EP0500416B1 - Method for producing oxygen by adsorption - Google Patents

Method for producing oxygen by adsorption Download PDF

Info

Publication number
EP0500416B1
EP0500416B1 EP92400347A EP92400347A EP0500416B1 EP 0500416 B1 EP0500416 B1 EP 0500416B1 EP 92400347 A EP92400347 A EP 92400347A EP 92400347 A EP92400347 A EP 92400347A EP 0500416 B1 EP0500416 B1 EP 0500416B1
Authority
EP
European Patent Office
Prior art keywords
production
stage
pumping
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92400347A
Other languages
German (de)
French (fr)
Other versions
EP0500416A1 (en
Inventor
Léon Hay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0500416A1 publication Critical patent/EP0500416A1/en
Application granted granted Critical
Publication of EP0500416B1 publication Critical patent/EP0500416B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40062Four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4062Further details for adsorption processes and devices using more than four beds using six beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel

Definitions

  • Attrition speed is meant a gas speed, in an adsorption column beyond which the adsorbent particles are set in motion.
  • pumping system means either a pump and its own motor, or a stage or pump body and in this case, several pumping systems can be connected to a single motor.
  • FIGS. 1 to 13 represent the pressure (ordered) -time diagrams (abscissa) of thirteen implementation variants, the pressure varying between a maximum pressure of the cycle PM (between 1.105 and 1.6.105 Pascal) and a minimum pressure Pm of the cycle (between 0.2.105 and 0.5.105 Pascal).
  • the durations of the different stages are noted in circles and the duration of the cycle T is the highest time indicated on the abscissa.
  • Cycle time T 135 sec. Number of adsorbers n 3 Adsorbers in production 1 part-time Production stage duration 20 sec. Duration of first depressurization 10 sec. Pumping time 80 sec. Pumping systems of them Repressurization time - air + enriched air 10 sec. - air alone 15 sec.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

La présente invention concerne la production d'oxygène par adsorption d'azote de l'air, du genre où, sur une pluralité n de colonnes d'adsorbant, on assure successivement, cycliquement, sur une desdites colonnes, avec décalage dans le temps T/n d'une colonne à la suivante, T étant la période du cycle :

  • a) une étape de production d'oxygène de durée x par soutirage de gaz selon une direction dite à co-courant, d'une colonne d'adsorbant du type zéolithe, à pression haute comprenant une pression maximale de cycle PM, avec admission d'air au moins partiellement au cours de cette étape ;
  • b) une étape de pompage de durée y à contre-courant, sous pression sous-atmosphérique, opérant une dépressurisation, pompage qui se poursuit, le cas échéant, pendant une purge par passage à contre-courant de gaz enrichi en oxygène, la pression minimale de cycle atteinte au cours de ladite étape de pompage étant Pm ;
  • c) une étape de repressurisation incorporant au plus tard avant l'étape de pompage, au moins une phase de repressurisation à contre-courant avec du gaz enrichi en oxygène.
    Voit à cet égard le document EP-A-0 248 720 qui enseigne un tel procédé comportant au moins quatre adsorbeurs.
    Cette façon de faire, destinée à la production industrielle de l'oxygène par fractionnement de l'air sur zéolithes, par exemple de type 5A ou 13X, fournit de l'air enrichi en oxygène, jusqu'à des teneurs en oxygène de 95%, les 5% résiduels étant essentiellement constitués d'argon.
    Dans un grand nombre d'applications, une qualité de production à 90/93% de teneur en oxygène est suffisante. Dans cette même gamme de teneurs, les quantités d'oxygène exigées par l'application peuvent aller de quelques tonnes/jour à quelques centaines de tonnes/jour.
    Le procédé rappelé plus haut s'est développé dans la gamme 10 à 50 T/jour d'oxygène, où il s'est révélé très compétitif en coût de revient par rapport à l'oxygène obtenu par voie cryogénique et livré sous forme liquide, ou par canalisation.
    Les différents types de cycles proposés pour la production d'oxygène comprennent généralement de deux à quatre adsorbeurs avec un seul adsorbeur en production, tandis que l'autre (ou les autres) sont soit en régénération, soit en phase intermédiaire (recyclage, repressurisation.....).
    Les cycles ayant une durée généralement comprise entre 90 secondes et quelques minutes, le volume des adsorbeurs pour un cycle donné, d'une durée déterminée, et avec un même type d'adsorbant, croît proportionnellement au débit à produire. Le respect des règles de vitesse de passage du gaz dans certaines phases impose une section minimale à la traversée du gaz, ce qui, pour des grandes tailles, devient directement ou indirectement le facteur limitant. Pour les adsorbeurs à géométrie cylindrique verticale et circulation verticale de gaz, c'est le diamètre des adsorbeurs qui devient excessif au-delà d'une certaine taille d'appareil (limitation du diamètre des fonds et viroles, problèmes de transport, etc...).
    Pour les adsorbeurs à géométrie cylindrique horizontale et circulation verticale de gaz, qui permettent de passer des débits plus grands que dans le cas précédent, à égalité de diamètre, le passage aux grands débits soulève les problèmes de distribution du gaz dans les collecteurs internes de part et d'autre de l'adsorbant, ainsi que l'augmentation importante des volumes morts dans ces collecteurs. On peut ainsi estimer à environ 60 T/jour la limitation d'une telle unité.
    Dans le cas où l'application exige des quantités en air suroxygéné ou en oxygène plus importantes, par exemple 300 T/jour, la solution actuelle est, soit d'installer plusieurs unités en parallèle (par exemple 3 unités de 50 T/jour chacune pour une demande de 150 T/jour), soit de passer à la solution par voie cryogénique.
    Le but de la présente invention est de repousser les limites actuelles en tonnage d'oxygène produit par unité de production. Plus précisément, l'objectif est de produire, sur une seule unité, une quantité d'oxygène qui pourrait être très supérieure à 60 T/jour, ce qui dans le coût de production diminuera la part de frais fixes (génie civil, engineering, montage, démarrage). Un autre objectif de l'invention est d'accroître la productivité de façon à réduire encore le coût de production par rapport à la mise en oeuvre de plusieurs unités de production, l'augmentation de productivité se traduisant par une diminution de l'investissement (matériel, adsorbant....). Encore un autre objectif de l'invention est de réduire la consommation d'énergie ce qui réduira encore le coût de production de l'oxygène.
    Ces objectifs de l'invention sont atteints par la prise en compte des mesures opératoires suivantes prises en combinaison globale :
  • d) le nombre d'adsorbeurs est d'au moins trois ;
  • e) la vitesse maximale du gaz traversant une colonne d'adsorption est inférieure à la vitesse d'attrition de l'adsorbant à un moment quelconque du cycle, et tend vers ladite limite au cours d'au moins une des étapes du cycle;
  • f) la durée de pompage y sous pression sous-atmosphérique pendant l'étape b) est supérieure au déphasage T/n, et au moins égale à la durée x de l'étape de production ;
  • g) la phase de pompage de la colonne d'adsorbant s'effectue en mettant en oeuvre sur ladite colonne d'adsorption successivement au moins deux systèmes de pompage opérant l'un à partir du début de pompage, un autre adapté à opérer jusqu'à la fin du pompage.
The present invention relates to the production of oxygen by adsorption of nitrogen from the air, of the kind where, on a plurality n of adsorbent columns, one successively, cyclically, is provided on one of said columns, with time shift T / n from one column to the next, T being the cycle period:
  • a) a step of producing oxygen of duration x by drawing off gas in a direction known as co-current, from a column of adsorbent of the zeolite type, at high pressure comprising a maximum pressure of the PM cycle, with admission d air at least partially during this step;
  • b) a pumping step of duration y against the current, under atmospheric pressure, operating a depressurization, pumping which continues, if necessary, during a purge by passage against the current of oxygen-enriched gas, the pressure minimum cycle reached during said pumping step being Pm;
  • c) a repressurization step incorporating at least before the pumping step, at least one repressurization phase against the current with oxygen-enriched gas.
    See in this respect the document EP-A-0 248 720 which teaches such a process comprising at least four adsorbers.
    This procedure, intended for the industrial production of oxygen by fractionating air on zeolites, for example of the 5A or 13X type, provides air enriched with oxygen, up to oxygen contents of 95%. , the remaining 5% essentially being made up of argon.
    In a large number of applications, a production quality with 90/93% oxygen content is sufficient. In this same range of contents, the quantities of oxygen required by the application can range from a few tonnes / day to a few hundred tonnes / day.
    The process mentioned above has developed in the 10 to 50 T / day oxygen range, where it has proven to be very competitive in cost compared to oxygen. obtained cryogenically and delivered in liquid form, or by pipeline.
    The different types of cycles proposed for the production of oxygen generally include two to four adsorbers with a single adsorber in production, while the other (or the others) are either in regeneration, or in the intermediate phase (recycling, repressurization. ....).
    As the cycles generally have a duration of between 90 seconds and a few minutes, the volume of the adsorbers for a given cycle, of a determined duration, and with the same type of adsorbent, increases in proportion to the flow rate to be produced. Compliance with the gas passage speed rules in certain phases imposes a minimum section on the gas passage, which, for large sizes, becomes directly or indirectly the limiting factor. For the adsorbers with vertical cylindrical geometry and vertical gas circulation, it is the diameter of the adsorbers which becomes excessive beyond a certain size of device (limitation of the diameter of the bottoms and ferrules, transport problems, etc.) .).
    For adsorbers with horizontal cylindrical geometry and vertical gas circulation, which allow higher flow rates than in the previous case, with equal diameter, switching to high flow rates raises the problems of gas distribution in the internal manifolds. and other of the adsorbent, as well as the significant increase in dead volumes in these collectors. We can thus estimate at around 60 T / day the limitation of such a unit.
    In the case where the application requires larger quantities of superoxygenated air or oxygen, for example 300 T / day, the current solution is either to install several units in parallel (for example 3 units of 50 T / day each for a request of 150 T / day), or to switch to the solution cryogenically.
    The aim of the present invention is to push the current limits in tonnage of oxygen produced per production unit. More specifically, the objective is to produce, on a single unit, an amount of oxygen that could be much more than 60 T / day, which in the production cost will reduce the share of fixed costs (civil engineering, engineering, mounting, starting). Another objective of the invention is to increase productivity so as to further reduce the production cost compared to the implementation of several production units, the increase in productivity resulting in a decrease in investment ( material, adsorbent ....). Yet another objective of the invention is to reduce energy consumption which will further reduce the cost of producing oxygen.
    These objectives of the invention are achieved by taking into account the following operating measures taken in overall combination:
  • d) the number of adsorbers is at least three;
  • e) the maximum speed of the gas passing through an adsorption column is lower than the attrition speed of the adsorbent at any time in the cycle, and tends towards said limit during at least one of the stages of the cycle;
  • f) the duration of pumping y under sub-atmospheric pressure during step b) is greater than the phase shift T / n, and at least equal to the duration x of the production step;
  • g) the pumping phase of the adsorbent column is carried out by implementing on said adsorption column successively at least two pumping systems, one operating from the start of pumping, another adapted to operate until at the end of pumping.

Par vitesse d'attrition on entend une vitesse de gaz, dans une colonne d'adsorption au-delà de laquelle les particules d'adsorbant sont mises en mouvement. Par système de pompage on entend soit une pompe et son moteur qui lui est propre, soit un étage ou corps de pompe et dans ce cas, plusieurs systèmes de pompage peuvent être reliés à un moteur unique.By attrition speed is meant a gas speed, in an adsorption column beyond which the adsorbent particles are set in motion. By pumping system means either a pump and its own motor, or a stage or pump body and in this case, several pumping systems can be connected to a single motor.

L'invention est plus particulièrement mise en oeuvre selon les directives suivantes :

  • on assure h) une dépressurisation entre l'étape de production et l'étape de pompage, de façon à fourni r du gaz de purge pour l'étape de purge éventuelle selon b) d'un autre adsorbeur ;
  • on assure i) une dépressurisation à co-courant, entre l'étape de production et l'étape de pompage, de façon à fournir du gaz de repressurisation partielle pour l'étape c) de repressurisation ;
  • on assure d'abord la dépressurisation selon i) puis la dépressurisation selon h) ;
  • le gaz enrichi en oxygène de l'étape b) et/ou de l'étape c) est de l'oxygène de production ;
  • le gaz de dépressurisation à co-courant est au moins partiellement introduit dans un stockage d'attente, duquel est prélevé au moins une partie du gaz de purge ;
  • la phase de repressurisation à contre-courant selon c) s'effectue avec du gaz de production ;
  • le gaz de production est stocké dans un réservoir tampon duquel est prélevé au moins une partie du gaz de repressurisation à contre-courant selon c) ;
  • l'étape de production s'effectue au moins en partie à pression maximale ;
  • l'étape de production s'effectue au moins en partie à pression croissante ;
  • l'étape de production s'effectue au moins en partie à pression décroissante ;
  • l'étape de repressurisation c) incorpore au moins une phase de repressurisation à co-courant avec de l'air ;
  • la pression maximale de cycle PM est comprise entre 1.10⁵ et 1,6.10⁵ Pascal, tandis que la pression minimale de cycle est comprise entre 0,2.10⁵ et 0,5.10⁵ Pascal ;
  • la durée de pompage selon b) est égale à un multiple entier de T/n ;
  • le nombre d'adsorbeurs "n" est de quatre ;
  • l'étape de pompage s'effectue avec deux systèmes de pompage sur une durée double de celle de l'étape de production qui est de T/n ;
  • le nombre d'adsorbeurs est de cinq, l'étape de pompage est de durée égale à celle de l'étape de production qui est de 2T/5, le nombre d'adsorbeurs en production simultanée étant de deux à tout instant du cycle ;
  • le nombre d'adsorbeurs est de six ou sept, le nombre de systèmes de pompage est de trois opérant pendant une durée de 3T/n, tandis que deux adsorbeurs sont en production simultanée pendant une durée de 2T/n et cela pendant tout le cycle.
The invention is more particularly implemented according to the following directives:
  • h) is depressurized between the production step and the pumping step, so as to supply r purge gas for the optional purge step according to b) of another adsorber;
  • there is provided i) a co-current depressurization, between the production step and the pumping step, so as to provide partial repressurization gas for step c) of repressurization;
  • first, depressurization is provided according to i) then depressurization according to h);
  • the oxygen-enriched gas from step b) and / or from step c) is production oxygen;
  • the co-current depressurization gas is at least partially introduced into a holding storage, from which at least part of the purge gas is taken;
  • the counter-current repressurization phase according to c) is carried out with production gas;
  • the production gas is stored in a buffer tank from which at least part of the counter-current repressurization gas according to c) is taken;
  • the production stage is carried out at least in part at maximum pressure;
  • the production stage is carried out at least in part at increasing pressure;
  • the production stage is carried out at least in part at decreasing pressure;
  • the repressurization step c) incorporates at least one co-current repressurization phase with air;
  • the maximum cycle pressure PM is between 1.10⁵ and 1.6.10⁵ Pascal, while the pressure minimum cycle is between 0.2.10⁵ and 0.5.10⁵ Pascal;
  • the pumping time according to b) is equal to an integer multiple of T / n;
  • the number of adsorbers "n" is four;
  • the pumping stage is carried out with two pumping systems over a duration double that of the production stage which is T / n;
  • the number of adsorbers is five, the pumping step is of duration equal to that of the production step which is 2T / 5, the number of adsorbers in simultaneous production being two at any time of the cycle;
  • the number of adsorbers is six or seven, the number of pumping systems is three operating for a duration of 3T / n, while two adsorbers are in simultaneous production for a duration of 2T / n and this throughout the cycle .

C'est en comparant le cycle de l'invention avec un cycle connu qui lui est apparenté (mêmes étapes avec des adsorbeurs remplis du même adsorbant, mais de nombre inférieur), que l'on a constaté des accroissements de "production" (tonnes/jour) d'au moins 50% et jusqu'à 300% et des accroissements de productivité (Nm³/h/m³ adsorbant) d'au moins 10% et plus généralement de 12% à 20% selon les diverses mesures optionnelles rappelées ci-dessus.It is by comparing the cycle of the invention with a known cycle which is related to it (same steps with adsorbers filled with the same adsorbent, but of smaller number), that increases in "production" (tonnes / day) of at least 50% and up to 300% and increases in productivity (Nm³ / h / m³ adsorbent) of at least 10% and more generally from 12% to 20% according to the various optional measures mentioned above -above.

C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, tout en gardant un temps de cycle sensiblement voisin, que l'on peut augmenter la production par unité.It is by increasing the number of adsorbers compared to the known cycle which is related to it, while keeping a cycle time substantially similar, that one can increase the production per unit.

C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, que l'on peut mieux optimiser les temps de phases ou d'étapes, tout en respectant leurs limites propres, ce qui conduit à un cycle plus performant, et notamment plus productif.It is by increasing the number of adsorbers compared to the known cycle which is related to it, that we can better optimize the phase or step times, while respecting their own limits, which leads to a more efficient, and in particular more productive.

C'est en augmentant le nombre d'adsorbeurs par rapport au cycle connu qui lui est apparenté, en multipliant le nombre d'adsorbeurs simultanément en pompage, que l'on peut utiliser plusieurs systèmes de pompage, chacun d'eux étant adapté au domaine spécifique de pressions pour lequel il est utilisé.It is by increasing the number of adsorbers compared to the known cycle which is related to it, by multiplying the number of adsorbers simultaneously in pumping, that several pumping systems can be used, each of them being adapted to the specific pressure range for which it is used.

L'invention est maintenant illustrée en référence aux dessins annexés dans lesquels les figures 1 à 13 représentent les diagrammes pression (ordonnée)-temps (abscisse) de treize variantes de mise en oeuvre, la pression variant entre une pression maximale de cycle PM (entre 1.10⁵ et 1,6.10⁵ Pascal) et une pression minimale Pm de cycle (entre 0,2.10⁵ et 0,5.10⁵ Pascal).The invention is now illustrated with reference to the accompanying drawings in which FIGS. 1 to 13 represent the pressure (ordered) -time diagrams (abscissa) of thirteen implementation variants, the pressure varying between a maximum pressure of the cycle PM (between 1.10⁵ and 1.6.10⁵ Pascal) and a minimum pressure Pm of the cycle (between 0.2.10⁵ and 0.5.10⁵ Pascal).

Dans toutes les variantes des figures 1 à 10 et 12 à 13, le diagramme pression-temps (t) s'établit au temps 0 par le début de la phase de production d'oxygène (passage d'air dans la colonne d'adsorption selon le sens de circulation dit à co-courant représenté conventionnellement par une flèche selon la direction de l'ordonnée orientée dans le sens des ordonnées croissantes), alors qu'une circulation, à contre-courant, qui est inverse de celle de l'étape de production, c'est-à-dire de la "sortie" de l'oxygène produit vers l'"entrée" de l'air à fractionner, est représentée par une flèche selon la direction de l'ordonnée orientée vers les ordonnées décroissantes.In all the variants of FIGS. 1 to 10 and 12 to 13, the pressure-time diagram (t) is established at time 0 by the start of the oxygen production phase (passage of air in the adsorption column according to the direction of circulation known as co-current conventionally represented by an arrow in the direction of the ordinate oriented in the direction of increasing ordinates), while a circulation, against the current, which is opposite to that of the production stage, that is to say from the "outlet" of the oxygen produced towards the "inlet" of the air to be fractionated, is represented by an arrow in the direction of the ordinate oriented towards the ordinates decreasing.

Ces différentes flèches sont raccordées soit à l'extrémité libre, vers les ordonnées croissantes pour indiquer un débit de production d'oxygène, ou d'air enrichi en oxygène soit orientées vers les ordonnées décroissantes pour indiquer un pompage sous pression sous-atmosphérique.These different arrows are connected either at the free end, towards the increasing ordinates to indicate a rate of production of oxygen, or of air enriched in oxygen, or oriented towards the decreasing ordinates to indicate a pumping under sub-atmospheric pressure.

Les durées des différentes étapes sont notées dans des cercles et la durée du cycle T est le temps le plus élevé indiqué en abscisse.The durations of the different stages are noted in circles and the duration of the cycle T is the highest time indicated on the abscissa.

Ceci étant explicité, on détaille maintenant les différents cycles illustrant l'invention, qui comportent certaines phases ou étapes parmi lesquelles, une étape de production, une phase de première dépressurisation, une phase de seconde dépressurisation, une étape de pompage comportant éventuellement une phase de purge et une étape de repressurisation. L'étape de pompage s'effectue par la mise en oeuvre d'une pluralité de systèmes de pompage pompe 1, pompe 2, etc....This being explained, we now detail the different cycles illustrating the invention, which include certain phases or stages among which, a production stage, a phase of first depressurization, a second depressurization phase, a pumping step possibly comprising a purge phase and a repressurization step. The pumping step is carried out by implementing a plurality of pump 1, pump 2, etc. pumping systems.

Les temps indiqués dans les descriptions suivantes sont donnés à titre d'exemple, et sont sensiblement adaptés à l'utilisation d'adsorbant de granulométrie moyenne (billes de diamètre moyen d'environ 2 mm ou bâtonnets cylindriques de diamètre 1,6 mm).The times indicated in the following descriptions are given by way of example, and are appreciably suitable for the use of adsorbent of medium particle size (balls with an average diameter of approximately 2 mm or cylindrical rods with a diameter of 1.6 mm).

Figure 1Figure 1

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs n Number of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 60 sec.60 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems deuxof them Durée de repressurisationRepressurization time 20 sec.20 sec.

FIGURE 2FIGURE 2

Durée de cycle T 112,5 sec. Nombre d'adsorbeurs n 5 Adsorbeur en production 2 Durée étape production 42,5 sec. Durée première dépressurisation 10 sec. Durée pompage 45 sec. Durée purge 10 sec. Systèmes pompage deux Durée de repressurisation 15 sec.
On note qu'il existe un réservoir tampon R sur le gaz de production pour régulariser le débit de production utile et compléter au mieux la repressurisation finale.
Cycle time T 112.5 sec. Number of adsorbers n 5 Adsorbers in production 2 Production stage duration 42.5 sec. Duration of first depressurization 10 sec. Pumping time 45 sec. Purge time 10 sec. Pumping systems of them Repressurization time 15 sec.
It is noted that there is a buffer tank R on the production gas to regulate the useful production flow rate and best complete the final repressurization.

FIGURE 3FIGURE 3

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs n Number of adsorbers n 66 Adsorbeur en productionAdsorbers in production 1,51.5 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 60 sec.60 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems troisthree Durée de repressurisationRepressurization time 20 sec.20 sec.

FIGURE 4FIGURE 4

Durée de cycle TCycle time T 105 sec.105 sec. Nombre d'adsorbeurs n Number of adsorbers n 77 Adsorbeur en productionAdsorbers in production 22 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 15 sec.15 sec. Durée pompagePumping time 45 sec.45 sec. Durée purgePurge time 15 sec.15 sec. Systèmes pompagePumping systems troisthree Durée de repressurisationRepressurization time 15 sec.15 sec.

FIGURE 5FIGURE 5

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 60 sec.60 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems deuxof them Durée de repressurisationRepressurization time 20 sec.20 sec.

On note qu'il existe un réservoir d'attente S pour une repressurisation plus brève que l'étape de production, de façon à égaliser le débit de production utile.It is noted that there is a holding tank S for a shorter repressurization than the production stage, so as to equalize the useful production flow.

FIGURE 6FIGURE 6

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 50 sec.50 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems deuxof them Durée de repressurisationRepressurization time 30 sec.30 sec.

On note l'existence d'un réservoir de stockage S' qui permet de différer l'utilisation en purge du gaz de première dépressurisation, lorsque cette première dépressurisation ne coïncide pas dans le temps avec ladite purge d'un autre adsorbeur.Note the existence of a storage tank S ′ which makes it possible to defer the use in purging of the gas of first depressurization, when this first depressurization does not coincide in time with said purging of another adsorber.

FIGURE 7FIGURE 7

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 50 sec.50 sec. Durée purgePurge time 15 sec.15 sec. Systèmes pompagePumping systems deuxof them Durée de repressurisationRepressurization time 30 sec.30 sec.

On note que la première dépressurisation sert au début de repressurisation d'un autre adsorbeur tandis que le gaz de purge est un débit prélevé, pendant la moitié de l'étape de production, sur l'oxygène produit. On a représenté en tirets une variante de première repressurisation selon laquelle outre le gaz provenant de l'adsorbeur en première dépressurisation, on adjoint du gaz de production.It is noted that the first depressurization is used at the start of repressurization of another adsorber while the purge gas is a flow rate taken, during half of the production step, on the oxygen produced. A variant of the first repressurization has been shown in dashes according to which, in addition to the gas coming from the adsorber in the first depressurization, production gas is added.

FIGURE 8FIGURE 8

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée pompagePumping time 60 sec.60 sec. Systèmes pompagePumping systems deuxof them Durée repressurisationRepressurization time 30 sec.30 sec.

FIGURE 9FIGURE 9

Durée de cycle TCycle time T 125 sec.125 sec. Nombre d'adsorbeurs nNumber of adsorbers n 55 Adsorbeurs en productionAdsorbers in production 22 Durée étape productionProduction stage duration 50 sec.50 sec. Durée pompagePumping time 50 sec.50 sec. Systèmes pompagePumping systems deuxof them Durée repressurisationRepressurization time 25 sec.25 sec.

FIGURE 10FIGURE 10

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 66 Adsorbeurs en productionAdsorbers in production 22 Durée étape productionProduction stage duration 40 sec.40 sec. Durée pompagePumping time 60 sec.60 sec. Systèmes pompagePumping systems troisthree Durée repressurisationRepressurization time 20 sec.20 sec.

FIGURE 11FIGURE 11

Durée de cycle TCycle time T 135 sec.135 sec. Nombre d'adsorbeurs nNumber of adsorbers n 33 Adsorbeur en productionAdsorbers in production 1 à temps partiel1 part-time Durée étape productionProduction stage duration 20 sec.20 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 80 sec.80 sec. Systèmes pompagePumping systems deuxof them Durée repressurisationRepressurization time - air + air enrichi- air + enriched air 10 sec.10 sec. - air seul- air alone 15 sec.15 sec.

FIGURE 12FIGURE 12

Durée de cycle TCycle time T 120 sec.120 sec. Nombre d'adsorbeurs nNumber of adsorbers n 44 Adsorbeur en productionAdsorbers in production 11 Durée étape productionProduction stage duration 30 sec.30 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée deuxième dépressurisationDuration of second depressurization 5 sec.5 sec. Durée pompagePumping time 45 sec.45 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems deuxof them Durée repressurisationRepressurization time 30 sec.30 sec.

FIGURE 13FIGURE 13

Durée de cycle TCycle time T 125 sec.125 sec. Nombre d'adsorbeurs nNumber of adsorbers n 55 Adsorbeurs en productionAdsorbers in production 22 Durée étape productionProduction stage duration 50 sec.50 sec. Durée première dépressurisationDuration of first depressurization 10 sec.10 sec. Durée pompagePumping time 50 sec.50 sec. Durée purgePurge time 10 sec.10 sec. Systèmes pompagePumping systems deuxof them Durée repressurisationRepressurization time 1515

Claims (18)

  1. Process for the production of a gas having up to 95 % oxygen content notably at a flow rate greater than 60 T/day by means of absorbing the nitrogen in the air such that, on a plurality "n" of adsorbent columns, the following stages are ensured successively and cyclically for a period T on each of the said columns with a time lag of T/n, from one column to the next :
    a) a stage for the production of oxygen of duration x by withdrawing gas in a so-called co-current direction, from an adsorbent column of the zeolite type, at high pressure comprising a maximum cycle pressure PM, with at least partial admission of air during this stage ;
    b) a counter-current pumping stage of duration y, under sub-atmospheric pressure, bringing about depressurization, pumping being carried out, as appropriate, during a purge by passing gas enriched in oxygen in a counter-current direction, the minimum cycle pressure attained during the said pumping stage being Pm ;
    c) a repressurization stage incorporating before the pumping stage at the latest, at least one counter-current repressurization phase with gas enriched in oxygen ; characterized by a combination of the following measures :
    d) the number of adsorbers is at least three ;
    e) the maximum velocity of the gas passing through an adsorption column is less than the attrition rate of the adsorbent at any moment whatsoever in the cycle, and tends towards the said limit during at least one of the stages of the cycle :
    f) the duration of pumping y under sub-atmospheric pressure during stage b) is greater than the time lag T/n, and at least equal to the duration x of the production stage ;
    g) the pumping stage of the adsorbent column is carried out by successively putting into operation at least two pumping systems on the said column, one operating from the start of pumping and the other adapted to operate until the end of pumping.
  2. Process for the production of oxygen according to Claim 1, characterized in that counter-current depressurization h) is ensured between the production stage and the pumping stage, so as to provide a purge gas for the possible purging according to b) of another adsorber.
  3. Process for the production of oxygen according to Claim 1, characterized in that a counter-current depressurization i) is ensured between the production stage and the pumping stage, so as to provide partially repressurized gas for the repressurization stage c).
  4. Process for the production of oxygen according to Claims 2 and 3, characterized in that depressurization is first of all ensured according to i) followed by depressurization according to h).
  5. Process for the production of oxygen according to any one of Claims 1 to 4, characterized in that the gas enriched in oxygen of stage b) and/or of stage c) is production oxygen.
  6. Process for the production of oxygen according to Claim 2, characterized in that the counter-current depressurization gas is at least partially introduced into a holding store, from which at least part of the purge gas is taken.
  7. Process for the production of oxygen according to any one of Claims 1 to 6, characterized in that the counter-current repressurization phase of the repressurization stage c) is carried out with production gas.
  8. Process for the production of oxygen according to Claim 7, characterized in that a buffer stock of production gas is provided from which at least part of the counter-current repressurization gas according to c) is taken.
  9. Process for the production of oxygen according to any one of Claims 1 to 8, characterized in that the production stage is carried out at least partly at maximum pressure.
  10. Process for the production of oxygen according to any one of Claims 1 to 9, characterized in that the production stage is carried out at least partly at increasing pressure.
  11. Process for the production of oxygen according to any one of Claims 1 to 10, characterized in that the production stage is carried out at least partly at decreasing pressure.
  12. Process for the production of oxygen according to any one of Claims 1 to 11, characterized in that the repressurization stage c) incorporates at least one counter-current repressurization phase with air.
  13. Process for the production of oxygen according to any one of Claims 1 to 12, characterized in that the maximum cycle pressure PM lies between 1×10⁵ and 1.6×10⁵ Pascal, whilst the minimum cycle pressure lies between 0.2 × 10⁵ and 0.5 × 10⁵ Pascal.
  14. Process for the production of oxygen according to any one of Claims 1 to 13, characterized in that the duration of pumping according to b) is equal to a whole multiple of T/n.
  15. Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number "n" of adsorbers is four.
  16. Process for the production of oxygen according to Claim 15, characterized in that the pumping stage is carried out with two pumping systems over a period double that of the production stage which is T/n.
  17. Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number of adsorbers is five and in that the pumping stage lasts for a period equal to that of the production stage which is 2T/5, the number of adsorbers in simultaneous production being two at any instant of the cycle.
  18. Process for the production of oxygen according to any one of Claims 1 to 14, characterized in that the number of adsorbers is six or seven and in that the number of pumping systems is three operating for a period of 3T/n, whilst two adsorbers are at any instant in simultaneous production over a period of 2T/n.
EP92400347A 1991-02-20 1992-02-11 Method for producing oxygen by adsorption Expired - Lifetime EP0500416B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9102009 1991-02-20
FR9102009A FR2672818B1 (en) 1991-02-20 1991-02-20 PROCESS FOR THE PRODUCTION OF OXYGEN BY ADSORPTION.

Publications (2)

Publication Number Publication Date
EP0500416A1 EP0500416A1 (en) 1992-08-26
EP0500416B1 true EP0500416B1 (en) 1995-04-12

Family

ID=9409909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400347A Expired - Lifetime EP0500416B1 (en) 1991-02-20 1992-02-11 Method for producing oxygen by adsorption

Country Status (9)

Country Link
US (1) US5246676A (en)
EP (1) EP0500416B1 (en)
JP (1) JPH05193904A (en)
AU (1) AU654321B2 (en)
BR (1) BR9200546A (en)
CA (1) CA2061434A1 (en)
DE (1) DE69201984T2 (en)
FR (1) FR2672818B1 (en)
ZA (1) ZA921170B (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682612B1 (en) * 1991-10-17 1993-12-03 Air Liquide PROCESS FOR PRODUCING A GAS WITH A SUBSTANTIAL OXYGEN CONTENT.
FR2718056B1 (en) * 1994-03-30 1996-05-03 Air Liquide Method for producing a gas by adsorption.
US5487775A (en) * 1994-05-09 1996-01-30 The Boc Group, Inc. Continuous pressure difference driven adsorption process
US5411578A (en) * 1994-05-10 1995-05-02 Air Products And Chemicals, Inc. Vacuum swing adsorption process with mixed repressurization and provide product depressurization
FR2734171B1 (en) * 1995-05-18 1997-12-26 Air Liquide PROCESS FOR THE PRODUCTION OF PRESSURIZED OXYGEN BY ADSORPTION
US5656065A (en) * 1995-10-04 1997-08-12 Air Products And Chemicals, Inc. Multibed pressure swing adsorption apparatus and method for the operation thereof
US5656067A (en) * 1996-02-23 1997-08-12 Air Products And Chemicals, Inc. VSA adsorption process with energy recovery
USRE38493E1 (en) 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
FR2750888B1 (en) * 1996-07-11 1998-09-25 Air Liquide PROCESS FOR TREATING A GASEOUS MIXTURE BY ADSORPTION
FR2751244B1 (en) * 1996-07-18 1998-09-04 Air Liquide METHOD AND PLANT FOR TREATING A GAS MIXTURE BY PRESSURE VARIATION ADSORPTION
FR2755875B1 (en) * 1996-11-15 1999-01-29 Air Liquide PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE
FR2761616B1 (en) * 1997-04-02 1999-05-07 Air Liquide METHOD AND PLANT FOR SEPARATING A GAS MIXTURE BY ADSORPTION
US7094275B2 (en) * 1997-12-01 2006-08-22 Questair Technologies, Inc. Modular pressure swing adsorption apparatus
JP4708562B2 (en) * 1997-12-01 2011-06-22 ウエストエアー・テクノロジーズ・インコーポレイテッド Module pressure swing absorber
US6051050A (en) * 1997-12-22 2000-04-18 Questor Industries Inc. Modular pressure swing adsorption with energy recovery
US5997612A (en) * 1998-07-24 1999-12-07 The Boc Group, Inc. Pressure swing adsorption process and apparatus
US6921597B2 (en) 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
WO2000076628A1 (en) 1999-06-09 2000-12-21 Questair Technologies Inc. Rotary pressure swing adsorption apparatus
CA2274388A1 (en) * 1999-06-10 2000-12-10 Bowie Keefer Surge adsorber flow regulation for modular pressure swing adsorption
JP5188663B2 (en) 1999-06-10 2013-04-24 エア プロダクツ アンド ケミカルズ インコーポレイテッド Pressure swing adsorption chemical reactor
CA2274312A1 (en) * 1999-06-10 2000-12-10 Kevin A. Kaupert Modular pressure swing adsorption apparatus with clearance-type valve seals
US6514319B2 (en) * 1999-12-09 2003-02-04 Questair Technologies Inc. Life support oxygen concentrator
US7250073B2 (en) * 1999-12-09 2007-07-31 Questair Technologies, Inc. Life support oxygen concentrator
CA2306311C (en) 2000-04-20 2007-04-10 Quest Air Gases Inc. Absorbent laminate structures
CA2320551C (en) 2000-09-25 2005-12-13 Questair Technologies Inc. Compact pressure swing adsorption apparatus
JP2004512650A (en) 2000-10-27 2004-04-22 クエストエアー テクノロジーズ インコーポレイテッド System and method for supplying hydrogen to a fuel cell
CA2325072A1 (en) * 2000-10-30 2002-04-30 Questair Technologies Inc. Gas separation for molten carbonate fuel cell
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
WO2002045821A2 (en) * 2000-12-08 2002-06-13 Questair Technologies Inc. Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
ATE373323T1 (en) 2002-03-14 2007-09-15 Questair Technologies Inc HYDROGEN RECYCLING FOR SOLID OXIDE FUEL CELLS
CA2477262A1 (en) 2002-03-14 2003-09-18 Questair Technologies Inc. Gas separation by combined pressure swing and displacement purge
JP2004066125A (en) * 2002-08-07 2004-03-04 Sumitomo Seika Chem Co Ltd Method of separating target gas
US7285350B2 (en) 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
WO2004087300A1 (en) * 2003-02-18 2004-10-14 Jej Co., Ltd. Gas concentration method and its apparatus
US7443803B2 (en) * 2004-03-23 2008-10-28 Fujitsu Limited Estimating and managing network traffic
US7189280B2 (en) 2004-06-29 2007-03-13 Questair Technologies Inc. Adsorptive separation of gas streams
WO2006052937A2 (en) 2004-11-05 2006-05-18 Questair Technologies, Inc. Separation of carbon dioxide from other gases
US20070289445A1 (en) * 2006-06-15 2007-12-20 Mei Hua Compact and efficient pressure swing oxygen concentrator
US7763100B2 (en) 2006-07-06 2010-07-27 Praxair Technology, Inc. Vacuum pressure swing adsorption process and enhanced oxygen recovery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191002A (en) * 1984-03-07 1985-09-28 Osaka Oxgen Ind Ltd Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method
FR2599274B1 (en) * 1986-06-02 1988-08-26 Air Liquide PROCESS AND PLANT FOR SEPARATING A GAS MIXTURE BY ADSORPTION.
FR2633847B1 (en) * 1988-07-08 1991-04-19 Air Liquide PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION
JPH0441715U (en) * 1990-08-01 1992-04-09

Also Published As

Publication number Publication date
AU654321B2 (en) 1994-11-03
CA2061434A1 (en) 1992-08-21
DE69201984D1 (en) 1995-05-18
DE69201984T2 (en) 1995-08-24
US5246676A (en) 1993-09-21
FR2672818B1 (en) 1993-04-23
AU1096192A (en) 1992-08-27
FR2672818A1 (en) 1992-08-21
ZA921170B (en) 1992-11-25
EP0500416A1 (en) 1992-08-26
JPH05193904A (en) 1993-08-03
BR9200546A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
EP0500416B1 (en) Method for producing oxygen by adsorption
FR2775198A1 (en) METHOD AND DEVICE FOR GAS PURIFICATION BY ADSORPTION WITH FIXED HORIZONTAL BEDS
FR2938451B1 (en) SERIAL MONOLIT RADIAL ADSORBERS
EP1095690B1 (en) Process for purifying a gas and corresponding apparatus
BE898205A (en) METHOD AND INSTALLATION FOR SEPARATION BY ABSORPTION OF A COMPOSITE GAS.
FR2911077A1 (en) PURIFICATION OR SEPARATION PROCESS USING SEVERAL PHASE DECAL ADSORBERS
EP2340102A1 (en) Construction method for large radial adsorbers
CA2017271A1 (en) Method and plant for producing high pressure gazeous oxygen
FR2534827A1 (en) METHOD FOR TREATING ADSORPTION GAS WITH MULTIPLE ADSORBERS IN A SIMULTANEOUS PRODUCTION PHASE
EP0689862A1 (en) Process for treating a gas mixture by pressure swing adsorption
FR2766384A1 (en) REGULATION OF A PSA PROCESS
FR3006909A1 (en) PROCESS FOR PURIFYING A GAS MIXTURE AND GENERATOR THEREFOR
WO2020169901A1 (en) System and method for separating low-pressure gases in the air
FR3093169A1 (en) Installation and process for separating gases from air using a parallelepiped shaped adsorber
CA2871184C (en) Psa process with an active step per phase time
EP0537831B1 (en) Process for producing a gas with high oxygen content
FR2785554A1 (en) PSA OR VSA UNIT AT A RATE AND PRODUCTION PRESSURE JOINTLY REGULATED
CA2980214A1 (en) Method for producing oxygen by vpsa comprising four adsorbers
FR2755875A1 (en) PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE
FR2790823A1 (en) METHOD AND APPARATUS FOR CRYOGENIC AIR PURIFICATION AND SEPARATION WITHOUT PRE-COOLING
EP3274073A1 (en) Method for producing oxygen by vpsa
FR2892322A1 (en) Pressure swing adsorption for producing hydrogen enriched gaseous fraction from feedstock gas, comprises introducing the gas into an adsorber to adsorb the gas in a high pressure of cycle, and terminating the introduced gas in the adsorber
JP4900988B2 (en) Nitrogen gas separation method
KR0145787B1 (en) Process for preparing oxygen by changing pressure
FR2899890A1 (en) Pressure swing adsorption process to produce hydrogen-rich gaseous fraction from feed gas containing hydrogen, comprises introducing feed gas through first adsorber at high pressure cycle to eliminate adsorbent in first adsorber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT LU NL SE

17Q First examination report despatched

Effective date: 19940727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950412

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950412

REF Corresponds to:

Ref document number: 69201984

Country of ref document: DE

Date of ref document: 19950518

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960117

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960229

26N No opposition filed
BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970212

EUG Se: european patent has lapsed

Ref document number: 92400347.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990125

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020114

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST