EP0489578B1 - Procédé et dispositif pour RMN mesurage de diffusion - Google Patents

Procédé et dispositif pour RMN mesurage de diffusion Download PDF

Info

Publication number
EP0489578B1
EP0489578B1 EP91311253A EP91311253A EP0489578B1 EP 0489578 B1 EP0489578 B1 EP 0489578B1 EP 91311253 A EP91311253 A EP 91311253A EP 91311253 A EP91311253 A EP 91311253A EP 0489578 B1 EP0489578 B1 EP 0489578B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
field gradient
interest
region
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91311253A
Other languages
German (de)
English (en)
Other versions
EP0489578A1 (fr
Inventor
Zvi Paltiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Numar Corp
Original Assignee
Numar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Numar Corp filed Critical Numar Corp
Publication of EP0489578A1 publication Critical patent/EP0489578A1/fr
Application granted granted Critical
Publication of EP0489578B1 publication Critical patent/EP0489578B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56341Diffusion imaging

Definitions

  • the present invention relates to borehole measurements and more particularly to borehole measurements employing nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • the present invention seeks to provide a technique and apparatus for conducting borehole NMR measurements of self-diffusion coefficient and the intrinsic transverse relaxation time.
  • a technique for conducting borehole NMR measurements including the steps of providing a magnetic field gradient at a desired location along a borehole, carrying out at least one and preferably two or more NMR experiments in the presence of the magnetic field gradient, sensing the diffusion effect on the decay of at least the first echo and determining therefrom the diffusion coefficient.
  • the magnetic field gradient is constant over time.
  • a switched magnetic field gradient may be provided.
  • the step of carrying out at least one NMR experiment includes carrying out two NMR experiments such that they differ in at least one of the following parameters: 1. the time the molecules are allowed to diffuse, 2. the magnitude of the magnetic field gradient and 3. the time over which the pulses are applied if magnetic field gradient pulses are used.
  • the two experiments may differ only in the echo spacing.
  • the T2 (transverse relaxation time) and D (diffusion coefficient) can be extracted from the measured amplitudes and decay rates.
  • the two experiments may differ in the applied RF frequency.
  • the difference in frequency is accompanied by a change in the magnetic field gradient strength.
  • a single experiment with fixed parameters such as echo spacing, magnetic field gradient magnitude and duration may be carried out to give an upper bound to the diffusion coefficient value, a lower bound to T2 or either T2 or D when one of them is known a priori.
  • the diffusion coefficient D can be employed to determine at least one of the following petrophysical parameters: Water/hydrocarbon discrimination; Water and hydrocarbon saturation levels; Permeability; Pore size and pore size distribution; Oil viscosity; Formation form factor F, which is a measure of the average increase in electrical resistance due to the formation tortuosity; and q-space imaging of the formation.
  • the methods described hereinabove are suitable for use in environments other than borehole environments and with materials other than those found in boreholes.
  • the methods have the advantage that the material being tested may be located outside the testing apparatus.
  • FIG. 1A illustrates, in relatively general form, apparatus for carrying out NMR borehole diffusion coefficient determinations in accordance with a preferred embodiment of the present invention.
  • the apparatus includes a first portion 6, which is arranged to be lowered into a borehole 7 having a borehole longitudinal axis 8 in order to examine the nature of materials in the vicinity of the borehole lying in a region 9 of generally cylindrical configuration spaced from and surrounding the borehole.
  • the first portion 6 preferably comprises a generally cylindrical permanent magnet 10, preferably having a circular cross - section and arranged along a permanent magnet longitudinal axis 11 which is preferably coaxial with the longitudinal axis 8 of the borehole.
  • a plurality of permanent magnets 10 may be employed.
  • the one or more permanent magnets 10 will be considered together and referred to as permanent magnet 10 and their common longitudinal axis will be identified as longitudinal axis 11.
  • the first portion 6 also comprises one or more coil windings 16 which preferably are arranged on the permanent magnet surface such that each coil turn lies in a plane substantially parallel to a plane containing permanent magnet magnetization axis 12 and longitudinal axis 11. Specifically, the axis 13 of the coil windings 16 is substantially perpendicular to both longitudinal axis 11 of the borehole and axis 12 of the permanent magnet magnetization.
  • the permanent magnet 10 and coil windings 16 are preferably housed in a non-conductive, non-ferromagnetic protective housing 18.
  • the housing and its contents hereinafter will be referred to as a probe 19.
  • T/R matching circuit 20 typically includes a resonance capacitor, a T/R switch and both to-transmitter and to-receiver matching circuitry and is coupled to a RF power amplifier 24 and to a receiver preamplifier 26.
  • All of the elements described hereinabove are normally contained in a housing 28 which is passed through the borehole. Alternatively some of the above elements may not be contained in the housing 28 and may be located above ground.
  • control circuitry for the logging apparatus including a computer 32, which provides a control output to a pulse programmer 34 which receives an RF input from a variable frequency RF source 36.
  • Pulse programmer 34 controls the operation of the variable frequency RF source 36 as well as an RF driver 38, which receives an input from variable frequency RF source 36 and outputs to RF power amplifier 24.
  • RF receiver preamplifier 26 The output of RF receiver preamplifier 26 is supplied to an RF receiver 40 which receives an input from a phase shifter 44.
  • Phase shifter 44 receives an input from variable frequency RF source 36.
  • Receiver 40 outputs via an A/D converter with a buffer 46 to computer 32 for providing desired well logging output data for further use and analysis.
  • Some or all of the elements described hereinabove as being in block 30 are preferably disposed downhole. Alternatively such elements may be disposed in an above-ground housing.
  • FIG. 1B illustrates, in relatively general form, apparatus for carrying out NMR borehole diffusion coefficient determinations in accordance with an alternative preferred embodiment of the present invention.
  • the apparatus includes a first portion 106, which is arranged to be lowered into a borehole 107 in order to examine the nature of materials in the vicinity of the borehole.
  • the first portion 106 comprises a magnet or a plurality of magnets 108 which generate a preferably substantially uniform static magnetic field in a volume of investigation 109.
  • the first portion 106 also comprises an RF antenna coil 116 which produces an RF magnetic field at the volume of investigation 109 which field is substantially perpendicular to the static magnetic field.
  • a magnetic field gradient coil, or plurality of coils, 110 generates a magnetic field gradient at the volume of investigation 109.
  • This additional contribution to the magnetic field has a field direction preferably collinear with the substantially uniform field and has a substantially uniform magnetic field gradient, which may or may not be switched on and off by switching the dc current flowing through the coil or coils 110.
  • the magnet or magnets 108, antenna 116 and the gradient coil 110 constituting portion 106 are also referred to as a probe.
  • the antenna together with a transmitter/receiver (T/R) matching circuit 120 typically include a resonance capacitor, a T/R switch and both to-transmitter and to-receiver matching circuitry and are coupled to an RF power amplifier 124 and a receiver preamplifier 126.
  • T/R transmitter/receiver
  • a power supply 129 provides the dc current required for the magnetic field gradient generating coils 110.
  • control circuitry for the logging apparatus which may be generally identical to that described above with reference to block 30 in connection with the embodiment of Fig. 1A, with the addition of a pulse programmer 146.
  • Pulse programmer 146 controls the gradient coil power supply 129 enabling and disabling the flow of current, and hence the generation of field gradients, according to the commands of the computer 32.
  • FIG. 2A and 2B illustrate RF pulses and echoes and Magnetic Field Gradient Sequences respectively which are employed in accordance with one embodiment of the present invention.
  • the following operational steps take place:
  • steps 4 through 7 may be repeated multiple times successively in order to obtain a sufficiently long echo amplitude train, from which the transverse relaxation time may more meaningfully be derived.
  • step 8 is not required if both D and T2 are unknown and neither could be considered as dominating the decay rate.
  • Steps 9 and 10 are not required if either D or T2 is known. In that case, the unknown T2 or D can be derived from a single experiment. Likewise, no more than one experiment is required when either D or T2 is known to substantially dominate the decay of the echo amplitude.
  • step 5 might alternatively be replaced by application of two or more pulses whose combined effect is the refocusing of the nuclear spins yielding a stimulated echo at step 7 and allowing more time for diffusion in between these pulses.
  • FIG. 3A and 3B illustrate RF pulses and echoes and Magnetic Field Gradient Sequences respectively, which are employed in accordance with another embodiment of the present invention.
  • the following operational steps take place:
  • steps 3 through 6 may be repeated multiple times successively in order to obtain a sufficiently long echo amplitude train, from which the transverse relaxation time may more meaningfully be derived.
  • step 7 is not required if both D and T2 are unknown and neither could be considered as dominating the decay rate.
  • Steps 8 and 9 are not required if either D or T2 is known. In that case, the unknown T2 or D can be derived from a single experiment. Likewise, no more than one experiment is required when either D or T2 is known to substantially dominate the decay of the echo amplitude.
  • time dependency of the magnetic field gradient other than the square pulse of Fig. 3B may be used. Specifically, when the pulsed gradient is switched off, the gradient strength should not necessarily diminish and sinusoidal and other dependencies might be employed.
  • step 4 might alternatively be replaced by application of two or more pulses whose combined effect is the refocusing of the nuclear spins yielding a stimulated echo at step 6 and allowing more time for diffusion in between these pulses.
  • the amplitude A is known, neither T2 nor D are known but only an upper bound for D and/or lower bound for T2 is sought for.
  • An upper bound for D is obtained from the abovementioned equations by replacing the te/T2 term by zero.
  • A is either known or unknown but of no interest.
  • Several echoes are recorded and the apparent decay rate is calculated.
  • T2 or either of their bounds can be derived from the abovementioned equation relating T2 (app) T2 and D.
  • the upper D bound is obtained by setting 1/T2 to zero and solving for D
  • the lower T2 bound is obtained by setting D to zero.
  • T2 or D or either of their bounds can be derived from repetition of the same experiment at least twice, varying one or more of the following parameters: te, G, delta or ⁇ . 4. If both D and T2 are unknown and the abovementioned bounds are insufficient approximations, the apparent relaxation time should be calculated at least twice for two experiments differing in at least one of the following parameters: te, G, delta or ⁇ . In cases such as that of a preferred embodiment of this invention, for which the gradient G is also a function of the field strength and hence a function of the resonance frequency, two or more experiments differing in the resonance frequency are sufficient.
  • the two or more distinct experiments yield a set of two or more linear equations for T2 and D having different values of R2 (app) .
  • T2 and D may be derived by either explicit solution of the two linear equations yielding the values of the two unknowns, or best fit (such as least squares) for a set of three or more distinct experiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Claims (10)

  1. Procédé d'exécution d'une mesure par RMN dans un sondage, comprenant les étapes suivantes : l'application d'un champ magnétique statique pour la polarisation des spins nucléaires du sondage avec création d'une aimantation globale dans la région intéressante, l'application d'un champ à haute fréquence à la région intéressante avec une fréquence, une durée et une amplitude prédéterminées afin qu'une partie au moins de l'aimantation soit dans un plan perpendiculaire à la direction du champ magnétique statique, le procédé étant caractérisé par les étapes suivantes :
    1) l'application d'un gradient de champ magnétique ayant un ensemble ajustable prédéterminé de paramètres comprenant l'intensité, la direction et la durée, à la région intéressante de manière que les atomes et molécules du matériau de la région intéressante diffusent dans un champ de gradient,
    2) l'application d'une impulsion à haute fréquence de nouvelle focalisation à la région intéressante,
    3) l'acquisition d'un écho de spin de RMN ayant une amplitude associée, et
    4) la dérivation du coefficient de diffusion D et/ou de la période d'écho de spin T2 d'après l'amplitude de l'écho.
  2. Procédé selon la revendication 1, dans lequel l'étape 1) d'application du gradient de champ magnétique est répétée entre les étapes 2) et 3), et l'un au moins des paramètres du gradient de champ magnétique varie.
  3. Procédé selon la revendication 1 ou 2, dans lequel les étapes 1) à 3) sont répétées pour l'acquisition de plusieurs échos et pour la dérivation d'un ou plusieurs coefficients D et/ou T2.
  4. Procédé selon la revendication 3, dans lequel, lors de la répétition des étapes 1) à 3), l'un au moins des paramètres suivants est changé : 1- la période pendant laquelle le gradient de champ magnétique est appliqué, 2- l'espacement de deux applications successives du gradient de champ magnétique, 3- l'intensité du gradient de champ magnétique, 4- l'espace des impulsions à haute fréquence, et 5- la haute fréquence appliquée.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel deux mesures au moins par RMN sont réalisées et, lors de la mise en oeuvre, l'un au moins des paramètres suivants est modifié : 1- la période pendant laquelle le gradient de champ magnétique est appliqué, 2- l'espacement de deux applications successives du gradient de champ magnétique, 3- l'intensité du gradient de champ magnétique, 4- l'espace des impulsions à haute fréquence, et 5- la haute fréquence appliquée.
  6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre une étape d'utilisation du coefficient D de diffusion pour déterminer l'un au moins des paramètres pétrophysiques suivants :
       la discrimination eau-hydrocarbures,
       les niveaux de saturation d'eau et d'hydrocarbures,
       la perméabilité,
       la porosité et la distribution de la porosité,
       la viscosité et la distribution de la viscosité,
       la viscosité d'une huile,
       le facteur de forme F de la formation qui est une mesure de l'augmentation moyenne de la résistance électrique due au caractère tortueux de la formation, et
       l'image de l'espace q de la formation.
  7. Appareil destiné à effectuer une mesure par RMN dans un sondage, comprenant un dispositif (108) d'application d'un champ magnétique statique pour la polarisation des spins nucléaires du sondage, avec création d'une aimantation globale dans la région intéressante, un dispositif (116, 120, 124) destiné à appliquer un champ à haute fréquence à la région intéressante à une fréquence, avec une durée et une amplitude prédéterminées afin qu'une partie au moins de l'aimantation se trouve dans un plan perpendiculaire à la direction du champ magnétique statique, l'appareil étant caractérisé par :
    (1) un dispositif (110, 129, 146) d'application d'un gradient de champ magnétique ayant un ensemble ajustable prédéterminé de paramètres comprenant l'intensité, la direction et la durée par rapport à la région intéressante afin que les atomes et molécules du matériau présents dans la région intéressante puissent diffuser dans un champ de gradient,
    (2) un dispositif (116, 120, 124) d'application d'une impulsion à haute fréquence de nouvelle focalisation à la région intéressante,
    (3) un dispositif (116, 120, 126, 40) d'acquisition d'un écho de spin par RMN ayant une amplitude associée, et
    (4) un dispositif (32) destiné à dériver le coefficient de diffusion D et/ou la période d'écho de spin T2 de l'amplitude d'écho.
  8. Appareil selon la revendication 7, comprenant en outre un dispositif destiné à assurer l'application répétée de la mesure par RMN pour l'acquisition de plusieurs échos et pour la dérivation d'un ou plusieurs coefficients D et/ou T2.
  9. Appareil selon la revendication 8, comprenant en outre :
       un dispositif (146) destiné à faire varier la période pendant laquelle le gradient de champ magnétique est appliqué, et l'espacement de deux applications successives du gradient de champ magnétique,
       un dispositif (129) destiné à faire varier l'intensité du gradient de champ magnétique, et
       un dispositif (36) destiné à faire varier la séquence d'impulsions à haute fréquence et la fréquence appliquée.
  10. Appareil selon la revendication 7, 8 ou 9, comprenant en outre un dispositif destiné à utiliser le coefficient de diffusion D pour la détermination de l'un au moins des paramètres pétrophysiques suivants :
       la discrimination eau-hydrocarbures,
       les niveaux de saturation d'eau et d'hydrocarbures,
       la perméabilité,
       la porosité et la distribution de la porosité,
       la viscosité et la distribution de viscosité,
       la viscosité d'une huile,
       le facteur de forme F de la formation qui est une mesure de l'augmentation moyenne de la résistance électrique due au caractère tortueux de la formation, et
       l'image de l'espace q de la formation.
EP91311253A 1990-12-03 1991-12-03 Procédé et dispositif pour RMN mesurage de diffusion Expired - Lifetime EP0489578B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/624,975 US5212447A (en) 1990-12-03 1990-12-03 Apparatus and technique for nmr diffusion measurement
US624975 1990-12-03

Publications (2)

Publication Number Publication Date
EP0489578A1 EP0489578A1 (fr) 1992-06-10
EP0489578B1 true EP0489578B1 (fr) 1995-08-02

Family

ID=24504087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91311253A Expired - Lifetime EP0489578B1 (fr) 1990-12-03 1991-12-03 Procédé et dispositif pour RMN mesurage de diffusion

Country Status (11)

Country Link
US (1) US5212447A (fr)
EP (1) EP0489578B1 (fr)
JP (1) JP3204707B2 (fr)
CN (1) CN1063139A (fr)
AT (1) ATE125955T1 (fr)
CA (1) CA2056821C (fr)
DE (1) DE69111765T2 (fr)
IL (2) IL100109A (fr)
MX (1) MX9102351A (fr)
RU (1) RU2104565C1 (fr)
WO (1) WO1992009901A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733086B2 (en) 2003-05-02 2010-06-08 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
US7755354B2 (en) 2003-10-03 2010-07-13 Halliburton Energy Services, Inc. System and methods for T1-based logging

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557200A (en) * 1991-05-16 1996-09-17 Numar Corporation Nuclear magnetic resonance determination of petrophysical properties of geologic structures
US5387865A (en) * 1991-09-20 1995-02-07 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media
DZ1936A1 (fr) * 1994-10-20 2002-02-17 Shell Int Research Diagraphie par résonance magnetique nucleaire du gaz naturel dns des réservoirs.
US5497087A (en) * 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5680043A (en) * 1995-03-23 1997-10-21 Schlumberger Technology Corporation Nuclear magnetic resonance technique for determining gas effect with borehole logging tools
AU711508B2 (en) * 1995-03-23 1999-10-14 Schlumberger Technology B.V. Nuclear magnetic resonance borehole logging apparatus and method
DZ2053A1 (fr) * 1995-06-21 2002-10-20 Shell Int Research Diagraphie par résonance magnétique nucléaire de gisement de gaz naturel.
US5565775A (en) * 1995-06-23 1996-10-15 Exxon Research And Engineering Company Producible fluid volumes in porous media determined by pulsed field gradient nuclear magnetic resonance
US5696448A (en) * 1995-06-26 1997-12-09 Numar Corporation NMR system and method for formation evaluation using diffusion and relaxation log measurements
EP0852737B1 (fr) * 1995-09-25 2004-11-03 Numar Corporation Detection de gaz independante de la lithologie par resonance magnetique nucleaire a base de gradient
US5936405A (en) * 1995-09-25 1999-08-10 Numar Corporation System and method for lithology-independent gas detection using multifrequency gradient NMR logging
US6956371B2 (en) * 1995-10-12 2005-10-18 Halliburton Energy Services, Inc. Method and apparatus for detecting diffusion sensitive phases with estimation of residual error in NMR logs
US6512371B2 (en) 1995-10-12 2003-01-28 Halliburton Energy Services, Inc. System and method for determining oil, water and gas saturations for low-field gradient NMR logging tools
US6242912B1 (en) 1995-10-12 2001-06-05 Numar Corporation System and method for lithology-independent gas detection using multifrequency gradient NMR logging
US5698979A (en) * 1996-02-23 1997-12-16 Western Atlas International, Inc. Method for NMR diffusion measurement
US6005389A (en) * 1996-03-15 1999-12-21 Numar Corporation Pulse sequences and interpretation techniques for NMR measurements
US6023163A (en) * 1996-06-14 2000-02-08 Schlumberger Technology Corporation Well logging method and apparatus for determining gas and diffusion coefficient using NMR
US6531868B2 (en) 1996-12-30 2003-03-11 Halliburton Energy Services, Inc. System and methods for formation evaluation while drilling
US6051973A (en) 1996-12-30 2000-04-18 Numar Corporation Method for formation evaluation while drilling
US6204663B1 (en) 1997-03-26 2001-03-20 Numar Corporation Pulse sequence and method for suppression of magneto-acoustic artifacts in NMR data
US6081116A (en) * 1997-04-21 2000-06-27 Baker Hughes Incorporated Nuclear magnetic resonance apparatus and method for geological applications
US6166540A (en) * 1997-06-30 2000-12-26 Wollin Ventures, Inc. Method of resistivity well logging utilizing nuclear magnetic resonance
US6069477A (en) * 1997-09-05 2000-05-30 Western Atlas International, Inc. Method for improving the accuracy of NMR relaxation distribution analysis with two echo trains
US6094048A (en) * 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
US6111408A (en) * 1997-12-23 2000-08-29 Numar Corporation Nuclear magnetic resonance sensing apparatus and techniques for downhole measurements
US6097184A (en) * 1997-12-31 2000-08-01 Schlumberger Technology Corporation Nuclear magnetic resonance well logging to determine gas-filled porosity and oil-filled porosity of earth formations without a constant static magnetic field gradient
WO1999036801A1 (fr) 1998-01-16 1999-07-22 Numar Corporation Procede et appareil de mesure de fond pendant le forage par resonance magnetique nucleaire
US6023164A (en) * 1998-02-20 2000-02-08 Numar Corporation Eccentric NMR well logging apparatus and method
US6291995B1 (en) 1998-03-03 2001-09-18 Schlumberger Technology Corporation Apparatus and method for generating a pulse sequence
US6246236B1 (en) 1998-03-03 2001-06-12 Schlumberger Technology Corporation Apparatus and method for obtaining a nuclear magnetic resonance measurement while drilling
US6184681B1 (en) 1998-03-03 2001-02-06 Schlumberger Technology Corporation Apparatus and method for computing a distribution of spin-spin relaxation times
WO1999053300A1 (fr) * 1998-04-14 1999-10-21 California Institute Of Technology Procede et systeme pour detecter l'activite d'un analyte
US6492809B1 (en) * 1998-12-04 2002-12-10 Schlumberger Technology Corporation Preconditioning spins near a nuclear magnetic resonance region
US6326784B1 (en) 1998-11-05 2001-12-04 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution using gradient coils
US6107796A (en) * 1998-08-17 2000-08-22 Numar Corporation Method and apparatus for differentiating oil based mud filtrate from connate oil
US6377042B1 (en) 1998-08-31 2002-04-23 Numar Corporation Method and apparatus for merging of NMR echo trains in the time domain
US6366087B1 (en) * 1998-10-30 2002-04-02 George Richard Coates NMR logging apparatus and methods for fluid typing
US6400147B1 (en) * 1998-11-05 2002-06-04 Schlumberger Technology Corporation Downhole NMR tool having a programmable pulse sequencer
DE69941493D1 (de) 1998-11-16 2009-11-12 California Inst Of Techn Gleichzeitige bestimmung von gleichgewichts- und kinetischen eigenschaften
US6316940B1 (en) 1999-03-17 2001-11-13 Numar Corporation System and method for identification of hydrocarbons using enhanced diffusion
US6369567B1 (en) * 1999-03-19 2002-04-09 Schlumberger Technology Corporation Nuclear magnetic resonance method and apparatus for determining pore characteristics of rocks and other porous materials
US6455319B1 (en) * 1999-05-10 2002-09-24 California Institute Of Technology Use of spatiotemporal response behavior in sensor arrays to detect analytes in fluids
US7122152B2 (en) * 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US6631333B1 (en) * 1999-05-10 2003-10-07 California Institute Of Technology Methods for remote characterization of an odor
US6661226B1 (en) 1999-08-13 2003-12-09 Halliburton Energy Services, Inc. NMR apparatus and methods for measuring volumes of hydrocarbon gas and oil
US6890715B1 (en) * 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
US6255819B1 (en) 1999-10-25 2001-07-03 Halliburton Energy Services, Inc. System and method for geologically-enhanced magnetic resonance imaging logs
GB2357149A (en) 1999-12-08 2001-06-13 Topspin Medical MRI using non-homogeneous static field
US6522136B1 (en) 1999-12-10 2003-02-18 Schlumberger Technology Corporation Well logging technique and apparatus for determining pore characteristics of earth formations using magnetic resonance
US6541969B2 (en) 1999-12-15 2003-04-01 Halliburton Energy Services, Inc. Method and apparatus for improving the vertical resolution of NMR logs
US6646437B1 (en) 2000-04-07 2003-11-11 Halliburton Energy Services, Inc. System and method for clay typing using NMR-based porosity modeling
US6459262B1 (en) 2000-04-25 2002-10-01 Baker Hughes Incorporated Toroidal receiver for NMR MWD
US6704594B1 (en) 2000-11-06 2004-03-09 Topspin Medical (Israel) Limited Magnetic resonance imaging device
US6577125B2 (en) 2000-12-18 2003-06-10 Halliburton Energy Services, Inc. Temperature compensated magnetic field apparatus for NMR measurements
RU2181901C1 (ru) * 2001-01-19 2002-04-27 Акционерное общество закрытого типа Научно-производственная фирма по геофизическим и геоэкологическим работам "КАРОТАЖ" Способ каротажа с использованием ядерно-магнитного резонанса и устройство для его осуществления
US7135862B2 (en) 2001-03-13 2006-11-14 Halliburton Energy Services, Inc NMR logging using time-domain averaging
FR2822053B1 (fr) 2001-03-15 2003-06-20 Stryker Spine Sa Organe d'ancrage avec bague de securite pour systeme d'osteosynthese rachidienne
US6518756B1 (en) * 2001-06-14 2003-02-11 Halliburton Energy Services, Inc. Systems and methods for determining motion tool parameters in borehole logging
US6525534B2 (en) 2001-06-15 2003-02-25 Halliburton Energy Services, Inc. System and methods for NMR signal processing without phase alternated pair stacking
US6650114B2 (en) * 2001-06-28 2003-11-18 Baker Hughes Incorporated NMR data acquisition with multiple interecho spacing
US6528995B1 (en) * 2001-09-10 2003-03-04 Schlumberger Technology Corporation Methods and apparatus for measuring flow velocity in a wellbore using NMR and applications using same
FR2832255B1 (fr) * 2001-11-13 2004-11-26 France Telecom Peigne et procede de derivation d'un cablage preexistant
US6774628B2 (en) * 2002-01-18 2004-08-10 Schlumberger Technology Corporation Nuclear magnetic resonance imaging using phase encoding with non-linear gradient fields
US6856132B2 (en) 2002-11-08 2005-02-15 Shell Oil Company Method and apparatus for subterranean formation flow imaging
US20050150778A1 (en) * 2002-11-18 2005-07-14 Lewis Nathan S. Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids
US6937014B2 (en) * 2003-03-24 2005-08-30 Chevron U.S.A. Inc. Method for obtaining multi-dimensional proton density distributions from a system of nuclear spins
US6859034B2 (en) * 2003-05-09 2005-02-22 Baker Hughes Incorporated Time-domain data integration of multiple gradient, multiple TE echo trains
US7224162B2 (en) * 2003-10-04 2007-05-29 Halliburton Energy Services Group, Inc. System and methods for upscaling petrophysical data
US20050216196A1 (en) 2003-12-24 2005-09-29 Ridvan Akkurt Contamination estimation using fluid analysis models
US7176682B2 (en) * 2004-01-04 2007-02-13 Halliburton Energy Services, Inc. Method and apparatus for detecting hydrocarbons with NMR logs in wells drilled with oil-based muds
US7952352B2 (en) * 2005-04-11 2011-05-31 Keio University Method of locally measuring mobility of protic solvent in sample, instrument of locally measuring mobility of protic solvent in sample, measuring instrument locally measuring behavior of protic solvent in sample based on magnetic
DE102005028475B4 (de) * 2005-06-20 2008-04-03 Siemens Ag Verfahren und Vorrichtung zur Bestimmung von Koeffizienten eines Diffusionstensors mittels magnetischer Resonanz
US8427145B2 (en) 2010-03-24 2013-04-23 Schlumberger Technology Corporation System and method for emulating nuclear magnetic resonance well logging tool diffusion editing measurements on a bench-top nuclear magnetic resonance spectrometer for laboratory-scale rock core analysis
WO2012170014A1 (fr) 2011-06-07 2012-12-13 Halliburton Energy Services, Inc. Indexage en rotation pour optimiser le volume de détection d'un outil de diagraphie par résonance magnétique nucléaire
US9304179B1 (en) 2011-08-12 2016-04-05 University Of New Brunswick Method of magnetic resonance imaging combining phase and frequency encoding
US9405035B2 (en) 2012-01-10 2016-08-02 Halliburton Energy Services, Inc. Enhanced transmitter and method for a nuclear magnetic resonance logging tool
US9541513B2 (en) * 2013-01-03 2017-01-10 Schlumberger Technology Corporation Method for nuclear magnetic resonance diffusion measurements
US10228335B2 (en) 2013-01-03 2019-03-12 Schlumberger Technology Corporation Method for nuclear magnetic resonance diffusion measurements
DE102013201616B3 (de) * 2013-01-31 2014-07-17 Siemens Aktiengesellschaft TSE-basierte, gegen lokale B0-Feldvariationen unempfindliche MR-Mulitschicht-Anregung
JP6495930B2 (ja) * 2013-10-28 2019-04-03 シュルムバーガー テクノロジー ベスローテン フェンノートシャップ Nmrシステム用の集積回路
US10422914B2 (en) * 2014-06-09 2019-09-24 Halliburton Energy Services, Inc. Magnetic resonance systems and methods employing multi-shape pulse sequences for parallel measurements
US9851315B2 (en) 2014-12-11 2017-12-26 Chevron U.S.A. Inc. Methods for quantitative characterization of asphaltenes in solutions using two-dimensional low-field NMR measurement
SE538834C2 (sv) * 2015-12-29 2016-12-20 Cr Dev Ab Method of extracting information about a sample by nuclear magnetic resonance measurements
US10634746B2 (en) 2016-03-29 2020-04-28 Chevron U.S.A. Inc. NMR measured pore fluid phase behavior measurements
IT201600119648A1 (it) * 2016-11-25 2018-05-25 Karnak Medical S R L Dispositivo ad emissioni elettromagnetiche pulsate
US10444397B2 (en) * 2016-11-29 2019-10-15 Schlumberger Technology Corporation NMR well logging instrument and method with synthetic apertures

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258681A (en) * 1966-06-28 Nuclear magnetism well logging by en- hancement of proton polarization in weak polarizing fields
US3258658A (en) * 1966-06-28 Magnetic cylinder squares
US2779885A (en) * 1951-11-28 1957-01-29 Hartford Nat Bank & Trust Co Electrical apparatus in which a permanent magnet is included in the magnetic circuit
GB842531A (en) * 1958-12-24 1960-07-27 Mullard Ltd Permanent magnets
US3223898A (en) * 1962-05-11 1965-12-14 Frances Budreck Variable magnet
US3213357A (en) * 1962-10-22 1965-10-19 California Research Corp Earth formation and fluid material investigation by nuclear magnetism relaxation rate determination
US3483465A (en) * 1966-03-25 1969-12-09 Schlumberger Technology Corp Nuclear magnetism logging system utilizing an oscillated polarizing field
US3667035A (en) * 1970-03-17 1972-05-30 Texaco Development Corp Nuclear magnetism logging
US4350955A (en) * 1980-10-10 1982-09-21 The United States Of America As Represented By The United States Department Of Energy Magnetic resonance apparatus
US4424478A (en) * 1981-01-07 1984-01-03 Bukhshtaber Eliazar Y Device for exciting master generator of self-contained power units for transportation facilities
US4424487A (en) * 1981-06-02 1984-01-03 Phillips Petroleum Company Dispersion coefficient determination
GB2141236B (en) * 1983-06-09 1986-12-10 Nat Res Dev Nuclear magnetic logging
NL8402249A (nl) * 1984-07-17 1986-02-17 Philips Nv Kernspin resonantie apparaat met een permanente magnetische magneet.
US4719423A (en) * 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4710713A (en) * 1986-03-11 1987-12-01 Numar Corporation Nuclear magnetic resonance sensing apparatus and techniques
US4717877A (en) * 1986-09-25 1988-01-05 Numar Corporation Nuclear magnetic resonance sensing apparatus and techniques
US4717878A (en) * 1986-09-26 1988-01-05 Numar Corporation Nuclear magnetic resonance sensing apparatus and techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733086B2 (en) 2003-05-02 2010-06-08 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
US7755354B2 (en) 2003-10-03 2010-07-13 Halliburton Energy Services, Inc. System and methods for T1-based logging

Also Published As

Publication number Publication date
DE69111765D1 (de) 1995-09-07
IL100255A0 (en) 1992-09-06
IL100109A (en) 1996-03-31
RU2104565C1 (ru) 1998-02-10
IL100109A0 (en) 1992-08-18
CN1063139A (zh) 1992-07-29
EP0489578A1 (fr) 1992-06-10
CA2056821C (fr) 1998-07-07
US5212447A (en) 1993-05-18
WO1992009901A1 (fr) 1992-06-11
MX9102351A (es) 1992-06-01
CA2056821A1 (fr) 1992-06-04
DE69111765T2 (de) 1995-12-14
JPH07151715A (ja) 1995-06-16
JP3204707B2 (ja) 2001-09-04
ATE125955T1 (de) 1995-08-15

Similar Documents

Publication Publication Date Title
EP0489578B1 (fr) Procédé et dispositif pour RMN mesurage de diffusion
EP0835463B1 (fr) Systeme et procede de rmn permettant l'evaluation d'une formation geologique sur la base de mesures de diffusion et de relaxation
CA2261417C (fr) Methode d'acquisition et de traitement de signaux de resonance magnetique nucleaire pour la determination des proprietes des fluides dans des reservoirs de petrole comprenant plusieurs phases fluides
CA2172424C (fr) Methode de diagraphie de forage a resonance magnetique nucleaire, et appareil connexe
Hürlimann et al. The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media
AU672274B2 (en) Permeability determination from NMR relaxation measurements for fluids in porous media
US4717878A (en) Nuclear magnetic resonance sensing apparatus and techniques
US5565775A (en) Producible fluid volumes in porous media determined by pulsed field gradient nuclear magnetic resonance
CA2117291C (fr) Systeme a resonance magnetique nucleaire de detection de formations geologiques
US5289124A (en) Permeability determination from NMR relaxation measurements for fluids in porous media
US6023163A (en) Well logging method and apparatus for determining gas and diffusion coefficient using NMR
US8093056B2 (en) Method and apparatus for analyzing a hydrocarbon mixture using nuclear magnetic resonance measurements
GB2299171A (en) NMR borehole gas logging
EP1166140B1 (fr) Procede et appareil de resonance magnetique nucleaire pour la determination des caracteristiques des pores des roches et autres materiaux poreux
CA2594055C (fr) Methode permettant de determiner des repartitions plus precises des coefficients de diffusion des fluides de gisements au moyen de gradients de champ pulse bipolaire
US10890685B2 (en) Apparatus and methods for determining properties of hydrogen-containing samples using nuclear magnetic resonance
CA2119785A1 (fr) Detection de structures geologiques par resonance magnetique nucleaire
US10724975B2 (en) Apparatus and methods for determining properties of liquid-bearing solids using nuclear magnetic resonance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19921130

17Q First examination report despatched

Effective date: 19931213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950802

Ref country code: DK

Effective date: 19950802

Ref country code: BE

Effective date: 19950802

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950802

Ref country code: AT

Effective date: 19950802

REF Corresponds to:

Ref document number: 125955

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69111765

Country of ref document: DE

Date of ref document: 19950907

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951231

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961231

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961231

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021112

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101230

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69111765

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69111765

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111204