.
  • Suivant le mode de mise en oeuvre de la Fig. 9, l'organe d'obturation 19 peut encore être disposé vers la tête du puits. Auquel cas, l'ensemble du dispositif de mesure avec ses boîtiers pour capteurs 13, son boîtier électronique 14 et l'ensemble des capteurs auxiliaires, est disposé sous l'organe d'obturation.

Claims (17)

  1. Méthode pour réaliser une intervention dans un puits pourvu d'un tube de cuvelage (2), par mise en place temporaire en des emplacements d'intervention déterminés le long du puits, d'un appareillage de mesure comprenant au moins une sonde de mesure (1) reliée par des moyens de transmission (CL) à un ensemble de commande et d'enregistrement, caractérisée en ce qu'elle comporte
    - l'adjonction à chaque sonde (1), de moyens de couplage magnétiques (5) capables de la maintenir plaquée contre la paroi intérieure du tube de cuvelage,
    - le déplacement dans le puits de chaque sonde maintenue plaquée à ladite paroi par couplage magnétique, par un organe d'entraînement rigide (3) relié à un ensemble de manoeuvre et, avant toute intervention de chaque sonde,
    - son découplage mécanique par rapport audit organe d'entraînement rigide (3) par déplacement longitudinal relatif de celui-ci par rapport à la sonde.
  2. Méthode selon la revendication 1, caractérisée en ce que le déplacement de chaque sonde est effectué par un contact direct entre celle-ci et l'organe d'entraînement rigide (3).
  3. Méthode selon la revendication 2, caractérisée en ce que le déplacement de chaque sonde est effectué au moyen de pièces de poussée (6) formant butées, fixées à l'organe d'entraînement rigide (3) de part et d'autre de la sonde et à une distance longitudinale l'une de l'autre supérieure à la plus grande dimension longitudinale de la sonde, et au moyen de pièces radiales de centrage (7) pour limiter le débattement angulaire de ladite sonde par rapport à l'organe d'entraînement rigide (3).
  4. Méthode selon la revendication 1, caractérisée en ce que le déplacement de chaque sonde est effectué par traction sur des câbles souples (12) reliant ladite sonde à l'organe de liaison rigide (3).
  5. Méthode selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte la transmission des signaux reçus par les capteurs de la sonde (13) à l'ensemble de commande et d'enregistrement par l'intermédiaire d'un boîtier intermédiaire (14) fixé audit organe d'entraînement rigide.
  6. Méthode selon la revendication 5, caractérisée en ce que ladite transmission est effectuée par des conducteurs de liaison souples (15).
  7. Méthode selon la revendication 5, caractérisée en ce que ladite transmission est effectuée par une liaison immatérielle entre ladite sonde (13) et le boîtier intermédiaire (14), et par des conducteurs (CL) entre celui-ci et l'ensemble de commande et d'enregistrement.
  8. Méthode selon la revendication 1, caractérisée en ce qu'elle comporte en outre l'emploi de moyens (17) de mesure de l'orientation angulaire de l'organe d'entraînement rigide (13) permettant par comparaison, le découplage mécanique de ladite sonde (13) par rapport audit organe d'entraînement (3).
  9. Méthode selon la revendication 1, caractérisée en ce que l'on utilise une colonne tubulaire munie extérieurement de moyens d'entrainement comme organe rigide, pour déplacer ladite sonde plaquée contre ledit tube de cuvelage.
  10. Dispositif pour la mise en oeuvre de la méthode selon la revendication 1, caractérisé en ce qu'il comporte un appareillage de mesure comprenant au moins une sonde (1, 13) pour des instruments ou capteurs de mesure, pourvus d'aimants (5) capables de la maintenir plaquée contre la paroi intérieure d'un tube de cuvelage (2) dans un puits et un organe rigide (3) associé à des moyens d'entraînement (6, 7) pour translater ladite sonde plaquée contre la paroi intérieure le long dudit tube.
  11. Dispositif selon la revendication 10, caractérisé en ce que les moyens d'entraînement comportent des butées (6) fixées à l'organe rigide pouvant être amenées en appui contre la sonde plaquée par déplacement de ladite colonne.
  12. Dispositif selon la revendication 10, caractérisé en ce que les moyens d'entraînement comportent des élingues ou câbles souples (12) fixés audit organe rigide et à ladite sonde et pouvant être tendus par déplacement dudit organe.
  13. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce qu'il comporte des moyens (8, 9) pour contrôler le désaccouplage mécanique de ladite sonde par rapport aux moyens d'entraînement (7).
  14. Dispositif selon l'une des revendications 10 à 13, caractérisé en ce qu'il comporte un ensemble d'acquisition et de transmission (14) relié à ladite sonde (13) par des moyens de liaison.
  15. Dispositif selon l'une des revendications 10 à 14, caractérisé en ce qu'il comporte des moyens de mesure angulaire (16) pour connaître la position de ladite sonde (13) dans le puits.
  16. Dispositif selon la revendication 10 ou 14, caractérisé en ce que l'organe rigide (3) est une colonne pourvue vers sa base d'un organe d'obturation expansible (19), ledit appareillage portant en outre des capteurs auxiliaires (20, 21) associés par des conducteurs (22) de liaison traversant ledit organe d'obturation (19).
  17. Dispositif selon la revendication 16, caractérisé en ce qu'il comporte une pluralité de sondes associées à ladite colonne à différents emplacements le long de celle-ci d'un côté au moins dudit organe d'obturation et une pluralité de capteurs auxiliaires disposés d'un même côté dudit organe d'obturation.
EP92400562A 1991-03-08 1992-03-04 Méthode et dispositif de mise en place de sondes contre la paroi d'un puits cuvelé Expired - Lifetime EP0504008B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9102939A FR2673672B1 (fr) 1991-03-08 1991-03-08 Methode et dispositif de mise en place de sondes contre la paroi d'un puits cuvele.
FR9102939 1991-03-08

Publications (2)

Publication Number Publication Date
EP0504008A1 EP0504008A1 (fr) 1992-09-16
EP0504008B1 true EP0504008B1 (fr) 1993-09-01

Family

ID=9410612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400562A Expired - Lifetime EP0504008B1 (fr) 1991-03-08 1992-03-04 Méthode et dispositif de mise en place de sondes contre la paroi d'un puits cuvelé

Country Status (5)

Country Link
US (1) US5318129A (fr)
EP (1) EP0504008B1 (fr)
CA (1) CA2062472C (fr)
FR (1) FR2673672B1 (fr)
NO (1) NO178980C (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692364B1 (fr) * 1992-06-12 1994-07-29 Inst Francais Du Petrole Systeme sismique mobile de grande longueur pour puits.
US5413174A (en) * 1994-05-18 1995-05-09 Atlantic Richfield Company Signal transmission through deflected well tubing
US6065538A (en) * 1995-02-09 2000-05-23 Baker Hughes Corporation Method of obtaining improved geophysical information about earth formations
MY115236A (en) * 1996-03-28 2003-04-30 Shell Int Research Method for monitoring well cementing operations
FR2752876B1 (fr) * 1996-09-02 1998-11-06 Inst Francais Du Petrole Dispositif de couplage d'un systeme de reception a la paroi d'un puits
KR100257625B1 (ko) * 1997-01-27 2000-06-01 강정근 Pcb 검사장치
FR2761111B1 (fr) * 1997-03-20 2000-04-07 Schlumberger Services Petrol Procede et appareil d'acquisition de donnees dans un puits d'hydrocarbure
GB9904010D0 (en) 1999-02-22 1999-04-14 Radiodetection Ltd Controlling an underground object
US6276457B1 (en) * 2000-04-07 2001-08-21 Alberta Energy Company Ltd Method for emplacing a coil tubing string in a well
GB2414258B (en) * 2001-07-12 2006-02-08 Sensor Highway Ltd Method and apparatus to monitor, control and log subsea wells
GB0122929D0 (en) * 2001-09-24 2001-11-14 Abb Offshore Systems Ltd Sondes
US7020045B2 (en) * 2001-10-17 2006-03-28 Read Asa Block and module for seismic sources and sensors
US6865934B2 (en) * 2002-09-20 2005-03-15 Halliburton Energy Services, Inc. System and method for sensing leakage across a packer
US7048089B2 (en) * 2003-05-07 2006-05-23 Battelle Energy Alliance, Llc Methods and apparatus for use in detecting seismic waves in a borehole
US7663969B2 (en) * 2005-03-02 2010-02-16 Baker Hughes Incorporated Use of Lamb waves in cement bond logging
GB2420624B (en) * 2004-11-30 2008-04-02 Vetco Gray Controls Ltd Sonde attachment means
US20070215345A1 (en) * 2006-03-14 2007-09-20 Theodore Lafferty Method And Apparatus For Hydraulic Fracturing And Monitoring
US7813220B2 (en) * 2006-12-04 2010-10-12 Schlumberger Technology Corporation Method and apparatus for long term seismic monitoring
CN104282111B (zh) * 2013-07-03 2016-12-28 中国石油化工股份有限公司 起下管柱预警装置
US9440341B2 (en) 2013-09-18 2016-09-13 Vetco Gray Inc. Magnetic frame and guide for anti-rotation key installation
WO2015089658A1 (fr) * 2013-12-17 2015-06-25 Hifi Engineering Inc. Dispositif d'écran insonore et système pour détecter des signaux acoustiques
CN107083935B (zh) * 2017-06-30 2022-12-13 国网湖北省电力有限公司荆州供电公司 一种电驱动螺旋间歇式井下牵引器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530308A (en) * 1945-09-28 1950-11-14 Philip W Martin Apparatus for determining movability of members in wells
US3110257A (en) * 1958-03-05 1963-11-12 Schlumberger Well Surv Corp Well perforating method and apparatus
US3182724A (en) * 1960-04-21 1965-05-11 Schlumberger Well Surv Corp Orienting apparatus and its manufacture
JPH0785109B2 (ja) * 1985-07-24 1995-09-13 シュルンベルジェ オーバーシーズ エス.エイ. ダウンホ−ル地震探査装置

Also Published As

Publication number Publication date
FR2673672B1 (fr) 1993-06-04
EP0504008A1 (fr) 1992-09-16
US5318129A (en) 1994-06-07
CA2062472A1 (fr) 1992-09-09
FR2673672A1 (fr) 1992-09-11
CA2062472C (fr) 2002-04-16
NO178980B (no) 1996-04-01
NO178980C (no) 1996-07-10
NO920897D0 (no) 1992-03-06
NO920897L (no) 1992-09-09

Similar Documents

Publication Publication Date Title
EP0504008B1 (fr) Méthode et dispositif de mise en place de sondes contre la paroi d'un puits cuvelé
EP0921416B1 (fr) Méthode de surveillance sismique d'une zone souterraine en cours d'exploitation permettant une meillure identification d'évenèments significatifs
EP0122839B1 (fr) Méthode et dispositif permettant d'effectuer des mesures et/ou interventions dans un puits
FR3073554A1 (fr) Système et procédé permettant d'obtenir des profils sismiques verticaux dans des trous de forage en utilisant une détection acoustique distribuée sur une fibre optique déployée utilisant un tubage enroulé
US8074713B2 (en) Casing collar locator and method for locating casing collars
FR2674029A1 (fr) Methode et appareillage de prospection par ondes acoustiques dans des puits de production.
FR2600172A1 (fr) Dispositif d'installation de capteurs sismiques dans un puits de production petroliere
EP1257849B1 (fr) Dispositif de reception d'ondes sismiques et methode pour le coupler avec un milieu solide
FR2501777A1 (fr) Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
CA1287160C (fr) Procede et dispositif d'installation de capteurs sismiques dans un puits de production petroliere
FR2858065A1 (fr) Systeme et procede de mesure de parametres de fond pendant le forage
EP0773344B1 (fr) Dispositif d'exploration d'une formation souterraine traversée par un puits horizontal comportant plusieurs sondes ancrables
FR2596875A1 (fr) Procede et dispositif pour effectuer des mesures caracterisant des formations geologiques, dans un forage horizontal realise depuis une voie souterraine
CA2292917A1 (fr) Systeme d'installation permanente des sondes de mesure a l'interieur d'un conduit par verrou amovible par pression de fluide
AU2009317171B2 (en) Method and system for fixing an element in a borehole
EP0505276A1 (fr) Sonde pour déterminer notamment l'injectivité d'un puits pétrolier et procédé de mesures la mettant en oeuvre
FR2593292A1 (fr) Procede et dispositif d'installation de capteurs sismiques dans un puits de production petroliere
CA2470173C (fr) Systeme d'emission sismique mobile a dispositifs de couplage fixes, et methode pour sa mise en oeuvre
FR2826402A1 (fr) Support pour moyen de mesure dans un puits de production d'hydrocarbures
EP0457644B1 (fr) Système de réception d'ondes acoustiques pour puits permettant un découplage mécanique des capteurs
FR2666113A1 (fr) Procede et appareil de forage de trous de sondage et ensemble de trepan pour la mise en óoeuvre de ce procede.
JP2012237677A (ja) センサ設置方法
WO2009099332A1 (fr) Liaison de communication de données
FR2703457A1 (fr) Méthode et dispositif pour déterminer la perméabilité d'une formation souterraine.
Delacour et al. Flexodrilling used for deep-water seabed reconnaissance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19921222

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070524

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070427

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070615

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304