EP0482970A1 - Device for imparting a deviated trajectory to an airborne missile - Google Patents
Device for imparting a deviated trajectory to an airborne missile Download PDFInfo
- Publication number
- EP0482970A1 EP0482970A1 EP91402521A EP91402521A EP0482970A1 EP 0482970 A1 EP0482970 A1 EP 0482970A1 EP 91402521 A EP91402521 A EP 91402521A EP 91402521 A EP91402521 A EP 91402521A EP 0482970 A1 EP0482970 A1 EP 0482970A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- roll
- projectile according
- tail
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000003380 propellant Substances 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 2
- 230000001141 propulsive effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 238000010304 firing Methods 0.000 abstract description 4
- 238000006073 displacement reaction Methods 0.000 abstract description 3
- 230000005484 gravity Effects 0.000 abstract description 3
- 235000015842 Hesperis Nutrition 0.000 abstract description 2
- 235000012633 Iberis amara Nutrition 0.000 abstract description 2
- 235000014755 Eruca sativa Nutrition 0.000 description 4
- 244000024675 Eruca sativa Species 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/10—Missiles having a trajectory only in the air
- F42B15/105—Air torpedoes, e.g. projectiles with or without propulsion, provided with supporting air foil surfaces
Definitions
- the present invention relates to the launching of a projectile from an aerial vehicle, in the direction of its trajectory. It relates more particularly to a method and a device for laterally bending the trajectory of the projectile relative to the direction of fire.
- the invention applies in particular to the launching of a self-propelled projectile, such as a decoy rocket, from an airplane.
- a self-propelled projectile such as a decoy rocket
- the mission of such a rocket is to protect, by means of an on-board decoy, an airplane flying at very low altitude during the final attack phase of an objective defended by solair systems.
- the confrontation with means of detection and processing of information capable of distinguishing between different signatures requires that the rocket, to be credible, evolves within limits of which the aircraft is capable. This implies, among other things, that the rocket is launched along the trajectory of the aircraft, and that after launch, its relative speed with respect to it remains low, in practice of the order of 20 m / s. Under these conditions, the gap between the rocket and the plane does not grow quickly, and if the latter follows a straight path as is generally the case, this gap remains insufficient to avoid the risk of interception by incoming missiles. front.
- the subject of the invention is another method for printing a projectile laterally deflected trajectory in a controlled manner after firing, as well as means for its implementation, which have the advantage of being simple, and therefore inexpensive, and to be easily applicable to the launching of a decoy rocket.
- the method according to the invention is characterized in that it consists in providing that the projectile is provided with a lift wing, and that when launched from a vehicle in flight, said wing lift of the projectile is inclined transversely, so that the load factor has a horizontal component causing a lateral displacement of the projectile.
- the airfoil is then calculated so that for the cruising speed of the projectile, the vertical component of the load factor cancels gravity.
- the projectile shown in the drawings is a decoy rocket intended to be launched from an airplane, substantially in the direction of its speed vector when it is in horizontal flight.
- the rocket comprises a front section 1 containing the lure (which can be of any type, for example electromagnetic, pyrotechnic or thermal), an intermediate section 2 at the level of which is the wing structure made up of two wings 4, and a rear section or propulsive part 3.
- a tail fin is installed formed by a plurality of fins 5.
- the fins 5, as well as the wings 4 forming the lift wing are deployable, which makes it possible to have all the elements of the rocket included in its caliber and to reduce the aerodynamic constraints in flight before launching.
- Figs. 2 and 3 schematically represent a simple deployable wing system, which ensures an opening conjugation of the two wings 4. These are articulated so as to be able to be fully retracted inside the section 2, in the position shown in dashed lines in FIG. 3, and they comprise pinions 6 meshed with the two sides forming a rack of a flat rod 7. The longitudinal displacement of the rod 7 necessary for the combined opening of the wings 4 is ensured, for example, by spring means and lock released when launching the rocket.
- the propulsion section 3 comprises two separate parts: either a take-off stage with the load 8 and the peripheral nozzles 9, which stage must provide the acceleration necessary for launching, and a second cruising stage with the load 10 and the central nozzle 11, which has for function of maintaining the rocket at a predetermined speed substantially constant, after launch.
- the rocket takes place on a plane launching ramp, directed forward and oriented so as to be parallel to the speed vector when the plane is in horizontal flight.
- the ramp may be a rail, or else a tube when the lift wing and the tail of the rocket are deployable, and included in its caliber in the folded position.
- the tube may be a cannon, the take-off thruster 8.9 then no longer having any reason for being.
- Means are provided to ensure the positioning of the rocket on the ramp in a determined position of rotation about its longitudinal axis, and also to maintain this position throughout the ramp at the time of launch.
- these means comprise, for example, a finger secured to the rocket, which can be engaged in a guide groove made in the inner wall of the tube.
- the rotational position of the rocket on the launching ramp defines a determined angle ⁇ of transverse inclination of its lift wing (wings of the aircraft in horizontal position).
- said lift wing is calculated so that under these conditions of transverse inclination, and for a speed V slightly higher than the recommended speed of the aircraft at the time of the firing, the load factor resulting from the lift and of the thrust component of the cruise thruster is oriented perpendicular to the axis of the rocket and has a vertical component which cancels gravity.
- the thrust generated by the cruising thruster 10, 11 is approximately equal to the drag of the rocket, so that this speed V is kept constant, or slightly increasing.
- Fig. 5 represents the load factor f on a graph (Oy, 0z) for a transverse tilt angle ⁇ equal to 45 °.
- the projections f y and f z are then equal to g, which implies for f the value g ⁇ 2.
- This trajectory is represented on the graph (Ox, Oy) of FIG. 7, C being the center of the trajectory, the origin 0 representing the position of the airplane at the time of launch and Ox the direction of its trajectory.
- Va (airplane speed) 300 m / s
- ⁇ 17.5 °
- the value of the transverse angle of inclination ⁇ can be chosen within a range limited below by the need to obtain a sufficient lateral deviation, and above by the credibility of evolution of the rocket and by the excessive increase in the factor of charge f.
- the value of 45 ° in addition to its geometric simplicity, represents an interesting compromise.
- the criterion is the risk that the rocket hits the ground too early because, in practice, this type of projectile is launched at very low altitude, of the order of 30 m.
- Fig. 4 illustrates such an arrangement, in which the propulsion section 3 comprises a part 3a joined to the intermediate section 2 and housing the propellant cruise 10, 11, and a part 3b in the form of a cylindrical block mounted to rotate freely, by means of bearings 12, around the part 3a.
- Part 3b comprises the take-off thruster 8.9, as well as means for installing the tail unit, that is to say in the example shown of the legs 13 on which the fins 5 are articulated.
- the tail unit is mounted on bearings around section 3.
- Figs. 8 and 9 illustrate means by which signals are produced when these deviations reach a determined value d ⁇ in one or the other direction.
- these means consist of a through channel 15, located in a radial plane r, at a distance d from the axis.
- two sets each include a light source 16 on one side of the steering wheel 14, and a photoelectric cell 17 on the other side.
- these two assemblies are also located at a distance d from the axis, and are angularly separated by the value d ⁇ with respect to the longitudinal plane of symmetry of the lift wing formed by the wings 4.
- means are necessary for bring the radial plane r of the flywheel 14 to coincide with this plane of symmetry, between the two assemblies, FIG. 9.
- the steering wheel 14 is retained in this position by a lock released at launch.
- the angular spacing d ⁇ of the assemblies with respect to said plane of symmetry corresponds to the maximum roll angle deviation that is tolerated.
- the corresponding photoelectric cell receives light from its light source and produces a signal that can be used to control a roll correction device, two embodiments of which are shown by way of example in FIGS. 10 and 11.
- a reserve of pressurized gas 18 is connected by conduits 19 to peripheral nozzles 20. They are preferably associated in pairs, each of which is capable of producing counter-roll pulses in one direction, following the selective and time-controlled opening of solenoid valves 21.
- the device of FIG. 11 is made up of small cannons 22, also associated in pairs, preferably. By launching projectiles, these guns produce recoil forces which can be used as counter-roll pulses.
- the field of use of the invention is not limited to the launching of decoy rockets which has just been described.
- the ranges of possible values for the speed V and the angle ⁇ of transverse inclination of the lift wing are obviously much greater than for the case of a decoy rocket. .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
La présente invention concerne le lancement d'un projectile à partir d'un engin aérien, dans la direction de sa trajectoire. Elle concerne plus particulièrement un procédé et un dispositif pour infléchir latéralement la trajectoire du projectile par rapport à la direction du tir.The present invention relates to the launching of a projectile from an aerial vehicle, in the direction of its trajectory. It relates more particularly to a method and a device for laterally bending the trajectory of the projectile relative to the direction of fire.
L'invention s'applique notamment au lancement d'un projectile auto-propulsé, telle qu'une roquette leurre, à partir d'un avion. La mission d'une telle roquette est de protéger, au moyen d'un leurre embarqué, un avion volant à très basse altitude lors de la phase finale d'attaque d'un objectif défendu par des systèmes solair. Bien entendu, la confrontation à des moyens de détection et de traitement d'informations aptes à faire la distinction entre des signatures différentes impose que la roquette, pour être crédible, évolue dans des limites dont l'avion est capable. Ceci implique, entre autres, que la roquette soit lancée selon la trajectoire de l'avion, et qu'après lancement, sa vitesse relative par rapport à celui-ci reste faible, en pratique de l'ordre de 20 m/s. Dans ces conditions, l'écart entre la roquette et l'avion ne croit pas rapidement, et si ce dernier suit une trajectoire rectiligne comme c'est généralement le cas, cet écart reste insuffisant pour éviter le risque d'interception par des missiles arrivant de face.The invention applies in particular to the launching of a self-propelled projectile, such as a decoy rocket, from an airplane. The mission of such a rocket is to protect, by means of an on-board decoy, an airplane flying at very low altitude during the final attack phase of an objective defended by solair systems. Of course, the confrontation with means of detection and processing of information capable of distinguishing between different signatures requires that the rocket, to be credible, evolves within limits of which the aircraft is capable. This implies, among other things, that the rocket is launched along the trajectory of the aircraft, and that after launch, its relative speed with respect to it remains low, in practice of the order of 20 m / s. Under these conditions, the gap between the rocket and the plane does not grow quickly, and if the latter follows a straight path as is generally the case, this gap remains insufficient to avoid the risk of interception by incoming missiles. front.
La solution à ce problème consiste à imprimer à la roquette leurre une trajectoire infléchie latéralement pour attirer la menace à une distance suffisante de l'avion à protéger. A cet effet, on a actuellement recours à des techniques de programmation de trajectoire qui présentent l'inconvénient de nécessiter un matériel coûteux, à base de capteurs et de moyens de traitement d'informations complexes.The solution to this problem is to imprint a laterally inflected trajectory on the decoy rocket to attract the threat at a sufficient distance from the aircraft to be protected. For this purpose, we are currently using trajectory programming techniques which have the disadvantage of requiring expensive equipment, based on sensors and means for processing complex information.
L'invention a pour objet un autre procédé pour imprimer à un projectile une trajectoire infléchie latéralement de façon contrôlée après le tir, ainsi que des moyens pour sa mise en oeuvre, lesquels ont l'avantage d'être simples, et donc peu coûteux, et d'être facilement applicables au lancement d'une roquette leurre.The subject of the invention is another method for printing a projectile laterally deflected trajectory in a controlled manner after firing, as well as means for its implementation, which have the advantage of being simple, and therefore inexpensive, and to be easily applicable to the launching of a decoy rocket.
Le procédé selon l'invention est caractérisé en ce qu'il consiste à prévoir que le projectile soit pourvue d'une voilure de portance, et qu'au lancement à partir d'un engin en vol, ladite voilure de portance du projectile soit inclinée transversalement, de telle sorte que le facteur de charge ait une composante horizontale engendrant un déplacement latéral du projectile.The method according to the invention is characterized in that it consists in providing that the projectile is provided with a lift wing, and that when launched from a vehicle in flight, said wing lift of the projectile is inclined transversely, so that the load factor has a horizontal component causing a lateral displacement of the projectile.
Un dispositif pour la mise en oeuvre de ce procédé est caractérisé en ce qu'il comprend :
- une voilure de portance sur le projectile;
- une rampe de lancement sur l'engin porteur, dirigée horizontalement vers l'avant,
- des moyens pour retenir, le long de ladite rampe, le projectile dans une position angulaire déterminée autour de son axe longitudinal, correspondant à une inclinaison transversale donnée de la voilure de portance; et
- un moyen de propulsion pour assurer le lancement dudit projectile.
- an airfoil on the projectile;
- a launching ramp on the carrier, directed horizontally forward,
- means for retaining, along said ramp, the projectile in a determined angular position around its longitudinal axis, corresponding to a given transverse inclination of the lift wing; and
- a propulsion means for launching said projectile.
Dans le cas d'un projectile auto-propulsé tel qu'une roquette leurre devant effectuer un vol sensiblement horizontal, la voilure de portance est alors calculée de telle façon que pour la vitesse de croisière du projectile, la composante verticale du facteur de charge annule la pesanteur.In the case of a self-propelled projectile such as a decoy rocket intended to perform a substantially horizontal flight, the airfoil is then calculated so that for the cruising speed of the projectile, the vertical component of the load factor cancels gravity.
L'invention sera mieux comprise à l'aide des explications qui vont suivre et des dessins annexés, dans lesquels :
- la Fig. 1 est une vue schématique en plan d'une roquette leurre faisant partie d'un système conforme à l'invention,
- les Figs. 2 et 3 sont respectivement une vue en coupe transversale et une vue partielle en coupe longitudinale de la roquette de la Fig. 1, illustrant schématiquement une forme de réalisation préférée de sa voilure de portance,
- la Fig. 4 est une demi-vue en coupe longitudinale de l'arrière de la roquette, illustrant une forme de réalisation préférée de l'empennage de queue,
- la Fig. 5 est un diagramme représentant les composantes verticale et transversale du facteur de charge sur la voilure de portance lorsque celle-ci est inclinée transversalement à 45°,
- la Fig. 6 est un diagramme semblable à celui de la Fig. 5, pour le cas où la voilure de portance est inclinée transversalement à 60°,
- la Fig. 7 est un graphique sur lequel apparaissent les trajectoires de l'avion et de la roquette, suite au lancement de cette dernière,
- la Fig. 8 est une demi-vue en coupe axiale représentant schématiquement un dispositif de détection de roulis,
- la Fig. 9 est une demi-vue en coupe latérale selon la ligne IX-IX de la Fig. 8, et
- les Figs. 10 et 11 sont des vues schématiques illustrant sous deux formes de réalisation différentes des moyens de correction de roulis complémentaires d'un dispositif de détection de roulis tel que celui des Figs. 8 et 9.
- Fig. 1 is a schematic plan view of a decoy rocket forming part of a system according to the invention,
- Figs. 2 and 3 are respectively a cross-sectional view and a partial view in longitudinal section of the rocket of FIG. 1, schematically illustrating a preferred embodiment of its lift wing,
- Fig. 4 is a half view in longitudinal section of the rear of the rocket, illustrating a preferred embodiment of the tail fin,
- Fig. 5 is a diagram representing the vertical and transverse components of the load factor on the lift wing when the latter is inclined transversely at 45 °,
- Fig. 6 is a diagram similar to that of FIG. 5, in the case where the lift wing is inclined transversely at 60 °,
- Fig. 7 is a graph on which the trajectories of the aircraft and the rocket appear, following the launch of the latter,
- Fig. 8 is a half-view in axial section schematically showing a roll detection device,
- Fig. 9 is a half-view in lateral section along the line IX-IX in FIG. 8, and
- Figs. 10 and 11 are schematic views illustrating in two different embodiments means for correcting roll complementary to a roll detection device such as that of FIGS. 8 and 9.
Le projectile représenté dans les dessins est une roquette leurre destinée à être lancée à partir d'un avion, sensiblement dans la direction de son vecteur vitesse lorsqu'il est en vol horizontal.The projectile shown in the drawings is a decoy rocket intended to be launched from an airplane, substantially in the direction of its speed vector when it is in horizontal flight.
La roquette comprend un tronçon avant 1 contenant le leurre (lequel peut être d'un type quelconque, par exemple électromagnétique, pyrotechnique ou thermique), un tronçon intermédiaire 2 au niveau duquel se trouve la voilure de portance composée de deux ailes 4, et un tronçon arrière ou partie propulsive 3. Sur le tronçon 3, est implanté un empennage de queue formé d'une pluralité d'ailettes 5.The rocket comprises a
De préférence, les ailettes 5, de même que les ailes 4 formant la voilure de portance, sont déployables, ce qui permet d'avoir tous les éléments de la roquette inclus dans son calibre et de réduire les contraintes aérodynamiques en vol avant le lancement.Preferably, the
Les Figs. 2 et 3 représentent schématiquement un système simple de voilure de portance déployable, lequel assure une conjugaison d'ouverture des deux ailes 4. Celles-ci sont articulées de manière à pouvoir être rentrées complètement à l'intérieur du tronçon 2, dans la position représentée en traits tirets à la Fig. 3, et elles comportent des pignons 6 engrenés avec les deux côtés formant crémaillère d'une tige plate 7. Le déplacement longitudinal de la tige 7 nécessaire pour l'ouverture conjuguée des ailes 4 est assuré, par exemple, par des moyens à ressort et verrou libéré au moment du lancement de la roquette.Figs. 2 and 3 schematically represent a simple deployable wing system, which ensures an opening conjugation of the two wings 4. These are articulated so as to be able to be fully retracted inside the
Dans la forme de réalisation montrée, le tronçon de propulsion 3 comprend deux parties distinctes : soit un étage de décollage avec la charge 8 et les tuyères périphériques 9, lequel étage doit procurer l'accélération nécessaire au lancement, et un second étage de croisière avec la charge 10 et la tuyère centrale 11, qui a pour fonction de maintenir la roquette à une vitesse prédéterminée sensiblement constante, postérieurement au lancement.In the embodiment shown, the
La roquette prend place sur une rampe de lancement de l'avion, dirigée vers l'avant et orientée de manière à être parallèle au vecteur vitesse lorsque l'avion est en vol horizontal. La rampe peut être un rail, ou bien un tube lorsque la voilure de portance et l'empennage de la roquette sont déployables, et inclus dans son calibre en position repliée. A noter que dans ce second cas, le tube peut être un canon, le propulseur de décollage 8,9 n'ayant plus alors raison d'être.The rocket takes place on a plane launching ramp, directed forward and oriented so as to be parallel to the speed vector when the plane is in horizontal flight. The ramp may be a rail, or else a tube when the lift wing and the tail of the rocket are deployable, and included in its caliber in the folded position. Note that in this second case, the tube may be a cannon, the take-off thruster 8.9 then no longer having any reason for being.
Des moyens sont prévus pour assurer la mise en place de la roquette sur la rampe dans une position de rotation déterminée autour de son axe longitudinal, et pour assurer également le maintien de cette position tout au long de la rampe au moment du lancement. Dans le cas d'un tube de lancement, ces moyens comprennent, par exemple, un doigt solidaire de la roquette, engageable dans une gorge de guidage ménagée dans la paroi intérieure du tube.Means are provided to ensure the positioning of the rocket on the ramp in a determined position of rotation about its longitudinal axis, and also to maintain this position throughout the ramp at the time of launch. In the case of a launching tube, these means comprise, for example, a finger secured to the rocket, which can be engaged in a guide groove made in the inner wall of the tube.
Selon l'invention, la position en rotation de la roquette sur la rampe de lancement définit un angle déterminé α d'inclinaison transversale de sa voilure de portance (ailes de l'avion en position horizontale). D'autre part, ladite voilure de portance est calculée pour que dans ces conditions d'inclinaison transversale, et pour une vitesse V légèrement supérieure à la vitesse préconisée de l'avion au moment du tir, le facteur de charge résultant de la portance et de la composante de poussée du propulseur de croisière soit orienté perpendiculairement à l'axe de la roquette et ait une composante verticale qui annule la pesanteur. La poussée engendrée par le propulseur de croisière 10, 11 est approximativement égale à la traînée de la roquette, de manière à ce que cette vitesse V soit maintenue constante, ou légèrement croissante.According to the invention, the rotational position of the rocket on the launching ramp defines a determined angle α of transverse inclination of its lift wing (wings of the aircraft in horizontal position). On the other hand, said lift wing is calculated so that under these conditions of transverse inclination, and for a speed V slightly higher than the recommended speed of the aircraft at the time of the firing, the load factor resulting from the lift and of the thrust component of the cruise thruster is oriented perpendicular to the axis of the rocket and has a vertical component which cancels gravity. The thrust generated by the
La Fig. 5 représente le facteur de charge f sur un graphique (Oy, 0z) pour un angle d'inclinaison transversale α égal à 45°. Les projections fy et fz sont alors égales à g, ce qui implique pour f la valeur g√2.Fig. 5 represents the load factor f on a graph (Oy, 0z) for a transverse tilt angle α equal to 45 °. The projections f y and f z are then equal to g, which implies for f the value g√2.
Dans ces conditions, et dans la mesure où l'angle α reste constant, la roquette suit postérieurement au lancement une trajectoire horizontale circulaire de rayon R = V²/g. Cette trajectoire est représentée sur le graphique (Ox, Oy) de la Fig. 7, C étant le centre de la trajectoire, l'origine 0 représentant la position de l'avion à l'instant du lancement et Ox la direction de la trajectoire de celui-ci.Under these conditions, and insofar as the angle α remains constant, the rocket follows after launch a circular horizontal trajectory of radius R = V² / g. This trajectory is represented on the graph (Ox, Oy) of FIG. 7, C being the center of the trajectory, the
Au bout d'un temps T, la roquette parvient en L tandis que l'avion qui a suivi une trajectoire rectiligne arrive en A. On a alors :
d'où :
ϑ = VT/R = gT/V, et
ML = R sinϑ = V²/gsinϑ
OM = V²/g(1 - cosϑ) (M étant la projection de L sur 0y)At the end of a time T, the rocket arrives at L while the plane which has followed a rectilinear trajectory arrives at A. We then have:
from where :
ϑ = VT / R = gT / V, and
ML = R sinϑ = V² / gsinϑ
OM = V² / g (1 - cosϑ) (M being the projection of L on 0y)
En prenant les valeurs suivantes à titre d'exemple :
Va (vitesse avion) = 300 m/s
V (vitesse roquette) = 320 m/s
T = 10 s,
on déduit :
ϑ = 17,5°
OA = VaT = 3 000m
ML = 3 180 m
OM = 487 mTaking the following values as an example:
Va (airplane speed) = 300 m / s
V (rocket speed) = 320 m / s
T = 10 s,
we deduce :
ϑ = 17.5 °
OA = V a T = 3000m
ML = 3,180 m
OM = 487 m
La valeur de l'angle d'inclinaison transversale α peut être choisie dans une plage limitée inférieurement par la nécessité d'obtenir un écart latéral suffisant, et supérieurement par la crédibilité d'évolution de la roquette et par l'augmentation excessive du facteur de charge f. A titre indicatif, la Fig.6 illustre celui-ci pour un angle d'inclinaison transversale α de 60° : fz = g implique alors f = 2g et fy = 1,7g. En pratique, comme le calcul précédent le montre, la valeur de 45°, outre sa simplicité géométrique, représente un compromis intéressant.The value of the transverse angle of inclination α can be chosen within a range limited below by the need to obtain a sufficient lateral deviation, and above by the credibility of evolution of the rocket and by the excessive increase in the factor of charge f. As an indication, Fig.6 illustrates this for a transverse tilt angle α of 60 °: f z = g then implies f = 2g and f y = 1.7g. In practice, as the previous calculation shows, the value of 45 °, in addition to its geometric simplicity, represents an interesting compromise.
En réalité, l'inclinaison transversale de la voilure de portance ne reste pas constante, du fait que la roquette est généralement sujette à un entraînement en roulis qu'il y a lieu de réduire le plus possible, ou de corriger selon les applications.In reality, the transverse inclination of the lift wing does not remain constant, since the rocket is generally subject to a roll drive which should be reduced as much as possible, or corrected according to the applications.
Dans les cas où le temps de propulsion et, par conséquent, la portée de la roquette sont faibles, la variation aléatoire de l'angle α d'inclinaison transversale peut entraîner un écart acceptable par rapport à la trajectoire estimée. Il n'est alors pas nécessaire d'introduire une correction.In cases where the propulsion time and, consequently, the range of the rocket are short, the random variation of the angle α of transverse inclination can lead to an acceptable deviation from the estimated trajectory. There is therefore no need to introduce a correction.
Le calcul simplifié suivant permet d'évaluer une limite supérieure de l'altération de trajectoire : si l'angle α s'écarte dès le départ de la valeur nominale 45° (π/4) d'un accroissement algébrique dα supposé constant, l'accélération verticale appliquée à la roquette devient :
d'où z = 1/2gdαt²The following simplified calculation makes it possible to evaluate an upper limit of the trajectory alteration: if the angle α deviates from the start of the nominal value 45 ° (π / 4) from an algebraic increase dα assumed to be constant, l vertical acceleration applied to the rocket becomes:
hence z = 1 / 2gdαt²
Pour dα = 1° (0,017 radian) et t = 5 s, on trouve :
z = 2,14 mFor dα = 1 ° (0.017 radian) and t = 5 s, we find:
z = 2.14 m
On voit que pour une variation de α ne dépassant pas quelques degrés, la variation résultante d'altitude reste acceptable. Le critère est le risque que la roquette touche le sol trop tôt car, en pratique, ce type de projectile est lancé à très basse altitude, de l'ordre de 30 m.We see that for a variation of α not exceeding a few degrees, the resulting variation in altitude remains acceptable. The criterion is the risk that the rocket hits the ground too early because, in practice, this type of projectile is launched at very low altitude, of the order of 30 m.
L'altération latérale (suivant Oy à la Fig. 7) a moins d'importance puisqu'on ne cherche pas une trajectoire précise, mais seulement une évasive qui simule de façon crédible celle de l'avion tireur. Cette altération se traduirait par une variation maximale d'environ 2 m pour dα = 1°, t = 5 s et V = 320 m/s.The lateral alteration (according to Oy in Fig. 7) is less important since we are not looking for a precise trajectory, but only an evasive one which credibly simulates that of the firing plane. This alteration would result in a maximum variation of approximately 2 m for dα = 1 °, t = 5 s and V = 320 m / s.
Cet exemple permet d'estimer l'ordre de grandeur des altérations attendues. En réalité, l'hypothèse selon laquelle dα est constant est pénalisante car α varie suivant une loi plus ou moins alternative dans la mesure où les dissymétries de forme ont été réduites par la qualité de fabrication et où l'on prévoit un empennage libre en rotation autour de la roquette, car c'est lui qui est responsable pour la plus grande part de l'entraînement en roulis.This example makes it possible to estimate the order of magnitude of the expected alterations. In reality, the hypothesis according to which dα is constant is penalizing because α varies according to a more or less alternative law insofar as the asymmetries of shape have been reduced by the quality of manufacture and where a free tail in rotation is provided around the rocket, because it is he who is responsible for most of the roll training.
La Fig. 4 illustre un tel arrangement, dans lequel le tronçon de propulsion 3 comprend une partie 3a jointe au tronçon intermédiaire 2 et logeant le propulseur de croisière 10, 11, et une partie 3b sous la forme d'un bloc cylindrique monté libre en rotation, par l'intermédiaire de roulements 12, autour de la partie 3a. La partie 3b comprend le propulseur de décollage 8,9, ainsi que des moyens d'implantation de l'empennage, soit dans l'exemple montré des pattes 13 sur lesquelles sont articulées les ailettes 5. En variante, seul l'empennage est monté sur roulement autour du tronçon 3.Fig. 4 illustrates such an arrangement, in which the
Si les écarts de l'angle α et leur conséquence sur la trajectoire sont inacceptables, ce qui peut être le cas lorsque le temps de propulsion est relativement long, il devient nécessaire de prévoir des moyens de correction de roulis. Un exemple de réalisation simple et, par conséquent, peu coûteux de tels moyens est montré aux Figs. 8 à 11. Un volant 14 est monté libre en rotation autour de l'axe de la roquette, de manière à ne pas être entraîné par les écarts en roulis de cette dernière. Les frottements pourront être considérés négligeables dans la mesure où les sollicitations seront alternatives. En pratique, on favorise cette tendance, au détriment de sollicitations se répétant dans le même sens, en prévoyant un empennage libre en rotation tel que décrit précédemment.If the deviations of the angle α and their consequence on the trajectory are unacceptable, which may be the case when the propulsion time is relatively long, it becomes necessary to provide means for correcting roll. A simple and therefore inexpensive example of such means is shown in Figs. 8 to 11. A
Le volant 14, en restant immobile en rotation, sert de référence pour apprécier les écarts en roulis de la roquette. Les Figs. 8 et 9 illustrent des moyens par lesquels des signaux sont produits lorsque ces écarts atteignent une valeur déterminée dα dans l'un ou l'autre sens. Sur le volant 14, ces moyens consistent en un canal traversant 15, situé dans un plan radial r, à une distance d de l'axe.The
Solidaires du corps de la roquette, deux ensembles comprennent chacun une source lumineuse 16 d'un côté du volant 14, et une cellule photoélectrique 17 de l'autre côté. Comme on le voit à la Fig. 9, ces deux ensembles sont situés également à une distance d de l'axe, et sont écartés angulairement de la valeur dα par rapport au plan de symétrie longitudinal de la voilure de portance formée des ailes 4. En outre, un moyen est nécessaire pour amener le plan radial r du volant 14 en coïncidence avec ce plan de symétrie, entre les deux ensembles, Fig. 9. Le volant 14 est retenu dans cette position par un verrou libéré au lancement.Attached to the rocket body, two sets each include a
L'écartement angulaire dα des ensembles par rapport audit plan de symétrie correspond à l'écart d'angle de roulis maximum que l'on tolère. Lorsque cet écart maximum est atteint d'un côté ou de l'autre, comme l'illustre la Fig. 8, la cellule photoélectrique correspondante reçoit la lumière de sa source lumineuse et produit un signal exploitable pour commander un dispositif de correction de roulis dont deux formes de réalisation sont montrées à titre d'exemple aux Figs 10 et 11.The angular spacing dα of the assemblies with respect to said plane of symmetry corresponds to the maximum roll angle deviation that is tolerated. When this maximum deviation is reached on one side or the other, as illustrated in FIG. 8, the corresponding photoelectric cell receives light from its light source and produces a signal that can be used to control a roll correction device, two embodiments of which are shown by way of example in FIGS. 10 and 11.
A la Fig. 10, une réserve de gaz sous pression 18 est reliée par des conduits 19 à des gicleurs périphériques 20. Ils sont, de préférence, associés par paires dont chacune est apte à produire des impulsions de contre-roulis dans un sens, suite à l'ouverture sélective et contrôlée dans le temps d'électrovannes 21.In Fig. 10, a reserve of pressurized
Le dispositif de la Fig. 11 est constitué quant à lui de petits canons 22, également associés par paires, de préférence. En lançant des projectiles, ces canons produisent des efforts de recul exploitables en tant qu'impulsions de contre-roulis.The device of FIG. 11 is made up of
Lorsque les procédés décrits ci-dessus deviennent insuffisants parce qu'on recherche une précision plus élevée, ou qu'on travaille sur un temps plus long, ou pour une cause autre, il faut faire appel à des composants plus sophistiqués tels qu'une centrale inertielle, mais qui sont évidemment beaucoup plus coûteux.When the processes described above become insufficient because we seek higher precision, or that we work over a longer time, or for another reason, we must call on components more sophisticated such as an inertial unit, but which are obviously much more expensive.
Le domaine d'utilisation de l'invention ne se limite pas au lancement de roquettes leurres qui vient d'être décrit. Entre autres applications intéressantes, on peut citer le tir en dépointage dans la mesure où une grande précision n'est pas requise : soit par exemple pour un traitement de zone par salves de roquettes, l'avantage étant que l'avion peut opérer à basse altitude sans devoir passer au-dessus de l'objectif. Dans cette application, en cas d'horizontalité de trajectoire requise, les plages de valeurs possibles pour la vitesse V et l'angle α d'inclinaison transversale de la voilure de portance sont évidemment beaucoup plus importantes que pour le cas d'une roquette leurre.The field of use of the invention is not limited to the launching of decoy rockets which has just been described. Among other interesting applications, it is possible to point the shot in aiming since a high precision is not required: either for example for a zone treatment by rocket bursts, the advantage being that the plane can operate at low altitude without having to pass above the objective. In this application, in the event of required trajectory horizontality, the ranges of possible values for the speed V and the angle α of transverse inclination of the lift wing are obviously much greater than for the case of a decoy rocket. .
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9011990A FR2667390B1 (en) | 1990-09-28 | 1990-09-28 | METHOD AND DEVICE FOR PRINTING A LATERAL-BENDED PATH TO A PROJECTILE LAUNCHED FROM AN AIRCRAFT. |
FR9011990 | 1990-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0482970A1 true EP0482970A1 (en) | 1992-04-29 |
EP0482970B1 EP0482970B1 (en) | 1995-05-03 |
Family
ID=9400755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910402521 Expired - Lifetime EP0482970B1 (en) | 1990-09-28 | 1991-09-23 | Device for imparting a deviated trajectory to an airborne missile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0482970B1 (en) |
DE (1) | DE69109443T2 (en) |
FR (1) | FR2667390B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6682054B2 (en) * | 2000-02-24 | 2004-01-27 | Frederic Jean-Pierre Demole | Acceleration system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952970A (en) * | 1974-08-28 | 1976-04-27 | The United States Of America As Represented By The Secretary Of The Navy | Means for improving rocket missile accuracy |
US4389028A (en) * | 1976-01-14 | 1983-06-21 | The United States Of America As Represented By The Secretary Of The Navy | Flat trajectory projectile |
US4453426A (en) * | 1980-08-29 | 1984-06-12 | The United States Of America As Represented By The Secretary Of The Navy | Pivotal mono wing cruise missile with wing deployment and fastener mechanism |
GB2226624A (en) * | 1987-12-12 | 1990-07-04 | Thorn Emi Electronics Ltd | Projectile. |
-
1990
- 1990-09-28 FR FR9011990A patent/FR2667390B1/en not_active Expired - Fee Related
-
1991
- 1991-09-23 EP EP19910402521 patent/EP0482970B1/en not_active Expired - Lifetime
- 1991-09-23 DE DE1991609443 patent/DE69109443T2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952970A (en) * | 1974-08-28 | 1976-04-27 | The United States Of America As Represented By The Secretary Of The Navy | Means for improving rocket missile accuracy |
US4389028A (en) * | 1976-01-14 | 1983-06-21 | The United States Of America As Represented By The Secretary Of The Navy | Flat trajectory projectile |
US4453426A (en) * | 1980-08-29 | 1984-06-12 | The United States Of America As Represented By The Secretary Of The Navy | Pivotal mono wing cruise missile with wing deployment and fastener mechanism |
GB2226624A (en) * | 1987-12-12 | 1990-07-04 | Thorn Emi Electronics Ltd | Projectile. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6682054B2 (en) * | 2000-02-24 | 2004-01-27 | Frederic Jean-Pierre Demole | Acceleration system |
Also Published As
Publication number | Publication date |
---|---|
FR2667390B1 (en) | 1995-01-27 |
DE69109443T2 (en) | 1995-09-14 |
FR2667390A1 (en) | 1992-04-03 |
EP0482970B1 (en) | 1995-05-03 |
DE69109443D1 (en) | 1995-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0081421B1 (en) | Terminal guidance method and guided missile using it | |
EP3150957B1 (en) | Artillery projectile having a piloted phase | |
EP0655599A1 (en) | Anti-aircraft defence system and defence missile for such a system | |
FR2526149A1 (en) | ARM SYSTEM AND MUNITION OF OVERVOL | |
EP0439392B1 (en) | Projectile and its process of utilization | |
EP0273787A1 (en) | Projectile for the indirect attack of armoured vehicles | |
EP1600728B1 (en) | Airborne vehicle for ground observation | |
FR2785381A1 (en) | METHOD AND DEVICE FOR ALLOWING THE VEHICLE TO PERFORM A FAST TURN IN A FLUID MEDIUM | |
EP0277445A1 (en) | Carrier projectile with submissiles for creating a predetermined ground-striking pattern | |
EP1093561B1 (en) | Passive fail-safe device for mobile craft such as a helicopter | |
EP0482970B1 (en) | Device for imparting a deviated trajectory to an airborne missile | |
FR2796454A1 (en) | Weapon system mounted on stealth aircraft is concealed to minimize radar signature has concelaed tube fixed to the exterior and minmizes the reflection of electromagnetic waves | |
EP1369349B1 (en) | Weapon provided with a missile and which is mounted on a stealth aircraft, and a weapon system comprising a stealth aircraft and such a weapon | |
EP0316216B1 (en) | Gyroscopic stabilising device for a projectile steering element | |
FR2865537A1 (en) | FUSE FOR AMMUNITION | |
EP0062563B1 (en) | Lateral acceleration control method for a missile and corresponding weapon system | |
EP0257163B1 (en) | Method and apparatus for submarine-launching of an aerial missile | |
EP0420760B1 (en) | Method and system for autonomous guidance of a propelled airborne ballistic projectile towards a target | |
FR2504703A1 (en) | Guidance system for missile eliminating wind effects - uses array of impulse jets operating in brief regular bursts to correct wind forces on missile | |
FR2826109A1 (en) | METHOD FOR SEPARATING AN AIRPORTED WEAPON FROM A CARRIER | |
WO2024017767A1 (en) | Air vehicle having a protected front optical element | |
FR3103265A1 (en) | OFFSET ACTIVE LURE | |
WO2007115998A1 (en) | Device for controlling the initiation of the warhead of a rocket and method for launching the rocket equipped with such a device | |
EP0434474A1 (en) | Antitank missile having an angular momentum during its explosion, which takes place when flying over the target | |
BE901258A (en) | METHOD OF ACQUIRING A TARGET BY A GUIDED PROJECTILE AND PROJECTILE OPERATING ACCORDING TO THIS METHOD. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19920818 |
|
17Q | First examination report despatched |
Effective date: 19931001 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69109443 Country of ref document: DE Date of ref document: 19950608 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950622 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950809 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19950811 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960816 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960819 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960930 Ref country code: CH Effective date: 19960930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 91402521.8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970923 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050923 |