EP0500416B1 - Method for producing oxygen by adsorption - Google Patents
Method for producing oxygen by adsorption Download PDFInfo
- Publication number
- EP0500416B1 EP0500416B1 EP92400347A EP92400347A EP0500416B1 EP 0500416 B1 EP0500416 B1 EP 0500416B1 EP 92400347 A EP92400347 A EP 92400347A EP 92400347 A EP92400347 A EP 92400347A EP 0500416 B1 EP0500416 B1 EP 0500416B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- production
- stage
- pumping
- oxygen
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40043—Purging
- B01D2259/4005—Nature of purge gas
- B01D2259/40052—Recycled product or process gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40058—Number of sequence steps, including sub-steps, per cycle
- B01D2259/40062—Four
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40077—Direction of flow
- B01D2259/40081—Counter-current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/403—Further details for adsorption processes and devices using three beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/404—Further details for adsorption processes and devices using four beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/406—Further details for adsorption processes and devices using more than four beds
- B01D2259/4062—Further details for adsorption processes and devices using more than four beds using six beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/0476—Vacuum pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/053—Pressure swing adsorption with storage or buffer vessel
Definitions
- Attrition speed is meant a gas speed, in an adsorption column beyond which the adsorbent particles are set in motion.
- pumping system means either a pump and its own motor, or a stage or pump body and in this case, several pumping systems can be connected to a single motor.
- FIGS. 1 to 13 represent the pressure (ordered) -time diagrams (abscissa) of thirteen implementation variants, the pressure varying between a maximum pressure of the cycle PM (between 1.105 and 1.6.105 Pascal) and a minimum pressure Pm of the cycle (between 0.2.105 and 0.5.105 Pascal).
- the durations of the different stages are noted in circles and the duration of the cycle T is the highest time indicated on the abscissa.
- Cycle time T 135 sec. Number of adsorbers n 3 Adsorbers in production 1 part-time Production stage duration 20 sec. Duration of first depressurization 10 sec. Pumping time 80 sec. Pumping systems of them Repressurization time - air + enriched air 10 sec. - air alone 15 sec.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
La présente invention concerne la production d'oxygène par adsorption d'azote de l'air, du genre où, sur une pluralité n de colonnes d'adsorbant, on assure successivement, cycliquement, sur une desdites colonnes, avec décalage dans le temps T/n d'une colonne à la suivante, T étant la période du cycle :
- a) une étape de production d'oxygène de durée x par soutirage de gaz selon une direction dite à co-courant, d'une colonne d'adsorbant du type zéolithe, à pression haute comprenant une pression maximale de cycle PM, avec admission d'air au moins partiellement au cours de cette étape ;
- b) une étape de pompage de durée y à contre-courant, sous pression sous-atmosphérique, opérant une dépressurisation, pompage qui se poursuit, le cas échéant, pendant une purge par passage à contre-courant de gaz enrichi en oxygène, la pression minimale de cycle atteinte au cours de ladite étape de pompage étant Pm ;
- c) une étape de repressurisation incorporant au plus tard avant l'étape de pompage, au moins une phase de repressurisation à contre-courant avec du gaz enrichi en oxygène.
Voit à cet égard le document EP-A-0 248 720 qui enseigne un tel procédé comportant au moins quatre adsorbeurs.
Cette façon de faire, destinée à la production industrielle de l'oxygène par fractionnement de l'air sur zéolithes, par exemple de type 5A ou 13X, fournit de l'air enrichi en oxygène, jusqu'à des teneurs en oxygène de 95%, les 5% résiduels étant essentiellement constitués d'argon.
Dans un grand nombre d'applications, une qualité de production à 90/93% de teneur en oxygène est suffisante. Dans cette même gamme de teneurs, les quantités d'oxygène exigées par l'application peuvent aller de quelques tonnes/jour à quelques centaines de tonnes/jour.
Le procédé rappelé plus haut s'est développé dans lagamme 10 à 50 T/jour d'oxygène, où il s'est révélé très compétitif en coût de revient par rapport à l'oxygène obtenu par voie cryogénique et livré sous forme liquide, ou par canalisation.
Les différents types de cycles proposés pour la production d'oxygène comprennent généralement de deux à quatre adsorbeurs avec un seul adsorbeur en production, tandis que l'autre (ou les autres) sont soit en régénération, soit en phase intermédiaire (recyclage, repressurisation.....).
Les cycles ayant une durée généralement comprise entre 90 secondes et quelques minutes, le volume des adsorbeurs pour un cycle donné, d'une durée déterminée, et avec un même type d'adsorbant, croît proportionnellement au débit à produire. Le respect des règles de vitesse de passage du gaz dans certaines phases impose une section minimale à la traversée du gaz, ce qui, pour des grandes tailles, devient directement ou indirectement le facteur limitant. Pour les adsorbeurs à géométrie cylindrique verticale et circulation verticale de gaz, c'est le diamètre des adsorbeurs qui devient excessif au-delà d'une certaine taille d'appareil (limitation du diamètre des fonds et viroles, problèmes de transport, etc...).
Pour les adsorbeurs à géométrie cylindrique horizontale et circulation verticale de gaz, qui permettent de passer des débits plus grands que dans le cas précédent, à égalité de diamètre, le passage aux grands débits soulève les problèmes de distribution du gaz dans les collecteurs internes de part et d'autre de l'adsorbant, ainsi que l'augmentation importante des volumes morts dans ces collecteurs. On peut ainsi estimer à environ 60 T/jour la limitation d'une telle unité.
Dans le cas où l'application exige des quantités en air suroxygéné ou en oxygène plus importantes, par exemple 300 T/jour, la solution actuelle est, soit d'installer plusieurs unités en parallèle (parexemple 3 unités de 50 T/jour chacune pour une demande de 150 T/jour), soit de passer à la solution par voie cryogénique.
Le but de la présente invention est de repousser les limites actuelles en tonnage d'oxygène produit par unité de production. Plus précisément, l'objectif est de produire, sur une seule unité, une quantité d'oxygène qui pourrait être très supérieure à 60 T/jour, ce qui dans le coût de production diminuera la part de frais fixes (génie civil, engineering, montage, démarrage). Un autre objectif de l'invention est d'accroître la productivité de façon à réduire encore le coût de production par rapport à la mise en oeuvre de plusieurs unités de production, l'augmentation de productivité se traduisant par une diminution de l'investissement (matériel, adsorbant....). Encore un autre objectif de l'invention est de réduire la consommation d'énergie ce qui réduira encore le coût de production de l'oxygène.
Ces objectifs de l'invention sont atteints par la prise en compte des mesures opératoires suivantes prises en combinaison globale : - d) le nombre d'adsorbeurs est d'au moins trois ;
- e) la vitesse maximale du gaz traversant une colonne d'adsorption est inférieure à la vitesse d'attrition de l'adsorbant à un moment quelconque du cycle, et tend vers ladite limite au cours d'au moins une des étapes du cycle;
- f) la durée de pompage y sous pression sous-atmosphérique pendant l'étape b) est supérieure au déphasage T/n, et au moins égale à la durée x de l'étape de production ;
- g) la phase de pompage de la colonne d'adsorbant s'effectue en mettant en oeuvre sur ladite colonne d'adsorption successivement au moins deux systèmes de pompage opérant l'un à partir du début de pompage, un autre adapté à opérer jusqu'à la fin du pompage.
- a) a step of producing oxygen of duration x by drawing off gas in a direction known as co-current, from a column of adsorbent of the zeolite type, at high pressure comprising a maximum pressure of the PM cycle, with admission d air at least partially during this step;
- b) a pumping step of duration y against the current, under atmospheric pressure, operating a depressurization, pumping which continues, if necessary, during a purge by passage against the current of oxygen-enriched gas, the pressure minimum cycle reached during said pumping step being Pm;
- c) a repressurization step incorporating at least before the pumping step, at least one repressurization phase against the current with oxygen-enriched gas.
See in this respect the document EP-A-0 248 720 which teaches such a process comprising at least four adsorbers.
This procedure, intended for the industrial production of oxygen by fractionating air on zeolites, for example of the 5A or 13X type, provides air enriched with oxygen, up to oxygen contents of 95%. , the remaining 5% essentially being made up of argon.
In a large number of applications, a production quality with 90/93% oxygen content is sufficient. In this same range of contents, the quantities of oxygen required by the application can range from a few tonnes / day to a few hundred tonnes / day.
The process mentioned above has developed in the 10 to 50 T / day oxygen range, where it has proven to be very competitive in cost compared to oxygen. obtained cryogenically and delivered in liquid form, or by pipeline.
The different types of cycles proposed for the production of oxygen generally include two to four adsorbers with a single adsorber in production, while the other (or the others) are either in regeneration, or in the intermediate phase (recycling, repressurization. ....).
As the cycles generally have a duration of between 90 seconds and a few minutes, the volume of the adsorbers for a given cycle, of a determined duration, and with the same type of adsorbent, increases in proportion to the flow rate to be produced. Compliance with the gas passage speed rules in certain phases imposes a minimum section on the gas passage, which, for large sizes, becomes directly or indirectly the limiting factor. For the adsorbers with vertical cylindrical geometry and vertical gas circulation, it is the diameter of the adsorbers which becomes excessive beyond a certain size of device (limitation of the diameter of the bottoms and ferrules, transport problems, etc.) .).
For adsorbers with horizontal cylindrical geometry and vertical gas circulation, which allow higher flow rates than in the previous case, with equal diameter, switching to high flow rates raises the problems of gas distribution in the internal manifolds. and other of the adsorbent, as well as the significant increase in dead volumes in these collectors. We can thus estimate at around 60 T / day the limitation of such a unit.
In the case where the application requires larger quantities of superoxygenated air or oxygen, for example 300 T / day, the current solution is either to install several units in parallel (for example 3 units of 50 T / day each for a request of 150 T / day), or to switch to the solution cryogenically.
The aim of the present invention is to push the current limits in tonnage of oxygen produced per production unit. More specifically, the objective is to produce, on a single unit, an amount of oxygen that could be much more than 60 T / day, which in the production cost will reduce the share of fixed costs (civil engineering, engineering, mounting, starting). Another objective of the invention is to increase productivity so as to further reduce the production cost compared to the implementation of several production units, the increase in productivity resulting in a decrease in investment ( material, adsorbent ....). Yet another objective of the invention is to reduce energy consumption which will further reduce the cost of producing oxygen.
These objectives of the invention are achieved by taking into account the following operating measures taken in overall combination: - d) the number of adsorbers is at least three;
- e) the maximum speed of the gas passing through an adsorption column is lower than the attrition speed of the adsorbent at any time in the cycle, and tends towards said limit during at least one of the stages of the cycle;
- f) the duration of pumping y under sub-atmospheric pressure during step b) is greater than the phase shift T / n, and at least equal to the duration x of the production step;
- g) the pumping phase of the adsorbent column is carried out by implementing on said adsorption column successively at least two pumping systems, one operating from the start of pumping, another adapted to operate until at the end of pumping.
Par vitesse d'attrition on entend une vitesse de gaz, dans une colonne d'adsorption au-delà de laquelle les particules d'adsorbant sont mises en mouvement. Par système de pompage on entend soit une pompe et son moteur qui lui est propre, soit un étage ou corps de pompe et dans ce cas, plusieurs systèmes de pompage peuvent être reliés à un moteur unique.By attrition speed is meant a gas speed, in an adsorption column beyond which the adsorbent particles are set in motion. By pumping system means either a pump and its own motor, or a stage or pump body and in this case, several pumping systems can be connected to a single motor.
L'invention est plus particulièrement mise en oeuvre selon les directives suivantes :
- on assure h) une dépressurisation entre l'étape de production et l'étape de pompage, de façon à fourni r du gaz de purge pour l'étape de purge éventuelle selon b) d'un autre adsorbeur ;
- on assure i) une dépressurisation à co-courant, entre l'étape de production et l'étape de pompage, de façon à fournir du gaz de repressurisation partielle pour l'étape c) de repressurisation ;
- on assure d'abord la dépressurisation selon i) puis la dépressurisation selon h) ;
- le gaz enrichi en oxygène de l'étape b) et/ou de l'étape c) est de l'oxygène de production ;
- le gaz de dépressurisation à co-courant est au moins partiellement introduit dans un stockage d'attente, duquel est prélevé au moins une partie du gaz de purge ;
- la phase de repressurisation à contre-courant selon c) s'effectue avec du gaz de production ;
- le gaz de production est stocké dans un réservoir tampon duquel est prélevé au moins une partie du gaz de repressurisation à contre-courant selon c) ;
- l'étape de production s'effectue au moins en partie à pression maximale ;
- l'étape de production s'effectue au moins en partie à pression croissante ;
- l'étape de production s'effectue au moins en partie à pression décroissante ;
- l'étape de repressurisation c) incorpore au moins une phase de repressurisation à co-courant avec de l'air ;
- la pression maximale de cycle PM est comprise entre 1.10⁵
et 1,6.10⁵ Pascal, tandis que la pression minimale de cycle est comprise entre 0,2.10⁵ et 0,5.10⁵ Pascal ; - la durée de pompage selon b) est égale à un multiple entier de T/n ;
- le nombre d'adsorbeurs "n" est de quatre ;
- l'étape de pompage s'effectue avec deux systèmes de pompage sur une durée double de celle de l'étape de production qui est de T/n ;
- le nombre d'adsorbeurs est de cinq, l'étape de pompage est de durée égale à celle de l'étape de production qui est de 2T/5, le nombre d'adsorbeurs en production simultanée étant de deux à tout instant du cycle ;
- le nombre d'adsorbeurs est de six ou sept, le nombre de systèmes de pompage est de trois opérant pendant une durée de 3T/n, tandis que deux adsorbeurs sont en production simultanée pendant une durée de 2T/n et cela pendant tout le cycle.
- h) is depressurized between the production step and the pumping step, so as to supply r purge gas for the optional purge step according to b) of another adsorber;
- there is provided i) a co-current depressurization, between the production step and the pumping step, so as to provide partial repressurization gas for step c) of repressurization;
- first, depressurization is provided according to i) then depressurization according to h);
- the oxygen-enriched gas from step b) and / or from step c) is production oxygen;
- the co-current depressurization gas is at least partially introduced into a holding storage, from which at least part of the purge gas is taken;
- the counter-current repressurization phase according to c) is carried out with production gas;
- the production gas is stored in a buffer tank from which at least part of the counter-current repressurization gas according to c) is taken;
- the production stage is carried out at least in part at maximum pressure;
- the production stage is carried out at least in part at increasing pressure;
- the production stage is carried out at least in part at decreasing pressure;
- the repressurization step c) incorporates at least one co-current repressurization phase with air;
- the maximum cycle pressure PM is between 1.10⁵ and 1.6.10⁵ Pascal, while the pressure minimum cycle is between 0.2.10⁵ and 0.5.10⁵ Pascal;
- the pumping time according to b) is equal to an integer multiple of T / n;
- the number of adsorbers "n" is four;
- the pumping stage is carried out with two pumping systems over a duration double that of the production stage which is T / n;
- the number of adsorbers is five, the pumping step is of duration equal to that of the production step which is 2T / 5, the number of adsorbers in simultaneous production being two at any time of the cycle;
- the number of adsorbers is six or seven, the number of pumping systems is three operating for a duration of 3T / n, while two adsorbers are in simultaneous production for a duration of 2T / n and this throughout the cycle .
C'est en comparant le cycle de l'invention avec un cycle connu qui lui est apparenté (mêmes étapes avec des adsorbeurs remplis du même adsorbant, mais de nombre inférieur), que l'on a constaté des accroissements de "production" (tonnes/jour) d'au moins 50% et jusqu'à 300% et des accroissements de productivité (Nm³/h/m³ adsorbant) d'au moins 10% et plus généralement de 12% à 20% selon les diverses mesures optionnelles rappelées ci-dessus.It is by comparing the cycle of the invention with a known cycle which is related to it (same steps with adsorbers filled with the same adsorbent, but of smaller number), that increases in "production" (tonnes / day) of at least 50% and up to 300% and increases in productivity (Nm³ / h / m³ adsorbent) of at least 10% and more generally from 12% to 20% according to the various optional measures mentioned above -above.
C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, tout en gardant un temps de cycle sensiblement voisin, que l'on peut augmenter la production par unité.It is by increasing the number of adsorbers compared to the known cycle which is related to it, while keeping a cycle time substantially similar, that one can increase the production per unit.
C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, que l'on peut mieux optimiser les temps de phases ou d'étapes, tout en respectant leurs limites propres, ce qui conduit à un cycle plus performant, et notamment plus productif.It is by increasing the number of adsorbers compared to the known cycle which is related to it, that we can better optimize the phase or step times, while respecting their own limits, which leads to a more efficient, and in particular more productive.
C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, en multipliant le nombre d'adsorbeurs simultanément en pompage, que l'on peut utiliser plusieurs systèmes de pompage, chacun d'eux étant adapté au domaine spécifique de pressions pour lequel il est utilisé.It is by increasing the number of adsorbers compared to the known cycle which is related to it, by multiplying the number of adsorbers simultaneously in pumping, that several pumping systems can be used, each of them being adapted to the specific pressure range for which it is used.
L'invention est maintenant illustrée en référence aux dessins annexés dans lesquels les figures 1 à 13 représentent les diagrammes pression (ordonnée)-temps (abscisse) de treize variantes de mise en oeuvre, la pression variant entre une pression maximale de cycle PM (entre 1.10⁵ et 1,6.10⁵ Pascal) et une pression minimale Pm de cycle (entre 0,2.10⁵ et 0,5.10⁵ Pascal).The invention is now illustrated with reference to the accompanying drawings in which FIGS. 1 to 13 represent the pressure (ordered) -time diagrams (abscissa) of thirteen implementation variants, the pressure varying between a maximum pressure of the cycle PM (between 1.10⁵ and 1.6.10⁵ Pascal) and a minimum pressure Pm of the cycle (between 0.2.10⁵ and 0.5.10⁵ Pascal).
Dans toutes les variantes des figures 1 à 10 et 12 à 13, le diagramme pression-temps (t) s'établit au temps 0 par le début de la phase de production d'oxygène (passage d'air dans la colonne d'adsorption selon le sens de circulation dit à co-courant représenté conventionnellement par une flèche selon la direction de l'ordonnée orientée dans le sens des ordonnées croissantes), alors qu'une circulation, à contre-courant, qui est inverse de celle de l'étape de production, c'est-à-dire de la "sortie" de l'oxygène produit vers l'"entrée" de l'air à fractionner, est représentée par une flèche selon la direction de l'ordonnée orientée vers les ordonnées décroissantes.In all the variants of FIGS. 1 to 10 and 12 to 13, the pressure-time diagram (t) is established at time 0 by the start of the oxygen production phase (passage of air in the adsorption column according to the direction of circulation known as co-current conventionally represented by an arrow in the direction of the ordinate oriented in the direction of increasing ordinates), while a circulation, against the current, which is opposite to that of the production stage, that is to say from the "outlet" of the oxygen produced towards the "inlet" of the air to be fractionated, is represented by an arrow in the direction of the ordinate oriented towards the ordinates decreasing.
Ces différentes flèches sont raccordées soit à l'extrémité libre, vers les ordonnées croissantes pour indiquer un débit de production d'oxygène, ou d'air enrichi en oxygène soit orientées vers les ordonnées décroissantes pour indiquer un pompage sous pression sous-atmosphérique.These different arrows are connected either at the free end, towards the increasing ordinates to indicate a rate of production of oxygen, or of air enriched in oxygen, or oriented towards the decreasing ordinates to indicate a pumping under sub-atmospheric pressure.
Les durées des différentes étapes sont notées dans des cercles et la durée du cycle T est le temps le plus élevé indiqué en abscisse.The durations of the different stages are noted in circles and the duration of the cycle T is the highest time indicated on the abscissa.
Ceci étant explicité, on détaille maintenant les différents cycles illustrant l'invention, qui comportent certaines phases ou étapes parmi lesquelles, une étape de production, une phase de première dépressurisation, une phase de seconde dépressurisation, une étape de pompage comportant éventuellement une phase de purge et une étape de repressurisation. L'étape de pompage s'effectue par la mise en oeuvre d'une pluralité de systèmes de pompage pompe 1, pompe 2, etc....This being explained, we now detail the different cycles illustrating the invention, which include certain phases or stages among which, a production stage, a phase of first depressurization, a second depressurization phase, a pumping step possibly comprising a purge phase and a repressurization step. The pumping step is carried out by implementing a plurality of
Les temps indiqués dans les descriptions suivantes sont donnés à titre d'exemple, et sont sensiblement adaptés à l'utilisation d'adsorbant de granulométrie moyenne (billes de diamètre moyen d'environ 2 mm ou bâtonnets cylindriques de diamètre 1,6 mm).The times indicated in the following descriptions are given by way of example, and are appreciably suitable for the use of adsorbent of medium particle size (balls with an average diameter of approximately 2 mm or cylindrical rods with a diameter of 1.6 mm).
On note qu'il existe un réservoir tampon R sur le gaz de production pour régulariser le débit de production utile et compléter au mieux la repressurisation finale.
It is noted that there is a buffer tank R on the production gas to regulate the useful production flow rate and best complete the final repressurization.
On note qu'il existe un réservoir d'attente S pour une repressurisation plus brève que l'étape de production, de façon à égaliser le débit de production utile.It is noted that there is a holding tank S for a shorter repressurization than the production stage, so as to equalize the useful production flow.
On note l'existence d'un réservoir de stockage S' qui permet de différer l'utilisation en purge du gaz de première dépressurisation, lorsque cette première dépressurisation ne coïncide pas dans le temps avec ladite purge d'un autre adsorbeur.Note the existence of a storage tank S ′ which makes it possible to defer the use in purging of the gas of first depressurization, when this first depressurization does not coincide in time with said purging of another adsorber.
On note que la première dépressurisation sert au début de repressurisation d'un autre adsorbeur tandis que le gaz de purge est un débit prélevé, pendant la moitié de l'étape de production, sur l'oxygène produit. On a représenté en tirets une variante de première repressurisation selon laquelle outre le gaz provenant de l'adsorbeur en première dépressurisation, on adjoint du gaz de production.It is noted that the first depressurization is used at the start of repressurization of another adsorber while the purge gas is a flow rate taken, during half of the production step, on the oxygen produced. A variant of the first repressurization has been shown in dashes according to which, in addition to the gas coming from the adsorber in the first depressurization, production gas is added.
Claims (18)
- Process for the production of a gas having up to 95 % oxygen content notably at a flow rate greater than 60 T/day by means of absorbing the nitrogen in the air such that, on a plurality "n" of adsorbent columns, the following stages are ensured successively and cyclically for a period T on each of the said columns with a time lag of T/n, from one column to the next :a) a stage for the production of oxygen of duration x by withdrawing gas in a so-called co-current direction, from an adsorbent column of the zeolite type, at high pressure comprising a maximum cycle pressure PM, with at least partial admission of air during this stage ;b) a counter-current pumping stage of duration y, under sub-atmospheric pressure, bringing about depressurization, pumping being carried out, as appropriate, during a purge by passing gas enriched in oxygen in a counter-current direction, the minimum cycle pressure attained during the said pumping stage being Pm ;c) a repressurization stage incorporating before the pumping stage at the latest, at least one counter-current repressurization phase with gas enriched in oxygen ; characterized by a combination of the following measures :d) the number of adsorbers is at least three ;e) the maximum velocity of the gas passing through an adsorption column is less than the attrition rate of the adsorbent at any moment whatsoever in the cycle, and tends towards the said limit during at least one of the stages of the cycle :f) the duration of pumping y under sub-atmospheric pressure during stage b) is greater than the time lag T/n, and at least equal to the duration x of the production stage ;g) the pumping stage of the adsorbent column is carried out by successively putting into operation at least two pumping systems on the said column, one operating from the start of pumping and the other adapted to operate until the end of pumping.
- Process for the production of oxygen according to Claim 1, characterized in that counter-current depressurization h) is ensured between the production stage and the pumping stage, so as to provide a purge gas for the possible purging according to b) of another adsorber.
- Process for the production of oxygen according to Claim 1, characterized in that a counter-current depressurization i) is ensured between the production stage and the pumping stage, so as to provide partially repressurized gas for the repressurization stage c).
- Process for the production of oxygen according to Claims 2 and 3, characterized in that depressurization is first of all ensured according to i) followed by depressurization according to h).
- Process for the production of oxygen according to any one of Claims 1 to 4, characterized in that the gas enriched in oxygen of stage b) and/or of stage c) is production oxygen.
- Process for the production of oxygen according to Claim 2, characterized in that the counter-current depressurization gas is at least partially introduced into a holding store, from which at least part of the purge gas is taken.
- Process for the production of oxygen according to any one of Claims 1 to 6, characterized in that the counter-current repressurization phase of the repressurization stage c) is carried out with production gas.
- Process for the production of oxygen according to Claim 7, characterized in that a buffer stock of production gas is provided from which at least part of the counter-current repressurization gas according to c) is taken.
- Process for the production of oxygen according to any one of Claims 1 to 8, characterized in that the production stage is carried out at least partly at maximum pressure.
- Process for the production of oxygen according to any one of Claims 1 to 9, characterized in that the production stage is carried out at least partly at increasing pressure.
- Process for the production of oxygen according to any one of Claims 1 to 10, characterized in that the production stage is carried out at least partly at decreasing pressure.
- Process for the production of oxygen according to any one of Claims 1 to 11, characterized in that the repressurization stage c) incorporates at least one counter-current repressurization phase with air.
- Process for the production of oxygen according to any one of Claims 1 to 12, characterized in that the maximum cycle pressure PM lies between 1×10⁵ and 1.6×10⁵ Pascal, whilst the minimum cycle pressure lies between 0.2 × 10⁵ and 0.5 × 10⁵ Pascal.
- Process for the production of oxygen according to any one of Claims 1 to 13, characterized in that the duration of pumping according to b) is equal to a whole multiple of T/n.
- Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number "n" of adsorbers is four.
- Process for the production of oxygen according to Claim 15, characterized in that the pumping stage is carried out with two pumping systems over a period double that of the production stage which is T/n.
- Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number of adsorbers is five and in that the pumping stage lasts for a period equal to that of the production stage which is 2T/5, the number of adsorbers in simultaneous production being two at any instant of the cycle.
- Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number of adsorbers is six or seven and in that the number of pumping systems is three operating for a period of 3T/n, whilst two adsorbers are at any instant in simultaneous production over a period of 2T/n.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9102009 | 1991-02-20 | ||
FR9102009A FR2672818B1 (en) | 1991-02-20 | 1991-02-20 | PROCESS FOR THE PRODUCTION OF OXYGEN BY ADSORPTION. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0500416A1 EP0500416A1 (en) | 1992-08-26 |
EP0500416B1 true EP0500416B1 (en) | 1995-04-12 |
Family
ID=9409909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92400347A Expired - Lifetime EP0500416B1 (en) | 1991-02-20 | 1992-02-11 | Method for producing oxygen by adsorption |
Country Status (9)
Country | Link |
---|---|
US (1) | US5246676A (en) |
EP (1) | EP0500416B1 (en) |
JP (1) | JPH05193904A (en) |
AU (1) | AU654321B2 (en) |
BR (1) | BR9200546A (en) |
CA (1) | CA2061434A1 (en) |
DE (1) | DE69201984T2 (en) |
FR (1) | FR2672818B1 (en) |
ZA (1) | ZA921170B (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2682612B1 (en) * | 1991-10-17 | 1993-12-03 | Air Liquide | PROCESS FOR PRODUCING A GAS WITH A SUBSTANTIAL OXYGEN CONTENT. |
FR2718056B1 (en) * | 1994-03-30 | 1996-05-03 | Air Liquide | Method for producing a gas by adsorption. |
US5487775A (en) * | 1994-05-09 | 1996-01-30 | The Boc Group, Inc. | Continuous pressure difference driven adsorption process |
US5411578A (en) * | 1994-05-10 | 1995-05-02 | Air Products And Chemicals, Inc. | Vacuum swing adsorption process with mixed repressurization and provide product depressurization |
FR2734171B1 (en) * | 1995-05-18 | 1997-12-26 | Air Liquide | PROCESS FOR THE PRODUCTION OF PRESSURIZED OXYGEN BY ADSORPTION |
US5656065A (en) * | 1995-10-04 | 1997-08-12 | Air Products And Chemicals, Inc. | Multibed pressure swing adsorption apparatus and method for the operation thereof |
US5656067A (en) * | 1996-02-23 | 1997-08-12 | Air Products And Chemicals, Inc. | VSA adsorption process with energy recovery |
USRE38493E1 (en) | 1996-04-24 | 2004-04-13 | Questair Technologies Inc. | Flow regulated pressure swing adsorption system |
FR2750888B1 (en) * | 1996-07-11 | 1998-09-25 | Air Liquide | PROCESS FOR TREATING A GASEOUS MIXTURE BY ADSORPTION |
FR2751244B1 (en) * | 1996-07-18 | 1998-09-04 | Air Liquide | METHOD AND PLANT FOR TREATING A GAS MIXTURE BY PRESSURE VARIATION ADSORPTION |
FR2755875B1 (en) * | 1996-11-15 | 1999-01-29 | Air Liquide | PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE |
FR2761616B1 (en) * | 1997-04-02 | 1999-05-07 | Air Liquide | METHOD AND PLANT FOR SEPARATING A GAS MIXTURE BY ADSORPTION |
US7094275B2 (en) * | 1997-12-01 | 2006-08-22 | Questair Technologies, Inc. | Modular pressure swing adsorption apparatus |
JP4708562B2 (en) * | 1997-12-01 | 2011-06-22 | ウエストエアー・テクノロジーズ・インコーポレイテッド | Module pressure swing absorber |
US6051050A (en) * | 1997-12-22 | 2000-04-18 | Questor Industries Inc. | Modular pressure swing adsorption with energy recovery |
US5997612A (en) * | 1998-07-24 | 1999-12-07 | The Boc Group, Inc. | Pressure swing adsorption process and apparatus |
US6921597B2 (en) | 1998-09-14 | 2005-07-26 | Questair Technologies Inc. | Electrical current generation system |
WO2000076628A1 (en) | 1999-06-09 | 2000-12-21 | Questair Technologies Inc. | Rotary pressure swing adsorption apparatus |
CA2274388A1 (en) * | 1999-06-10 | 2000-12-10 | Bowie Keefer | Surge adsorber flow regulation for modular pressure swing adsorption |
JP5188663B2 (en) | 1999-06-10 | 2013-04-24 | エア プロダクツ アンド ケミカルズ インコーポレイテッド | Pressure swing adsorption chemical reactor |
CA2274312A1 (en) * | 1999-06-10 | 2000-12-10 | Kevin A. Kaupert | Modular pressure swing adsorption apparatus with clearance-type valve seals |
US6514319B2 (en) * | 1999-12-09 | 2003-02-04 | Questair Technologies Inc. | Life support oxygen concentrator |
US7250073B2 (en) * | 1999-12-09 | 2007-07-31 | Questair Technologies, Inc. | Life support oxygen concentrator |
CA2306311C (en) | 2000-04-20 | 2007-04-10 | Quest Air Gases Inc. | Absorbent laminate structures |
CA2320551C (en) | 2000-09-25 | 2005-12-13 | Questair Technologies Inc. | Compact pressure swing adsorption apparatus |
JP2004512650A (en) | 2000-10-27 | 2004-04-22 | クエストエアー テクノロジーズ インコーポレイテッド | System and method for supplying hydrogen to a fuel cell |
CA2325072A1 (en) * | 2000-10-30 | 2002-04-30 | Questair Technologies Inc. | Gas separation for molten carbonate fuel cell |
US7097925B2 (en) | 2000-10-30 | 2006-08-29 | Questair Technologies Inc. | High temperature fuel cell power plant |
WO2002045821A2 (en) * | 2000-12-08 | 2002-06-13 | Questair Technologies Inc. | Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source |
CA2329475A1 (en) | 2000-12-11 | 2002-06-11 | Andrea Gibbs | Fast cycle psa with adsorbents sensitive to atmospheric humidity |
ATE373323T1 (en) | 2002-03-14 | 2007-09-15 | Questair Technologies Inc | HYDROGEN RECYCLING FOR SOLID OXIDE FUEL CELLS |
CA2477262A1 (en) | 2002-03-14 | 2003-09-18 | Questair Technologies Inc. | Gas separation by combined pressure swing and displacement purge |
JP2004066125A (en) * | 2002-08-07 | 2004-03-04 | Sumitomo Seika Chem Co Ltd | Method of separating target gas |
US7285350B2 (en) | 2002-09-27 | 2007-10-23 | Questair Technologies Inc. | Enhanced solid oxide fuel cell systems |
WO2004087300A1 (en) * | 2003-02-18 | 2004-10-14 | Jej Co., Ltd. | Gas concentration method and its apparatus |
US7443803B2 (en) * | 2004-03-23 | 2008-10-28 | Fujitsu Limited | Estimating and managing network traffic |
US7189280B2 (en) | 2004-06-29 | 2007-03-13 | Questair Technologies Inc. | Adsorptive separation of gas streams |
WO2006052937A2 (en) | 2004-11-05 | 2006-05-18 | Questair Technologies, Inc. | Separation of carbon dioxide from other gases |
US20070289445A1 (en) * | 2006-06-15 | 2007-12-20 | Mei Hua | Compact and efficient pressure swing oxygen concentrator |
US7763100B2 (en) | 2006-07-06 | 2010-07-27 | Praxair Technology, Inc. | Vacuum pressure swing adsorption process and enhanced oxygen recovery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191002A (en) * | 1984-03-07 | 1985-09-28 | Osaka Oxgen Ind Ltd | Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method |
FR2599274B1 (en) * | 1986-06-02 | 1988-08-26 | Air Liquide | PROCESS AND PLANT FOR SEPARATING A GAS MIXTURE BY ADSORPTION. |
FR2633847B1 (en) * | 1988-07-08 | 1991-04-19 | Air Liquide | PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION |
JPH0441715U (en) * | 1990-08-01 | 1992-04-09 |
-
1991
- 1991-02-20 FR FR9102009A patent/FR2672818B1/en not_active Expired - Fee Related
-
1992
- 1992-02-11 US US07/834,690 patent/US5246676A/en not_active Expired - Fee Related
- 1992-02-11 EP EP92400347A patent/EP0500416B1/en not_active Expired - Lifetime
- 1992-02-11 DE DE69201984T patent/DE69201984T2/en not_active Expired - Fee Related
- 1992-02-14 AU AU10961/92A patent/AU654321B2/en not_active Expired - Fee Related
- 1992-02-17 JP JP4029240A patent/JPH05193904A/en active Pending
- 1992-02-18 CA CA002061434A patent/CA2061434A1/en not_active Abandoned
- 1992-02-18 ZA ZA921170A patent/ZA921170B/en unknown
- 1992-02-19 BR BR929200546A patent/BR9200546A/en active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
AU654321B2 (en) | 1994-11-03 |
CA2061434A1 (en) | 1992-08-21 |
DE69201984D1 (en) | 1995-05-18 |
DE69201984T2 (en) | 1995-08-24 |
US5246676A (en) | 1993-09-21 |
FR2672818B1 (en) | 1993-04-23 |
AU1096192A (en) | 1992-08-27 |
FR2672818A1 (en) | 1992-08-21 |
ZA921170B (en) | 1992-11-25 |
EP0500416A1 (en) | 1992-08-26 |
JPH05193904A (en) | 1993-08-03 |
BR9200546A (en) | 1992-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0500416B1 (en) | Method for producing oxygen by adsorption | |
FR2775198A1 (en) | METHOD AND DEVICE FOR GAS PURIFICATION BY ADSORPTION WITH FIXED HORIZONTAL BEDS | |
FR2938451B1 (en) | SERIAL MONOLIT RADIAL ADSORBERS | |
EP1095690B1 (en) | Process for purifying a gas and corresponding apparatus | |
BE898205A (en) | METHOD AND INSTALLATION FOR SEPARATION BY ABSORPTION OF A COMPOSITE GAS. | |
FR2911077A1 (en) | PURIFICATION OR SEPARATION PROCESS USING SEVERAL PHASE DECAL ADSORBERS | |
EP2340102A1 (en) | Construction method for large radial adsorbers | |
CA2017271A1 (en) | Method and plant for producing high pressure gazeous oxygen | |
FR2534827A1 (en) | METHOD FOR TREATING ADSORPTION GAS WITH MULTIPLE ADSORBERS IN A SIMULTANEOUS PRODUCTION PHASE | |
EP0689862A1 (en) | Process for treating a gas mixture by pressure swing adsorption | |
FR2766384A1 (en) | REGULATION OF A PSA PROCESS | |
FR3006909A1 (en) | PROCESS FOR PURIFYING A GAS MIXTURE AND GENERATOR THEREFOR | |
WO2020169901A1 (en) | System and method for separating low-pressure gases in the air | |
FR3093169A1 (en) | Installation and process for separating gases from air using a parallelepiped shaped adsorber | |
CA2871184C (en) | Psa process with an active step per phase time | |
EP0537831B1 (en) | Process for producing a gas with high oxygen content | |
FR2785554A1 (en) | PSA OR VSA UNIT AT A RATE AND PRODUCTION PRESSURE JOINTLY REGULATED | |
CA2980214A1 (en) | Method for producing oxygen by vpsa comprising four adsorbers | |
FR2755875A1 (en) | PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE | |
FR2790823A1 (en) | METHOD AND APPARATUS FOR CRYOGENIC AIR PURIFICATION AND SEPARATION WITHOUT PRE-COOLING | |
EP3274073A1 (en) | Method for producing oxygen by vpsa | |
FR2892322A1 (en) | Pressure swing adsorption for producing hydrogen enriched gaseous fraction from feedstock gas, comprises introducing the gas into an adsorber to adsorb the gas in a high pressure of cycle, and terminating the introduced gas in the adsorber | |
JP4900988B2 (en) | Nitrogen gas separation method | |
KR0145787B1 (en) | Process for preparing oxygen by changing pressure | |
FR2899890A1 (en) | Pressure swing adsorption process to produce hydrogen-rich gaseous fraction from feed gas containing hydrogen, comprises introducing feed gas through first adsorber at high pressure cycle to eliminate adsorbent in first adsorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR IT LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940727 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR IT LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950412 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19950412 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950412 |
|
REF | Corresponds to: |
Ref document number: 69201984 Country of ref document: DE Date of ref document: 19950518 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960117 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960229 |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19970212 |
|
EUG | Se: european patent has lapsed |
Ref document number: 92400347.8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990125 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020114 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |