EP0465700B1 - Single winding inductor - Google Patents

Single winding inductor Download PDF

Info

Publication number
EP0465700B1
EP0465700B1 EP90113180A EP90113180A EP0465700B1 EP 0465700 B1 EP0465700 B1 EP 0465700B1 EP 90113180 A EP90113180 A EP 90113180A EP 90113180 A EP90113180 A EP 90113180A EP 0465700 B1 EP0465700 B1 EP 0465700B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat pipe
single winding
cores
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113180A
Other languages
German (de)
French (fr)
Other versions
EP0465700A1 (en
Inventor
Rainer Dr. Ing. Marquardt
Manfred Dipl. Ing. Seibert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP90113180A priority Critical patent/EP0465700B1/en
Priority to DE9090113180T priority patent/DE59000938D1/en
Priority to AT90113180T priority patent/ATE86048T1/en
Publication of EP0465700A1 publication Critical patent/EP0465700A1/en
Application granted granted Critical
Publication of EP0465700B1 publication Critical patent/EP0465700B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating

Definitions

  • the invention relates to a single-conductor choke consisting of a tubular electrical conductor provided with cores, and a choke arrangement consisting of several single-conductor chokes.
  • Single-core chokes of this type are commercially available (company brochure "Saturable Thyristor Protection Chokes", VAC Vacuum Melt GmbH, M 036, 11/78).
  • cores are pushed onto a hollow cylindrical conductor.
  • Metal powder composite materials, ferrite cores or cores made of wound iron strip are provided as cores.
  • materials with a rectangular hysteresis loop can be provided as the core material or the throttle cores can be provided with air gaps (shear).
  • a heat pipe also known as a heat pipe
  • This heat transfer element has an evaporation zone, a transport zone and a condensation zone.
  • the heat pipe is a closed copper pipe.
  • the inner wall is either lined with a fine-mesh copper net or has a number of engraved longitudinal grooves.
  • the circuit closes when the condensate flows back to the evaporation zone via a capillary structure.
  • heat pipes are used the field of heating, ventilation and air conditioning technology.
  • heat pipes are used for special heat sinks for power amplifiers of hi-fi amplifiers (Elektronik Industrie, 1987, Issue 11, pages 64 to 72).
  • Thyristor power converters have long been used to convert electrical energy on traction vehicles. They primarily serve as actuators upstream of the traction motors for low-loss and comfortable adjustment of the tractive force and speed of the vehicles.
  • the thyristor converter forms three-phase current of variable frequency from the direct voltage of the contact wire to supply asynchronous drive motors.
  • the conversion of the energy causes losses that are distributed to the converter parts. Most of the losses occur in the thyristors and diodes and in the components that belong directly to their surroundings (resistors, capacitors, chokes, etc.).
  • the losses have to be discharged to the air.
  • This cooling air to which all losses are ultimately dissipated, is not clean. The air can be more or less polluted depending on the location of the locomotive. Brake and road dust as well as textile fibers can get into the cooling circuit on local trains. In locomotives used in industrial plants, the cooling air is often mixed with coal and ore dust and aggressive gases.
  • can cooling the loss-generating components are cooled with cooling cans through which liquid flows. This can cooling results in very good thermal efficiency for power semiconductors. Cooling other components in this way is less good or impossible. These include resistors, capacitors, step cores, chokes, etc., so that you often have to rely on air cooling.
  • a complete encapsulation of all loss-generating components of a converter can be achieved with bath cooling.
  • Oil bath cooling is known, with all loss-generating components inside a closed vessel being cooled in a liquid bath, partly with the help of heat sinks. The higher the flow rate of the bath on the surface to be cooled, the better the power loss is dissipated.
  • pumps are required which, like the oil dry coolers, must be arranged outside the vessel. These pumps and oil dry coolers increase the volume and weight of the converter.
  • a further development of bath cooling is the Siede bath cooling.
  • the coolant moves between the "liquid” and “steam” phases in evaporative cooling.
  • liquid boiling at low temperature changes into vapor, absorbing the heat of vaporization.
  • the vapor rises in the vessel and condenses on the inner surfaces of the vessel, the outer surfaces of which have cooling fins towards the air. The condensate drips back into the bath.
  • the invention is based on the object of specifying a single-line choke or a choke arrangement consisting of a plurality of single-line chokes which can be used in particular in a liquid-cooled converter, the cooling not being able to be influenced by contamination.
  • a heat pipe is provided as an electrical conductor
  • the condensation zone is provided with a thermally conductive mounting block which is provided as a heat sink.
  • the power loss can be optimally removed regardless of the pollution of the cooling air.
  • the mounting block can operate as a heat sink, it is blown with cooling air or at least a cooling box attached to a flat side of the mounting block.
  • the changeable factors of the heat pipe namely the diameter of the heat pipe, the angle of inclination and the working temperature, must be dimensioned.
  • a plurality of single-line throttles are combined to form a throttle arrangement such that the mounting blocks are thermally connected to one another by means of a clamping assembly with cooling sockets and the evaporation zones of at least two single-line throttles are electrically conductively connected to one another by means of electrically conductive connecting webs.
  • the heat pipe is detachably connected to its mounting block.
  • the assembly effort in the case of the throttle arrangement is reduced in particular since the tensioning assembly can be prefabricated, in whose assembly blocks the individual heat pipes with their cores can then be used. After that, only the evaporation zones of the individual heat pipes have to be electrically conductively connected to one another.
  • This single-line choke 2 has as the electrical conductor a heat pipe 4, also called a heat pipe, on which the cores 6 are pushed, and its condensation zone 8 is surrounded by a mounting block 10.
  • the cores 6 cover the entire transport zone 12 and for the most part the evaporation zone 14 of the heat pipe 4.
  • tube 4 there is a small amount of a boiling liquid and a fine-meshed copper mesh 16 under vacuum. Copper has been chosen as the material for tube 4, since this heat transfer element 4 is to take over the function of the conductor.
  • the heat pipe 4 is connected to the mounting block 10, which is also made of copper, in a heat-conducting manner.
  • the mounting block 10 serves as a heat sink, it is blown with cooling air, for example.
  • this mounting block 10 is grounded.
  • a voltage U is applied to the end of the heat pipe 4 opposite this mounting block 10.
  • Conventional choke cores can be used as cores 6, for example metal powder composite materials, ferrite cores or cores made of wound iron strip.
  • these choke cores 6 can be provided with an air gap (shear) or consist of a material with a rectangular hysteresis loop.
  • this inductor 2 In operation, this inductor 2 generates a power loss, whereby the inductor 2 heats up.
  • the heat sink at the condensation zone 8 creates a temperature distribution within the heat pipe 4, as a result of which the boiling liquid evaporates in the evaporation zone 14 opposite the condensation zone 8.
  • This steam flows to the heat sink and condenses there.
  • the condensate flows back to the evaporation zone 14 through the capillary structure of the fine-mesh copper network 16.
  • the known measures for increasing the heat transfer performance of the heat pipe 4 can also be applied to this single-line throttle.
  • FIG. 2 shows an advantageous embodiment of the single-conductor throttle 2 according to FIG. 1.
  • a bore 18 of the mounting block 10 is provided with an internal thread 20 and the heat pipe 4 in the area of the condensation zone 8 with an external thread 22.
  • the heat pipe 4 can be detachably connected to a mounting block 10.
  • both flat sides are each provided with a cooling box 24 and 26 in this embodiment.
  • These cooling boxes 24 and 26 can be part of a clamping device.
  • Clamping devices for generating thyristor columns are known (DE 29 25 775 Al).
  • FIG. 3 shows a throttle arrangement 28, consisting of several single-line throttles 2 according to FIG. 1, of which only three single-line throttles 2 are shown for the sake of clarity.
  • the evaporation zones 14 of at least two single-line throttles 2 are connected to one another by means of electrically conductive connecting webs 30.
  • the mounting blocks 10 of the single-conductor chokes 2 are thermally conductively connected to one another by means of a clamping assembly with cooling sockets 24, 26, 32, 34. Through the electrical series connection of several single-conductor chokes 2, the value of the inductance of the choke arrangement 28 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

The invention relates to a single-winding inductor (2) consisting of a tubular electrical conductor provided with cores (6) and an inductor arrangement (28) consisting of a plurality of single-winding inductors. A heat tube (4) is provided according to the invention as the electrical conductor, the condensation zone (8) of which heat tube (4) is provided with a heat-conducting installation block (10), which is provided as a heat sink. This ensures that the power loss can be dissipated in an optimum manner, irrespective of contamination of the cooling air.

Description

Die Erfindung bezieht sich auf eine Einleiterdrossel, bestehend aus einem mit Kernen versehenen rohrförmigen elektrischen Leiter, und eine Drosselanordnung, bestehend aus mehreren Einleiterdrosseln.The invention relates to a single-conductor choke consisting of a tubular electrical conductor provided with cores, and a choke arrangement consisting of several single-conductor chokes.

Derartige Einleiterdrosseln sind im Handel erhältlich (Firmenprospekt "Sättigbare Thyristor-Schutzdrosseln", VAC Vakuumschmelze GmbH, M 036, 11/78). Bei einer derartigen Einleiterdrossel sind auf einem hohlzylindrischen Leiter Kerne geschoben. Als Kerne sind Metallpulververbundwerkstoffe, Ferritkerne oder Kerne aus gewickeltem Eisenband vorgesehen. In Abhängigkeit von den Anforderungen an eine Drossel können einerseits als Kernmaterial Werkstoffe mit rechteckförmiger Hystereseschleife vorgesehen oder andererseits die Drosselkerne mit Luftspalten (Scherung) versehen sein.Single-core chokes of this type are commercially available (company brochure "Saturable Thyristor Protection Chokes", VAC Vacuum Melt GmbH, M 036, 11/78). In such a single-conductor choke, cores are pushed onto a hollow cylindrical conductor. Metal powder composite materials, ferrite cores or cores made of wound iron strip are provided as cores. Depending on the requirements of a choke, materials with a rectangular hysteresis loop can be provided as the core material or the throttle cores can be provided with air gaps (shear).

Aus der Zeitschrift "Sanitär- und Heizungstechnik", 1976, Heft 10, Seiten 632 bis 635, ist der Aufbau und die Funktion eines Wärmerohres, auch Heat-Pipe genannt, bekannt. Dieses Wärme-Übertragungselement weist eine Verdampfungszone, eine Transportzone und eine Kondensationszone auf. Die Heat-Pipe ist ein geschlossenes Kupferrohr. Die Innenwand ist entweder mit einem feinmaschigen Kupfernetz ausgekleidet oder mit einer Vielzahl von eingravierten Längsrillen versehen. Im Rohr befindet sich unter Vakuum eine geringe Menge einer Siedeflüssigkeit (Wärmeträger). Wird im Bereich der Verdampfungs- oder Heizzone dem evakuierten Wärmerohr Wärme zugeführt, so verdampft der in seinem Inneren befindliche Wärmeträger und strömt mit großer Geschwindigkeit über die Transportzone der Kondensationszone oder Kühlzone zu. Hier findet die Wärmeabgabe des Rohrkörpers an ein umgebendes Medium statt. Durch den Rückfluß des Kondensats zur Verdampfungszone über eine Kapillar-Struktur schließt sich der Kreislauf. Derartige Wärmerohre finden Anwendung auf dem Gebiet der Heiz-, Lüftungs- und Klimatechnik. Außerdem werden derartige Heat-Pipes für spezielle Kühlkörper für Leistungsendstufen von Hi-Fi-Verstärkern verwendet (Elektronik Industrie, 1987, Heft 11, Seiten 64 bis 72).The structure and function of a heat pipe, also known as a heat pipe, is known from the magazine "Sanitär- und Heizungstechnik", 1976, number 10, pages 632 to 635. This heat transfer element has an evaporation zone, a transport zone and a condensation zone. The heat pipe is a closed copper pipe. The inner wall is either lined with a fine-mesh copper net or has a number of engraved longitudinal grooves. There is a small amount of a boiling liquid (heat transfer medium) in the tube under vacuum. If heat is supplied to the evacuated heat pipe in the area of the evaporation or heating zone, the heat carrier located inside evaporates and flows at high speed over the transport zone to the condensation zone or cooling zone. This is where the heat from the pipe body is transferred to a surrounding medium. The circuit closes when the condensate flows back to the evaporation zone via a capillary structure. Such heat pipes are used the field of heating, ventilation and air conditioning technology. In addition, such heat pipes are used for special heat sinks for power amplifiers of hi-fi amplifiers (Elektronik Industrie, 1987, Issue 11, pages 64 to 72).

Thyristorstromrichter werden seit langem zur Umformung elektrischer Energie auf Triebfahrzeugen eingesetzt. In erster Linie dienen sie als den Fahrmotoren vorgeschaltete Stellglieder zur verlustarmen und komfortablen Einstellung von Zugkraft und Geschwindigkeit der Fahrzeuge. Der Thyristorstromrichter formt aus der Gleichspannung des Fahrdrahtes Drehstrom variabler Frequenz zur Speisung asynchroner Fahrmotoren. Die Umformung der Energie verursacht Verluste, die sich auf die Umrichterteile verteilen. Die meisten Verluste entstehen in den Thyristoren und Dioden und den Bauteilen, die unmittelbar zu deren Umgebung gehören (Widerstände, Kondensatoren, Drosseln, u.a.). Die Verluste müssen zur Luft abgeführt werden. Diese Kühlluft, zu der letztendlich alle Verluste abgeführt werden, ist nicht sauber. Die Luft kann nach Einsatzort des Triebfahrzeugs mehr oder weniger verschmutzt sein. Bei Nahverkehrsbahnen können Brems- und Straßenstaub sowie Textilfasern in den Kühlkreislauf gelangen. Bei Lokomotiven, die in Industriebetrieben eingesetzt sind, ist häufig die Kühlluft mit Kohle- und Erzstaub und aggressiven Gasen vermischt.Thyristor power converters have long been used to convert electrical energy on traction vehicles. They primarily serve as actuators upstream of the traction motors for low-loss and comfortable adjustment of the tractive force and speed of the vehicles. The thyristor converter forms three-phase current of variable frequency from the direct voltage of the contact wire to supply asynchronous drive motors. The conversion of the energy causes losses that are distributed to the converter parts. Most of the losses occur in the thyristors and diodes and in the components that belong directly to their surroundings (resistors, capacitors, chokes, etc.). The losses have to be discharged to the air. This cooling air, to which all losses are ultimately dissipated, is not clean. The air can be more or less polluted depending on the location of the locomotive. Brake and road dust as well as textile fibers can get into the cooling circuit on local trains. In locomotives used in industrial plants, the cooling air is often mixed with coal and ore dust and aggressive gases.

Im Aufsatz "Siedekühlung für Fahrzeugstromrichter" abgedruckt in der Zeitschrift "ZEV-Glas. Anm., Bd. 109, 1985, Nr. 2/3, Seiten 103 bis 113, werden mehrere Möglichkeiten angegeben, die einen zuverlässigen Verschmutzungsschutz ohne Filter gewährleisten.In the article "Boiling Cooling for Vehicle Power Converters" printed in the magazine "ZEV-Glas. Anm., Vol. 109, 1985, No. 2/3, pages 103 to 113, several options are specified which guarantee reliable pollution protection without a filter.

Bei einer sogenannten Dosenkühlung werden die verlusterzeugenden Bauteile mit von Flüssigkeit durchströmten Kühldosen entwärmt. Diese Dosenkühlung ergibt bei Leistungshalbleitern einen sehr guten thermischen Wirkungsgrad. Weniger gut bis unmöglich ist die Kühlung anderer Bauelemente auf diesem Wege. Dazu zählen Widerstände, Kondensatoren, Stufenkerne, Drosseln usw., so daß man dort oft wieder auf Luftkühlung angewiesen ist.In the case of so-called can cooling, the loss-generating components are cooled with cooling cans through which liquid flows. This can cooling results in very good thermal efficiency for power semiconductors. Cooling other components in this way is less good or impossible. These include resistors, capacitors, step cores, chokes, etc., so that you often have to rely on air cooling.

Eine vollständige Kapselung aller verlusterzeugenden Bauteile eines Stromrichters erreicht man mit der Badkühlung. Bekannt ist die Öl-Badkühlung, wobei alle verlusterzeugenden Bauteile innerhalb eines verschlossenen Gefäßes in einem Flüssigkeitsbad, zum Teil mit Unterstützung durch Kühlkörpern, entwärmt werden. Die Verlustleistung wird umso besser abgeführt, je höher die Strömungsgeschwindigkeit des Bades an der zu kühlenden Fläche ist. Für die Erzeugung einer ausreichenden Strömungsgeschwindigkeit werden Pumpen benötigt, die wie die Öl-Rückkühler außerhalb des Gefäßes angeordnet werden müssen. Durch diese Pumpen und Öl-Rückkühler erhöht sich das beanspruchte Volumen und Gewicht des Stromrichters.A complete encapsulation of all loss-generating components of a converter can be achieved with bath cooling. Oil bath cooling is known, with all loss-generating components inside a closed vessel being cooled in a liquid bath, partly with the help of heat sinks. The higher the flow rate of the bath on the surface to be cooled, the better the power loss is dissipated. To generate a sufficient flow rate, pumps are required which, like the oil dry coolers, must be arranged outside the vessel. These pumps and oil dry coolers increase the volume and weight of the converter.

Eine Weiterentwicklung der Badkühlung ist die Siede-Badkühlung. Gegenüber der Badkühlung (einphasiger Zustand des Kühlmittels) bewegt sich bei der Siedekühlung das Kühlmittel zwischen den Phasen "flüssig" und "Dampf". Am Bauelement bzw. an seinen Kühl-Siede-Körper geht bei niedriger Temperatur siedende Flüssigkeit unter Aufnahme der Verdampfungswärme in Dampf über. Der Dampf steigt im Gefäß auf und kondensiert an den Innenflächen des Gefäßes, dessen Außenflächen zur Luft hin Kühlrippen haben. Das Kondensat tropft zurück in das Bad.A further development of bath cooling is the Siede bath cooling. Compared to bath cooling (single-phase state of the coolant), the coolant moves between the "liquid" and "steam" phases in evaporative cooling. On the component or on its cooling-boiling body, liquid boiling at low temperature changes into vapor, absorbing the heat of vaporization. The vapor rises in the vessel and condenses on the inner surfaces of the vessel, the outer surfaces of which have cooling fins towards the air. The condensate drips back into the bath.

Der Erfindung liegt nun die Aufgabe zugrunde, eine Einleiterdrossel bzw. eine aus mehreren Einleiterdrosseln bestehende Drosselanordnung anzugeben, die insbesondere bei einem flüssigkeitsgekühlten Stromrichter eingesetzt werden kann, wobei die Kühlung durch eine Verschmutzung nicht beeinflußt werden kann.The invention is based on the object of specifying a single-line choke or a choke arrangement consisting of a plurality of single-line chokes which can be used in particular in a liquid-cooled converter, the cooling not being able to be influenced by contamination.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als elektrischer Leiter ein Wärmerohr vorgesehen ist, dessen Kondensationszone mit einem wärmeleitenden Montageblock versehen ist, der als Wärmesenke vorgesehen ist. Durch die Verwendung eines Wärmerohres als elektrischer Leiter in Verbindung eines als Wärmesenke ausgebildeten Montageblockes kann die Verlustleistung unabhängig von der Verschmutzung der Kühlluft optimal abgeführt werden. Damit der Montageblock als Wärmesenke operieren kann, wird dieser mit Kühlluft beblasen oder wenigstens eine Kühldose an eine Flachseite des Montageblocks angebracht. Um die Wärmetransportleistung zu erhöhen, sind die veränderbaren Faktoren des Wärmerohres, nämlich Durchmesser des Wärmerohres, Neigungswinkel und Arbeitstemperatur, zu dimensionieren.This object is achieved in that a heat pipe is provided as an electrical conductor, the condensation zone is provided with a thermally conductive mounting block which is provided as a heat sink. By using a heat pipe as an electrical conductor in connection with a mounting block designed as a heat sink, the power loss can be optimally removed regardless of the pollution of the cooling air. So that the mounting block can operate as a heat sink, it is blown with cooling air or at least a cooling box attached to a flat side of the mounting block. In order to increase the heat transfer capacity, the changeable factors of the heat pipe, namely the diameter of the heat pipe, the angle of inclination and the working temperature, must be dimensioned.

Bei einer vorteilhaften Anordnung sind mehrere Einleiterdrosseln zu einer Drosselanordnung derart zusammengesetzt, daß die Montageblöcke mittels eines Spannverbandes mit Kühldosen thermisch miteinander verbunden sind und die Verdampfungszonen wenigstens zweier Einleiterdrosseln mittels elektrisch leitender Verbindungsstege miteinander elektrisch leitend verbunden sind. Damit besteht die Möglichkeit den Wert der Induktivität der Drossel zu erhöhen.In an advantageous arrangement, a plurality of single-line throttles are combined to form a throttle arrangement such that the mounting blocks are thermally connected to one another by means of a clamping assembly with cooling sockets and the evaporation zones of at least two single-line throttles are electrically conductively connected to one another by means of electrically conductive connecting webs. This makes it possible to increase the inductance value of the choke.

Bei einer vorteilhaften Ausgestaltung der Einleiterdrossel ist das Wärmerohr mit seinem Montageblock lösbar verbunden. Dadurch wird insbesondere der Montageaufwand bei der Drosselanordnung verringert, da der Spannverband vorgefertigt werden kann, in dessen Montageblöcke dann die einzelnen Wärmerohre mit ihren Kernen eingesetzt werden können. Danach müssen nur noch die Verdampfungszonen der einzelnen Wärmerohre untereinander elektrisch leitend verbunden werden.In an advantageous embodiment of the single-line throttle, the heat pipe is detachably connected to its mounting block. As a result, the assembly effort in the case of the throttle arrangement is reduced in particular since the tensioning assembly can be prefabricated, in whose assembly blocks the individual heat pipes with their cores can then be used. After that, only the evaporation zones of the individual heat pipes have to be electrically conductively connected to one another.

Weitere vorteilhafte Ausgestaltungen der Einleiterdrossel sind den abhängigen Ansprüchen 4 bis 6 zu entnehmen.Further advantageous refinements of the single-line choke can be found in the dependent claims 4 to 6.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der Ausführungsbeispiele der erfindungsgemäßen Einleiterdrossel und ein Ausführungsbeispiel einer erfindungsgemäßen Drosselanordnung schematisch veranschaulicht ist.

  • Figur 1 zeigt eine Ausführungsform einer Einleiterdrossel nach der Erfindung, die
  • Figur 2 zeigt eine vorteilhafte Ausführungsform einer Einleiterdrossel und in
  • Figur 3 ist eine Ausführungsform einer Drosselanordnung, bestehend aus mehreren Einleiterdrosseln gemäß Figur 1, dargestellt.
To further explain the invention, reference is made to the drawing, in which exemplary embodiments of the single-core throttle according to the invention and an exemplary embodiment of a throttle arrangement according to the invention are schematically illustrated.
  • Figure 1 shows an embodiment of a single-line choke according to the invention, the
  • Figure 2 shows an advantageous embodiment of a single-line choke and in
  • FIG. 3 shows an embodiment of a throttle arrangement consisting of a plurality of single-core throttles according to FIG. 1.

In Figur 1 ist eine Ausführungsform der erfindungsgemäßen Einleiterdrossel 2 näher dargestellt. Diese Einleiterdrossel 2 hat als elektrischen Leiter ein Wärmerohr 4, auch Heat-Pipe genannt, auf dem Kerne 6 aufgeschoben sind, und seine Kondensationszone 8 ist mit einem Montageblock 10 umgeben. Die Kerne 6 decken die gesamte Transportzone 12 und zum überwiegenden Teil die Verdampfungszone 14 des Wärmerohrs 4 ab. Im Rohr 4 befindet sich unter Vakuum eine geringe Menge einer Siedeflüssigkeit und ein feinmaschiges Kupfernetz 16. Als Material für das Rohr 4 ist Kupfer gewählt worden, da dieses Wärme-Übertragungselement 4 die Funktion des Leiters übernehmen soll. Das Wärmerohr 4 ist mit dem Montageblock 10, der ebenfalls aus Kupfer besteht, wärmeleitend verbunden. Damit der Montageblock 10 als Wärmesenke dient, wird dieser beispielsweise mit Kühlluft angeblasen. Außerdem ist dieser Montageblock 10 geerdet. Das diesem Montageblock 10 gegenüberliegende Ende des Wärmerohres 4 ist mit einer Spannung U beaufschlagt. Als Kerne 6 können herkömmliche Drosselkerne verwendet werden, beispielsweise Metallpulververbundwerkstoffe, Ferritkerne oder Kerne aus gewickeltem Eisenband. Außerdem können diese Drosselkerne 6 mit einem Luftspalt (Scherung) versehen sein, oder aus einem Werkstoff mit rechteckförmiger Hystereseschleife bestehen.In Figure 1, an embodiment of the single-line choke 2 according to the invention is shown in more detail. This single-line choke 2 has as the electrical conductor a heat pipe 4, also called a heat pipe, on which the cores 6 are pushed, and its condensation zone 8 is surrounded by a mounting block 10. The cores 6 cover the entire transport zone 12 and for the most part the evaporation zone 14 of the heat pipe 4. In tube 4 there is a small amount of a boiling liquid and a fine-meshed copper mesh 16 under vacuum. Copper has been chosen as the material for tube 4, since this heat transfer element 4 is to take over the function of the conductor. The heat pipe 4 is connected to the mounting block 10, which is also made of copper, in a heat-conducting manner. So that the mounting block 10 serves as a heat sink, it is blown with cooling air, for example. In addition, this mounting block 10 is grounded. A voltage U is applied to the end of the heat pipe 4 opposite this mounting block 10. Conventional choke cores can be used as cores 6, for example metal powder composite materials, ferrite cores or cores made of wound iron strip. In addition, these choke cores 6 can be provided with an air gap (shear) or consist of a material with a rectangular hysteresis loop.

Im Betrieb erzeugt diese Drossel 2 eine Verlustleistung, wodurch die Drossel 2 sich erhitzt. Durch die Wärmesenke an der Kondensationszone 8 entsteht eine Temperaturverteilung innerhalb des Wärmerohres 4, wodurch in der der Kondensationszone 8 gegenüberliegenden Verdampfungszone 14 die Siedeflüssigkeit verdampft. Dieser Dampf strömt der Wärmesenke zu und kondensiert dort. Durch die Kapillar-Struktur des feinmaschigen Kupfernetzes 16 fließt das Kondensat zur Verdampfungszone 14 zurück. Die bekannten Maßnahmen zur Steigerung der Wärmetransferleistung des Wärmerohres 4 können auch bei dieser Einleiterdrossel angewendet werden. Durch die Kombination von Wärmerohr 4 als elektrischen Leiter und die Ausgestaltung des Montageblocks 10 als Wärmesenke erhält man in Verbindung mit Kernen 6 eine Einleiterdrossel 2, bei der die Verlustleistung optimal abgeführt wird. Diese optimale Abwärme kann auch durch Verschmutzung nicht gestört werden.In operation, this inductor 2 generates a power loss, whereby the inductor 2 heats up. The heat sink at the condensation zone 8 creates a temperature distribution within the heat pipe 4, as a result of which the boiling liquid evaporates in the evaporation zone 14 opposite the condensation zone 8. This steam flows to the heat sink and condenses there. The condensate flows back to the evaporation zone 14 through the capillary structure of the fine-mesh copper network 16. The known measures for increasing the heat transfer performance of the heat pipe 4 can also be applied to this single-line throttle. The combination of heat pipe 4 as an electrical conductor and the design of the mounting block 10 as a heat sink, in conjunction with cores 6, gives a single-conductor choke 2 in which the power loss is optimally dissipated. This optimal waste heat cannot be disturbed by pollution.

In Figur 2 ist eine vorteilhafte Ausführungsform der Einleiterdrossel 2 nach Figur 1 näher dargestellt. Bei dieser Ausführungsform ist eine Bohrung 18 des Montageblocks 10 mit einem Innengewinde 20 und das Wärmerohr 4 im Bereich der Kondensationszone 8 mit einem Außengewinde 22 versehen. Dadurch ist das Wärmerohr 4 lösbar mit einem Montageblock 10 verbindbar. Damit der Montageblock 10 als Wärmesenke wirkt, sind bei dieser Ausführungsform beide Flachseiten jeweils mit einer Kühldose 24 und 26 versehen. Durch diese Kühldosen 24 und 26 fließt eine Flüssigkeit, insbesondere Wasser. Diese Kühldosen 24 und 26 können Bestandteil einer Spannvorrichtung sein. Spannvorrichtungen zur Erzeugung von Thyristorsäulen sind bekannt (DE 29 25 775 Al). Mittels dieser lösbaren Verbindung ist es möglich, den Montageaufwand zu verkleinern, da die Spannvorrichtung vormontiert und gegebenenfalls in einer flüssigkeitsgekühlten Stromrichteranlage eingebaut werden kann.FIG. 2 shows an advantageous embodiment of the single-conductor throttle 2 according to FIG. 1. In this embodiment, a bore 18 of the mounting block 10 is provided with an internal thread 20 and the heat pipe 4 in the area of the condensation zone 8 with an external thread 22. As a result, the heat pipe 4 can be detachably connected to a mounting block 10. So that the mounting block 10 acts as a heat sink, both flat sides are each provided with a cooling box 24 and 26 in this embodiment. A liquid, in particular water, flows through these cooling boxes 24 and 26. These cooling boxes 24 and 26 can be part of a clamping device. Clamping devices for generating thyristor columns are known (DE 29 25 775 Al). By means of this detachable connection, it is possible to reduce the assembly effort, since the tensioning device can be preassembled and, if necessary, installed in a liquid-cooled converter system.

Die Figur 3 zeigt eine Drosselanordnung 28, bestehend aus mehreren Einleiterdrosseln 2 gemäß Figur 1, von denen der Übersichtlichkeit halber nur drei Einleiterdrosseln 2 dargestellt sind. Bei dieser Drosselanordnung 28 sind die Verdampfungszonen 14 wenigstens zweier Einleiterdrosseln 2 mittels elektrisch leitender Verbindungsstege 30 miteinander verbunden. Außerdem sind die Montageblöcke 10 der Einleiterdrosseln 2 mittels eines Spannverbandes mit Kühldosen 24, 26, 32, 34 miteinander thermisch leitend verbunden. Durch die elektrische Reihenschaltung mehrerer Einleiterdrosseln 2 kann man den Wert der Induktivität der Drosselanordnung 28 erhöhen.FIG. 3 shows a throttle arrangement 28, consisting of several single-line throttles 2 according to FIG. 1, of which only three single-line throttles 2 are shown for the sake of clarity. In this throttle arrangement 28, the evaporation zones 14 of at least two single-line throttles 2 are connected to one another by means of electrically conductive connecting webs 30. In addition, the mounting blocks 10 of the single-conductor chokes 2 are thermally conductively connected to one another by means of a clamping assembly with cooling sockets 24, 26, 32, 34. Through the electrical series connection of several single-conductor chokes 2, the value of the inductance of the choke arrangement 28 can be increased.

Claims (6)

  1. Single winding inductor (2), comprising a tubular electric conductor provided with cores (6), characterized in that a heat pipe (4) is provided as the electric conductor, the condensation zone (8) of which is provided with a heat-conducting assembly block (10), provided as a heat sink.
  2. An inductor arrangement (28) having several single winding inductors (2) according to claim 1, characterized in that the assembly blocks (10) are thermally connected to one another by means of a clamping connection with cooling containers (24, 26, 32, 34) and the vaporization zones (14) of at least two single winding inductors (2) are connected to one another in an electrically conductive manner by means of electrically conductive connection bars (30).
  3. Single winding inductor (2) according to claim 1 or 2, characterized in that the heat pipe (4) is releasably connected to its assembly block (10).
  4. Single winding inductor (2) according to claim 1 or 2, characterized in that the cores (6) and the heat pipe (4) are connected to one another in a heat-conducting manner.
  5. Single winding inductor (2) according to claim 1 or 2, characterized in that the heat pipe (4) is provided with an external thread (22).
  6. Single winding inductor (2) according to claim 3, characterized in that a bore (18) of the assembly block (10) is provided with an internal thread (20) and the condensation zone (8) of the heat pipe (4) is provided with a corresponding external thread (22).
EP90113180A 1990-07-10 1990-07-10 Single winding inductor Expired - Lifetime EP0465700B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP90113180A EP0465700B1 (en) 1990-07-10 1990-07-10 Single winding inductor
DE9090113180T DE59000938D1 (en) 1990-07-10 1990-07-10 SINGLE THROTTLE.
AT90113180T ATE86048T1 (en) 1990-07-10 1990-07-10 SINGLE-LINE CHOKE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90113180A EP0465700B1 (en) 1990-07-10 1990-07-10 Single winding inductor

Publications (2)

Publication Number Publication Date
EP0465700A1 EP0465700A1 (en) 1992-01-15
EP0465700B1 true EP0465700B1 (en) 1993-02-24

Family

ID=8204200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113180A Expired - Lifetime EP0465700B1 (en) 1990-07-10 1990-07-10 Single winding inductor

Country Status (3)

Country Link
EP (1) EP0465700B1 (en)
AT (1) ATE86048T1 (en)
DE (1) DE59000938D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723958C2 (en) * 1997-06-06 2000-08-24 Siemens Ag Tension bandage
DE19738946C2 (en) * 1997-09-05 2000-10-26 Siemens Ag Choke coil without core
EP2977996A1 (en) 2014-07-21 2016-01-27 Siemens Aktiengesellschaft Choke coil of a power converter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9309428U1 (en) * 1993-06-24 1993-08-12 Siemens Ag, 80333 Muenchen, De
DE10019696B4 (en) * 1999-04-22 2007-06-06 International Rectifier Corp., El Segundo Circuit for reducing interference radiation in motor supply circuit applications
US20100008112A1 (en) * 2008-07-09 2010-01-14 Feng Frank Z Interphase transformer
US20150061804A1 (en) * 2012-03-15 2015-03-05 Toyota Jidosha Kabushiki Kaisha Reactor unit
CN113314305B (en) * 2021-05-27 2023-07-21 河南安益达电工有限公司 Box transformer and intelligent heat dissipation control system thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211671A (en) * 1987-10-28 1989-07-05 Johan Christian Fitter Electromagnetic devices with superconducting windings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723958C2 (en) * 1997-06-06 2000-08-24 Siemens Ag Tension bandage
DE19738946C2 (en) * 1997-09-05 2000-10-26 Siemens Ag Choke coil without core
EP2977996A1 (en) 2014-07-21 2016-01-27 Siemens Aktiengesellschaft Choke coil of a power converter

Also Published As

Publication number Publication date
EP0465700A1 (en) 1992-01-15
ATE86048T1 (en) 1993-03-15
DE59000938D1 (en) 1993-04-01

Similar Documents

Publication Publication Date Title
DE60125493T2 (en) Improved heat sink for an inverter of an electric motor
EP0456169B1 (en) Electric motor fed by frequency converter
DE69723435T2 (en) CONTROLLABLE INDUCTOR
EP0465700B1 (en) Single winding inductor
DE3328732A1 (en) CONSTANT PRESSURE COOLING SYSTEM
WO2018197267A1 (en) Induction charging device with cooling arrangement
DE3642723A1 (en) STATIC FREQUENCY INVERTER, ESPECIALLY FREQUENCY INVERTER FOR CONTROLLING AND / OR REGULATING THE PERFORMANCE SIZE OF AN ELECTRIC MOTOR
EP1092340B1 (en) Cooling system for a power electronic unit for operating at least one electrical group of a motor vehicle
EP0705530B1 (en) Converter module
EP3524463B1 (en) Electronic unit for inductive charging systems
WO2020187996A1 (en) Vehicle electrical system power converter
DE102019128721A1 (en) Power electronics device for a separately excited synchronous machine and motor vehicle
DE3613802C2 (en)
DE10218343A1 (en) Electric temperature control device for air entering vehicle interior has Peltier element(s) with first temperature on one side, different temperature on other side when operating voltage applied
DE19524115A1 (en) Rectifier unit with separate compartments e.g. for urban railway and trams - has one compartment for liquid-cooled rectifier valves and associated components plus second compartment for heat exchanger, separated by finned wall
DE2163209A1 (en) Air cooling system for a high voltage DC valve
EP3427377A1 (en) Circuit arrangement for a frequency converter
DE102020205236A1 (en) Power converter
EP3131377A1 (en) Phase module for a power converter
DE102020135044A1 (en) Primary unit of a propulsion device of a magnetic levitation train
DE19960841A1 (en) Power converter device with a two-phase heat transfer device
DE102013105120B4 (en) Electrical and inductive components
WO2005028242A1 (en) Power converter assembly
WO2020260537A1 (en) Receiving device for receiving and cooling insertion modules
DE102020104336A1 (en) Power electronic device and power electronic functional system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19920702

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 86048

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59000938

Country of ref document: DE

Date of ref document: 19930401

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930319

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981102

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000713

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000718

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010710

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020619

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100710