EP0474688A1 - Process for the production of polyethers derived from oxetanes. - Google Patents
Process for the production of polyethers derived from oxetanes.Info
- Publication number
- EP0474688A1 EP0474688A1 EP90908259A EP90908259A EP0474688A1 EP 0474688 A1 EP0474688 A1 EP 0474688A1 EP 90908259 A EP90908259 A EP 90908259A EP 90908259 A EP90908259 A EP 90908259A EP 0474688 A1 EP0474688 A1 EP 0474688A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- monomer
- catalyst
- polymerisation
- process according
- adduct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 34
- 150000002921 oxetanes Chemical class 0.000 title claims description 7
- 229920000570 polyether Polymers 0.000 title description 6
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000000178 monomer Substances 0.000 claims abstract description 43
- 239000003054 catalyst Substances 0.000 claims abstract description 22
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000002009 diols Chemical class 0.000 claims abstract description 13
- 125000002091 cationic group Chemical group 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims description 13
- 230000000977 initiatory effect Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 229920005862 polyol Polymers 0.000 claims 3
- 150000003077 polyols Chemical class 0.000 claims 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- 229920000642 polymer Polymers 0.000 abstract description 25
- 239000012535 impurity Substances 0.000 abstract description 17
- 239000003999 initiator Substances 0.000 abstract description 5
- 239000012267 brine Substances 0.000 abstract description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract description 4
- 238000006116 polymerization reaction Methods 0.000 abstract description 3
- 239000011541 reaction mixture Substances 0.000 abstract description 3
- 229920001971 elastomer Polymers 0.000 abstract description 2
- 239000000806 elastomer Substances 0.000 abstract description 2
- 239000012948 isocyanate Substances 0.000 abstract description 2
- 150000002513 isocyanates Chemical class 0.000 abstract description 2
- 238000010552 living cationic polymerization reaction Methods 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- 239000000047 product Substances 0.000 description 28
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 13
- 238000001556 precipitation Methods 0.000 description 11
- 239000012043 crude product Substances 0.000 description 10
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 3
- 150000004072 triols Chemical class 0.000 description 3
- VJQHJNIGWOABDZ-UHFFFAOYSA-N 3-methyloxetane Chemical compound CC1COC1 VJQHJNIGWOABDZ-UHFFFAOYSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 239000008364 bulk solution Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- MBAKFIZHTUAVJN-UHFFFAOYSA-I hexafluoroantimony(1-);hydron Chemical compound F.F[Sb](F)(F)(F)F MBAKFIZHTUAVJN-UHFFFAOYSA-I 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004260 weight control Methods 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- DMYOHQBLOZMDLP-UHFFFAOYSA-N 1-[2-(2-hydroxy-3-piperidin-1-ylpropoxy)phenyl]-3-phenylpropan-1-one Chemical compound C1CCCCN1CC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 DMYOHQBLOZMDLP-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920001079 Thiokol (polymer) Polymers 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/06—Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
- C08G65/16—Cyclic ethers having four or more ring atoms
- C08G65/18—Oxetanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
Definitions
- the present invention relates to the production of polyethers derived from oxetanes using cationic polymerisation initiators.
- the polyethers are an important class of polymers finding application as detergents, disinfectants, absorbents and elastomer prepolymers amongst other uses. For many of these uses it is highly desirable to produce a pure product of controlled molecular weight and controlled polydispersity.
- the cationic polymerisation of oxetanes involves the opening of the heterocycllc oxetane ring under catalytic conditions. This mechanism of polymerisation is described in US Patent No. 4393199 (Manser).
- the catalyst described by Manser combines with a preinitiator precursor to form an adduct capable of forming a cationic initiator with the oxetane monomer.
- Polymer chains are built up as oxetane molecules add on to the reactive end groups of the initiator molecules, the number of such chains being proportional to the number of preinitiator precursor molecules present.
- the preinitiator precursor followed by the catalyst are added to bulk solutions of the oxetane.
- the precursor is first added to the catalyst to form the adduct which is then added to the bulk solution of monomer.
- Principal examples given of the precursor and catalyst are, respectively, 1, 4-butane diol (a• difunctional alcohol) and boron trifluoride etherate, the diol replacing the ether to give the active adduct.
- a catalyst-to-diol molar ratio of at least 1.5 : 1 was found necessary to polymerise the monomer, whereas at a ratio of 3:1 and higher, loss of polymer molecular weight control occured and the polydispersivity of the product become much higher.
- the yield of polymer was only 63-68% when using 1, 4- butane diol as the precursor, indicating the presence of significant amounts of impurities in the product.
- NIMMO 3-nitratomethyl, 3-methyloxetane
- the present invention seeks to provide an improved process for the production of polyethers by quasi-living cationic polymerisation of oxetanes which provides products of increased reproducibility, reduced impurity levels and more complete control of molecular weight.
- the present invention provides a process for the polymerisation of an oxetane monomer comprising the steps of (a) mixing together a catalyst capable of catalysing the cationic polymerisation of the monomer with a preinitiator precursor to yield an active adduct of the catalyst and precursor, (b) bringing the adduct into contact with the monomer so as to cause the adduct to form an initiating species with the monomer and thereafter undergo chain extension polymerisation with further of said monomer, and (c) allowing the polymerisation to proceed substantially to completion, wherein step (b) is performed by slowly adding the monomer at a controlled rate to a quantity of the adduct in solution over a period of several hours.
- the rate of addition is preferably such that the catalyst is always in stoichiometric excess over the monomer.
- the rate of the polymerisation of the monomer in the presence of the catalyst is first determined and the rate of addition is set such that it is slower than this so that the catalyst remains in stoichiometric excess.
- the prior art process of Manser uses the initial stoichiometry and the reaction temperature to provide molecular weight control the present process adds monomer at a rate such that the ratio of the monomer to the catalyst does not exceed levels known to produce cyclic oligomerisation.
- the polymerisation is allowed to continue for a time, typically several hours, for example three hours.
- the monomer is added over a period of several hours, preferably over 12 hours or more, more preferably over 16 hours or more and particulary over 18 hours or more, with a maximum preferred time of 50 hours. It has been found that by slowly adding the monomer to the reaction mixture, an advantageous increase in molecular weight in the product is observed but, unlike the process described in US 4393199, without an associated increase in polydispersivity.
- the controlled addition of monomer in the process of the invention also affects the level of impurities in the product. If a bulk reaction is used to polymerise NIMMO as in the DTIC report about 25% of the product will comprise impurity other than the desired polymer as measured by NMR and gel permeation chromatography. Using the method of the present invention the impurities are reduced to 15% with the possibility of 5% being achieved if addition is carried out over a period of over 18 hours.
- oligomers tend to act as plasticisers and lower the glass transition temperature (T ) of cured, estomeric products of the reaction g between polyethers of this type and suitable curing agents (for example, isocyanates), and quite often oligomer impurities can also adversely affect the cure.
- Small molecule impurities normally give a less favourable result since they can undergo reactions which rapidly degrade the polymer. This is particularly important with the production of polymers of nitratoalkyl-substituted oxetanes such as polyNIMMO since the monomer and other impurities degrade rapidly with time and autocatalytically degrade the polymer.
- the type of impurity produced in the known batch reaction tends to comprise of unacceptably high levels of unreacted monomers and other small molecule products which can represent up to 30% of the isolated products with about 20% being oligo ers.
- the present process when applied to polyNIMMO improves on this purity significantly, providing a level of 5% impurities comprising of about 4% higher molecular weight oligomer impurities, which have less effect on the characteristics of the product, and only about 1% small molecule impurities.
- the catalyst used in the process of the present invention is preferably borontrifluoride etherate and is used in conjunction with diols or triols as a preinitiator precursor but many others may be employed, for example AgPF or AgSbF may be used with organic
- difunctional or trifunctional polymers may be produced by employing di- or trifunctional agents in the preinitiator (eg, diols or triols or bromides.)
- the ratio of the initiator components has also been found to affect the molecular weight of the product. Where a preinitiator is used care must be taken not to have an excess of its functional groups over the catalyst moieties or termination of the polymer will occur prematurely.
- the borontrifluoride etherate: butan-1,4- diol system an excess of the borontrifluoride over the diol of in the molar ratio of at least 1.5:1, preferably at least 2:1, is essential to avoid premature termination of the polymerisation reaction.
- the higher the ratio of borontrifluride to diol the higher the molecular weight of the product.
- a proportional increase in molecular weight ensues.
- the temperature of the reaction affects the polydispersity o of the product such that operation at, for example ⁇ 20 C will give a broad range of polyNIMMO molecular weights whereas -20 C will give a much narrower range. Due to the very low impractical ⁇ polymerisation rate achieved at -20 C which would necessitate extremely slow rates of monomer addition, it is preferred to employ o a temperature of 0 C which gives a sufficiently narrow weight range with a good polymerisation rate.
- both the monomer and the catalyst are used as solutions in a suitable solvent.
- the solvent used affects the reaction such the increasing polarity increases side reactions.
- Hydrocarbon solvents such as toluene give the best results with regard to purity but the preferred solvent for a combination of good rate with good purity is a halogenated hydrocarbon, preferably dichloromethane.
- 20% w/w monomer and catalyst solutions are used although other concentrations of up to 50% may be used.
- the present polymerisation is preferably performed in an apparatus comprising a reaction vessel provided with a monomer feed line including a controlling device for adjusting the rate of addition of monomer such that it may be added continuously at a rate such that the ratio of catalyst to monomer is at a controlled level at any one time.
- the control device preferably acts to achieve a pumped flow of monomer into the vessel.
- a pump acting upon the feed line from a monomer supply to the reaction vessel Preferably the pump is electrically powered for ease of control.
- a typically protocol for a polymerisation according to the o present invention involves the cooling of the reaction vessel to 0 C under nitrogen gas and injecting the preinitiator precursor and solvent, if used, into it.
- the catalyst precursor is added over several minutes and the mixture stirred for about one hour to form the active adduct.
- For the butan-l,4-diol system three times its volume of dichloromethane solvent is used and the diol forms a precipitate in this.
- the borontrifluoride etherate is added to the vessel with stirring over five minutes and the stirring continued over a period of one hour to dissolve the diol.
- the monomer is added to the stirred reaction mixture over a period predicted to provide the product with the molecular weight desired via use of a pump in the feed line, eg, a peristaltic pump acting on a flexible tube.
- the reaction is allowed to continue for a further period of several hours, typically three or four, before termination with an excess of brine.
- the organic layer is then washed with an aqueous base eg, sodium hydrogen carbonate and then with water, then separated polymer product is isolated by drying the organic layer over calcium chloride and optionally mixing it with methanol to precipitate the polymer before evaporation and drying in a vacuum oven. (Methanol precipitation is not necessary with the present invention but may be employed if desired.)
- the polymerisation reactor which consisted of a 500ml jacketed vessel equipped with a mechanical stirrer, nitrogen inlet/outlet, o thermometer and serum cap was cooled from 120 C to ambient temperatures under nitrogen. It was then connected to a cooling circulator and charged with a 25% w/v mixture of butane-1,4-diol in dichloromethane (3g in 9ml, 0.033 mol). The reactor was then o cooled under nitrogen to 0 C and a two fold excess of boron trifluoride etherate (9.44g, 0.066 mol) was then added dropwise over a period of 10 minutes. After a delay of one hour to allow the initiatory complex to form, 20% w/v NIMMO in dichloromethane (75g
- NIMMO in 375ml dichloromethane was pumped in at a constant flow rate over a period of 18 hours.
- a further polymerisation period of 4 hours was allowed before the reaction was terminated by the addition of a 20 fold excess of brine
- the polymer was then isolated by washing the organic layer with aqueous sodium hydrogen carbonate solution, drying over calcium chloride, then removing the solvent on a rotary o evaporator. The resultant tacky polymer was then dried at 50 C for
- the polymerisation reactor was set up and charged with reagents and reactants as in Example 1 and as before was run over an addition period of 18 hours. After the further polymerisation period of 4 hours and brine termination step the polymer was isolated by washing the organic layer with aqueous sodium hydrogen carbonate solution, dried over calcium chloride and then precipitated into methanol. o
- the resultant tacky polymer was then dried at 50 C for 60 hours in a vacuum oven. Yield was 55g (75%).
- the isolated product was free from all small molecule and oligomeric contaminants.
- Example 6 The preparation of trifunctional polyNIMMO (variation).
- Example 7 The preparation of trifunctional polyNIMMO (variation).
- Example 8-13 The polymerisation of oxetane(trimethylene oxide).
- Example 8 The preparation of difunctional polyoxetane.
- Example 9 The preparation of difunctional polyoxetane (variation).
- Example 10 The preparation of difunctional polyoxetane (variation).
- Example 11 The preparation of trifunctional polyoxetane.
- Example 12 The procedure was exactly the same as in Example 5 except that oxetane was used instead of NIMMO. The corresponding addition period was 16 hours. Conversion to a 92% pure crude product was 94% isolated yield. Precipitation into, methanol gave product contaminated with no oligomer in 76% yield. Example 12. The preparation of trifunctional polyoxetane (variation).
- Example 13 The preparation of trifunctional polyoxetane (variation).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
- Polyurethanes Or Polyureas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8912457 | 1989-05-31 | ||
GB898912457A GB8912457D0 (en) | 1989-05-31 | 1989-05-31 | Process for the production of polyethers from cyclic ethers by quasi-living cationic polymerisation |
PCT/GB1990/000838 WO1990015093A1 (en) | 1989-05-31 | 1990-05-30 | Process for the production of polyethers derived from oxetanes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0474688A1 true EP0474688A1 (en) | 1992-03-18 |
EP0474688B1 EP0474688B1 (en) | 1995-09-06 |
Family
ID=10657620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90908259A Expired - Lifetime EP0474688B1 (en) | 1989-05-31 | 1990-05-30 | Process for the production of polyethers derived from oxetanes |
Country Status (11)
Country | Link |
---|---|
US (1) | US5210179A (en) |
EP (1) | EP0474688B1 (en) |
JP (1) | JPH04505935A (en) |
AT (1) | ATE127489T1 (en) |
CA (1) | CA2056388C (en) |
DE (1) | DE69022232T2 (en) |
DK (1) | DK0474688T3 (en) |
ES (2) | ES2077065T3 (en) |
GB (2) | GB8912457D0 (en) |
PT (1) | PT94208B (en) |
WO (1) | WO1990015093A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9014647D0 (en) * | 1990-07-02 | 1993-06-02 | Secr Defence | Extrudable gun propellant composition |
US5380777A (en) * | 1993-01-08 | 1995-01-10 | Thiokol Corporation | Polyglycidyl nitrate plasticizers |
US5468841A (en) * | 1994-04-13 | 1995-11-21 | Aerojet General Corporation | Polymerization of energetic, cyclic ether monomers using boron trifluoride tetrahydrofuranate |
GB2303130A (en) * | 1995-07-10 | 1997-02-12 | Secr Defence | Cyclic oligomers of substituted cyclic ethers |
US6217682B1 (en) | 1997-10-27 | 2001-04-17 | Cordant Technologies Inc. | Energetic oxetane propellants |
US7320829B2 (en) | 1998-03-05 | 2008-01-22 | Omnova Solutions Inc. | Fluorinated polymer and amine resin compositions and products formed therefrom |
US6686051B1 (en) | 1998-03-05 | 2004-02-03 | Omnova Solutions Inc. | Cured polyesters containing fluorinated side chains |
DE69918815T2 (en) * | 1998-03-05 | 2005-08-18 | Omnova Solutions Inc., Fairlawn | EASILY CLEANABLE MULTILOOR POLYMERS |
US6815522B1 (en) * | 1998-11-12 | 2004-11-09 | Alliant Techsystems Inc. | Synthesis of energetic thermoplastic elastomers containing oligomeric urethane linkages |
US6997997B1 (en) | 1998-11-12 | 2006-02-14 | Alliant Techsystems Inc. | Method for the synthesis of energetic thermoplastic elastomers in non-halogenated solvents |
DE69911647T2 (en) * | 1998-11-12 | 2004-04-29 | Alliant Techsystems Inc., Edina | MANUFACTURE OF ENERGETIC THERMOPLASTIC ELASTOMERS WHICH CONTAIN POLYOXIRANE AS POLYOXETANE BLOCKS |
US7101955B1 (en) | 1998-11-12 | 2006-09-05 | Alliant Techsystems Inc. | Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks |
SE514207C2 (en) * | 1999-03-23 | 2001-01-22 | Perstorp Ab | Hyperbranched dendritic polyether and process for its preparation |
US6673889B1 (en) | 1999-06-28 | 2004-01-06 | Omnova Solutions Inc. | Radiation curable coating containing polyfuorooxetane |
US6403760B1 (en) | 1999-12-28 | 2002-06-11 | Omnova Solutions Inc. | Monohydric polyfluorooxetane polymer and radiation curable coatings containing a monofunctional polyfluorooxetane polymer |
US6962966B2 (en) | 1999-12-28 | 2005-11-08 | Omnova Solutions Inc. | Monohydric polyfluorooxetane oligomers, polymers, and copolymers and coatings containing the same |
JP4635295B2 (en) * | 2000-04-25 | 2011-02-23 | 日立化成工業株式会社 | Adhesive film |
EP1299498A1 (en) * | 2000-06-23 | 2003-04-09 | General Electric Company | Silicone pressure sensitive adhesive composition |
CN1209392C (en) * | 2001-05-14 | 2005-07-06 | 阿姆诺洼化学有限公司 | Polymeric surfactants derived from cyclic monomers having pendant fluorinated carbon groups |
US6660828B2 (en) * | 2001-05-14 | 2003-12-09 | Omnova Solutions Inc. | Fluorinated short carbon atom side chain and polar group containing polymer, and flow, or leveling, or wetting agents thereof |
CN109937222B (en) * | 2016-11-15 | 2021-08-17 | 毕克化学有限公司 | Oxetane-based polyethers as wetting agents and dispersants and their production |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113785A (en) * | 1976-10-29 | 1978-09-12 | Basf Wyandotte Corporation | Polyether polyols and method of preparing same |
US4393199A (en) * | 1981-05-12 | 1983-07-12 | S R I International | Cationic polymerization |
US4707540A (en) * | 1986-10-29 | 1987-11-17 | Morton Thiokol, Inc. | Nitramine oxetanes and polyethers formed therefrom |
US4764586A (en) * | 1986-10-29 | 1988-08-16 | Morton Thiokol, Inc. | Internally-plasticized polyethers from substituted oxetanes |
US4806613A (en) * | 1988-03-29 | 1989-02-21 | Morton Thiokol, Inc. | Method of producing thermoplastic elastomers having alternate crystalline structure for use as binders in high-energy compositions |
US5099042A (en) * | 1989-03-14 | 1992-03-24 | Thiokol Corporation | Synthesis of tetrafunctional polyethers and compositions formed therefrom |
-
1989
- 1989-05-31 GB GB898912457A patent/GB8912457D0/en active Pending
-
1990
- 1990-05-30 ES ES90908259T patent/ES2077065T3/en not_active Expired - Lifetime
- 1990-05-30 DK DK90908259.6T patent/DK0474688T3/en active
- 1990-05-30 PT PT94208A patent/PT94208B/en not_active IP Right Cessation
- 1990-05-30 EP EP90908259A patent/EP0474688B1/en not_active Expired - Lifetime
- 1990-05-30 AT AT90908259T patent/ATE127489T1/en not_active IP Right Cessation
- 1990-05-30 US US07/820,624 patent/US5210179A/en not_active Expired - Lifetime
- 1990-05-30 ES ES9001500A patent/ES2020779A6/en not_active Expired - Lifetime
- 1990-05-30 WO PCT/GB1990/000838 patent/WO1990015093A1/en active IP Right Grant
- 1990-05-30 CA CA002056388A patent/CA2056388C/en not_active Expired - Fee Related
- 1990-05-30 JP JP2508028A patent/JPH04505935A/en active Pending
- 1990-05-30 DE DE69022232T patent/DE69022232T2/en not_active Expired - Fee Related
-
1991
- 1991-11-19 GB GB9124692A patent/GB2248623B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9015093A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2056388A1 (en) | 1990-12-01 |
ATE127489T1 (en) | 1995-09-15 |
WO1990015093A1 (en) | 1990-12-13 |
DK0474688T3 (en) | 1995-10-23 |
GB2248623A (en) | 1992-04-15 |
GB9124692D0 (en) | 1992-01-15 |
GB8912457D0 (en) | 1989-07-19 |
US5210179A (en) | 1993-05-11 |
ES2020779A6 (en) | 1991-09-16 |
CA2056388C (en) | 2002-04-09 |
JPH04505935A (en) | 1992-10-15 |
ES2077065T3 (en) | 1995-11-16 |
PT94208B (en) | 1997-01-31 |
PT94208A (en) | 1991-02-08 |
GB2248623B (en) | 1993-01-06 |
DE69022232D1 (en) | 1995-10-12 |
EP0474688B1 (en) | 1995-09-06 |
DE69022232T2 (en) | 1996-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0474688B1 (en) | Process for the production of polyethers derived from oxetanes | |
US6765082B2 (en) | Method for producing highly-branched glycidol-based polyols | |
US4988797A (en) | Cationic polymerization of cyclic ethers | |
US5313000A (en) | Polymerization of cyclic ethers | |
US3850856A (en) | Hydroxyl-ended epihalohydrin polymers by cationic polymerization | |
JPS62174229A (en) | Polyether macromer and its production | |
CA2355727A1 (en) | Method for producing highly branched glycidol-based polyols | |
CN110317332B (en) | Catalyst system for preparing block polymer and method for catalytically synthesizing block polymer | |
US5468841A (en) | Polymerization of energetic, cyclic ether monomers using boron trifluoride tetrahydrofuranate | |
Kricheldorf et al. | Cationic polymerization of cyclocarbonates | |
CA1114993A (en) | Process | |
Yamashita et al. | Block Copolymerization. III. Syntheses of Multiblock Copolymers of Polytetrahydrofuran and Polystyrene by Ion Coupling | |
Cheradame et al. | Synthesis of polymers containing pseudohalide groups by cationic polymerization, 1. Homopolymerization of 3, 3‐bis (azidomethyl) oxetane and its copolymerization with 3‐chloromethyl‐3‐(2, 5, 8‐trioxadecyl) oxetane | |
JPS584053B2 (en) | HMF6 trialkyloxonium epihalohydrin | |
US3310504A (en) | Hydroxyl-ended copolymers of an epihalohydrin | |
Franta et al. | Model networks based on poly (1, 3‐dioxolane) | |
EP0102313A2 (en) | A novel composition and process for making a plastic resin | |
US4564718A (en) | Functionally terminated polymers from terpene monomers and their applications | |
Yamashita et al. | Cationic polymerization of cyclic ethers initiated by macromolecular dioxolenium perchlorate | |
EP0094014A1 (en) | Process for preparing colorless hydroxyl epihalohydrin polymers | |
Yamashita et al. | Cationic copolymerization of tetrahydrofuran with ε-caprolactone | |
Ryan et al. | Networks by fast epoxy polymerization | |
Sims | Polymerisation of tetrahydrofuran (part III) | |
강준원 et al. | Polymerization of tetrahydrofuran with new transition metal catalyst and its mechanism:(p-Methylbenzyl)-o-cyanopyridinium hexafluoroantimonate | |
Barbieri et al. | Homo-and copolymers of 3-tosyloxymethyl-3-methyl oxetane (TMMO) as precursors to energetic azido polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19911121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940804 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 127489 Country of ref document: AT Date of ref document: 19950915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69022232 Country of ref document: DE Date of ref document: 19951012 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2077065 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
BECA | Be: change of holder's address |
Free format text: 20011123 *QINETIQ LTD:85 BUCKINGHAM GATE, LONDON SW14 0LX |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020409 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20020412 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20020415 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020416 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020508 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
NLS | Nl: assignments of ep-patents |
Owner name: QINETIQ LIMITED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030425 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030428 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20030506 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030530 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 |
|
BERE | Be: lapsed |
Owner name: *QINETIQ LTD Effective date: 20030531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041201 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20041201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050530 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20040531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070417 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070412 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070411 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080531 |