EP0458045B1 - Metal carrier matrix for a catalytic reactor - Google Patents
Metal carrier matrix for a catalytic reactor Download PDFInfo
- Publication number
- EP0458045B1 EP0458045B1 EP91105500A EP91105500A EP0458045B1 EP 0458045 B1 EP0458045 B1 EP 0458045B1 EP 91105500 A EP91105500 A EP 91105500A EP 91105500 A EP91105500 A EP 91105500A EP 0458045 B1 EP0458045 B1 EP 0458045B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support matrix
- metal support
- stacks
- point
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/02—Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/02—Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
- F01N2330/04—Methods of manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/1234—Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
Definitions
- the invention relates to a metal support matrix for a catalytic reactor for exhaust gas purification, in particular for internal combustion engines, according to the preamble of patent claim 1.
- the aforementioned method has the disadvantage that special shapes are produced by inserting loose filler pieces Need to become. It is also disadvantageous that devouring thicker sheet stacks, which are required for producing larger catalyst diameters, requires extraordinarily high forces.
- the invention is therefore based on the object of designing a metal support matrix of the type mentioned at the outset in such a way that a homogeneous, easy-to-manufacture honeycomb body is formed from a multiplicity of sheet metal layers and, if possible, each sheet metal layer comes into contact with the enveloping jacket.
- the proposed design allows the simple production of a metal support matrix from a large number of sheet metal layers.
- the adaptation to different shapes of the jacket is easily possible.
- a variety of shapes can be created by varying the length and / or the thickness of the individual stacks will.
- special shapes for example elliptical carrier matrices, it is not necessary to insert filler pieces, as a result of which a substantial reduction in production costs is achieved.
- Catalyst forms with larger diameters can advantageously be designed in such a way that the metal support matrix consists of a larger number of stacks. This reduces the thickness of the individual stacks, the individual sheet layers are evenly distributed in the metal support matrix, and the forces required for the stacks to be devoured are reduced.
- the configuration of the metal carrier matrix from four stacks is also particularly advantageous, since this configuration results in a very uniform distribution of the lines of contact of the sheet metal layers with the jacket on the inner jacket surface.
- the embodiment according to claim 5 enables the advantageous embodiment of an elliptical or ellipse-like catalyst shape.
- the even distribution of the lines of contact on the inner circumferential surface in elliptical or elliptical-like catalyst shapes can be expediently obtained by pressing a round metal support matrix, which has a larger cavity inside, to the desired elliptical or elliptical-like shape.
- the shape of the stack from which the metal carrier matrix is made always has two parallel edges in the side view.
- the ends of the stack can run out at different angles, so that the geometric shapes described in the characterizing part of claim 1 result.
- FIG. 1a A circular catalyst shape is shown in FIG. 1a and the associated arrangement of the stacks (3) is shown schematically in FIG. 1b.
- the dimensions of the stacks (3) are identical. They have a rectangular shape, in the illustration shown here corrugated (4) and smooth (5) sheet metal layers are stacked on top of each other.
- the stacks (3) are arranged such that the lines of contact in the side view give the shape of a right-angled cross (6), which is shown in the drawing by thick lines.
- the stacks (3) are wrapped clockwise around a point of symmetry (8), which is the center of the cross (6) here.
- the metal carrier matrix (1) thus produced is then inserted into a jacket (2).
- the sheet metal layers (4, 5) of the metal carrier matrix (1) and the jacket (2) are connected in the next production step by a joining technique, preferably by soldering.
- FIG. 2 shows a square catalyst shape (with rounded corners).
- the arrangement of the stacks (3) is cruciform, as in the round catalyst shape.
- the individual stacks (3) are not rectangular in the side view, but tapering at the outer end, ie trapezoidal. The manufacturing process proceeds as indicated in the description of FIG. 1.
- Fig. 3a an elongated catalyst shape and in Fig. 3b the associated arrangement of the stacks (3) is shown schematically.
- the arrangement of the stacks (3) is also cruciform.
- the stacks (3) above and below a displacement plane E-E which is perpendicular to the plane of the drawing, are displaced relative to each other, so that a displaced cross (7) results, which is shown in the drawing by thick lines.
- the distance between the stacks (3) perpendicular to the displacement plane E-E determines the width of the catalyst.
- the stacks (3) as already shown in the description of FIG. 1, are wrapped clockwise around the point of symmetry (8), which is arranged on the displacement plane E-E and centrally to both displaced stacks (3). The further production steps take place as already stated above.
- FIGS. 4b and 5b schematically illustrate elliptical catalyst shapes and in FIGS. 4b and 5b the associated arrangements of the stacks (3).
- the arrangement of the stacks (3) is similar to the arrangement shown in Fig. 3b.
- the stacks (3) shown here vary in thickness and length. This results in further different forms for the catalyst. The manufacturing process proceeds as explained in the description of FIG. 1.
- FIG. 6a shows a further embodiment of an elliptical catalytic converter shape
- FIG. 6b shows the associated arrangement of the stacks before devouring
- FIG. 6c shows the associated arrangement of the stacks after devouring.
- the stacks (3) are in the side view parallelogram. They are arranged in a cross shape around the point of symmetry (8) in such a way that a central square cavity (9) is formed.
- the stacks (3) are devoured clockwise around the cavity (9) or the point of symmetry (8), which forms the center of the cavity (9).
- a round shape of the metal carrier matrix (1) results, which is shown schematically in FIG. 6c. Starting from this round shape, the metal support matrix (1) is pressed into the desired elliptical shape using suitable tools.
- the central cavity (9) is closed.
- the metal support matrix (1) is inserted into a jacket (2) and connected to it by joining technology.
- a round catalyst shape is shown, which consists of eight stacks (3).
- Fig. 7b shows the symmetrical arrangement of the eight parallelogram stacks (3) around the point of symmetry (8) before devouring.
- the stacks (3) are the same in thickness and length. Their end faces are brought into contact with the side faces of the respective adjacent stacks (3), the free ends of the stacks (3) are intertwined in the same direction around the point of symmetry (8).
- the metal carrier matrix (1) thus produced is inserted into the jacket (2) and connected to it by joining technology.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
Die Erfindung betrifft eine Metallträgermatrix für einen katalytischen Reaktor zur Abgasreinigung, insbesondere für Brennkraftmaschinen, nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a metal support matrix for a catalytic reactor for exhaust gas purification, in particular for internal combustion engines, according to the preamble of
Es ist bekannt (EP-A1 245 737) eine Metallträgermatrix für einen katalytischen Reaktor dadurch herzustellen, daß mehrere glatte und gewellte Metallbänder abwechselnd zu einem Stapel aufeinander geschichtet und daß die Enden dieses Stapels um zwei Fixpunkte verschlungen werden. Diese Metallträgermatrix wird in einen rohrförmigen Mantel eingesetzt und mit diesem fügetechnisch verbunden.It is known (EP-A1 245 737) to produce a metal support matrix for a catalytic reactor in that several smooth and corrugated metal strips are stacked alternately in a stack and that the ends of this stack are devoured by two fixed points. This metal support matrix is inserted into a tubular jacket and connected to it by joining technology.
Die vorgenannte Methode weist den Nachteil auf, daß Sonderformen durch das Einlegen loser Füllstücke hergestellt werden müssen. Nachteilig ist außerdem, daß ein Verschlingen dickerer Blechstapel, die zur Herstellung größerer Katalysatordurchmesser erforderlich sind, ausserordentlich hohe Kräfte erfordert.The aforementioned method has the disadvantage that special shapes are produced by inserting loose filler pieces Need to become. It is also disadvantageous that devouring thicker sheet stacks, which are required for producing larger catalyst diameters, requires extraordinarily high forces.
Es ist auch bekannt (DE-U1 89 08 671), Metallträgermatrizen aus mehr als zwei Stapeln herzustellen, wobei die einzelnen Stapel um eine Knicklinie gefaltet und anschließend gemeinsam verschlungen werden. Nachteilig ist hierbei, daß jeder einzelne Stapel in einem zusätzlichen Arbeitsgang gefaltet werden muß. Außerdem verbleiben bei dieser Art der Herstellung einer Metallträgermatrix im Inneren der Trägermatrix größere Bereiche, die nicht durch den Wabenkörper ausgefüllt werden, insbesondere im Zentrum der Trägermatrix.It is also known (DE-U1 89 08 671) to produce metal carrier matrices from more than two stacks, the individual stacks being folded around a folding line and then being devoured together. The disadvantage here is that each individual stack must be folded in an additional operation. In addition, with this type of production of a metal carrier matrix, larger areas remain inside the carrier matrix that are not filled by the honeycomb body, in particular in the center of the carrier matrix.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Metallträgermatrix der eingangs genannten Art so auszubilden, daß ein homogener, einfach zu fertigender Wabenkörper aus einer Vielzahl von Blechlagen entsteht und möglichst jede Blechlage mit dem umhüllenden Mantel in Berührung kommt.The invention is therefore based on the object of designing a metal support matrix of the type mentioned at the outset in such a way that a homogeneous, easy-to-manufacture honeycomb body is formed from a multiplicity of sheet metal layers and, if possible, each sheet metal layer comes into contact with the enveloping jacket.
Zur Lösung der Aufgabe wird ein Wabenkörper mit den kennzeichnenden Merkmalen des Anspruchs 1 vorgeschlagen. Weitere vorteilhafte Ausgestaltungen einer solchen Metallträgermatrix sind in den Unteransprüchen 2 bis 8 aufgezeigt.To achieve the object, a honeycomb body with the characterizing features of
Die vorgeschlagene Ausgestaltung erlaubt die einfache Herstellung einer Metallträgermatrix aus einer Vielzahl von Blechlagen. Insbesondere die Anpassung an unterschiedliche Formen des Mantels ist leicht möglich. Durch eine Variierung der Länge und/oder der Dicke der einzelnen Stapel kann eine Vielzahl von Formen erzeugt werden. So ist zur Herstellung von Sonderformen, z.B. von elliptischen Trägermatrizen, ein Einlegen von Füllstücken nicht erforderlich, wodurch eine wesentliche Verminderung der Produktionskosten erreicht wird.The proposed design allows the simple production of a metal support matrix from a large number of sheet metal layers. In particular, the adaptation to different shapes of the jacket is easily possible. A variety of shapes can be created by varying the length and / or the thickness of the individual stacks will. For the production of special shapes, for example elliptical carrier matrices, it is not necessary to insert filler pieces, as a result of which a substantial reduction in production costs is achieved.
Katalysatorformen mit größeren Durchmessern sind vorteilhaft dadurch zu gestalten, daß die Metallträgermatrix aus einer größeren Anzahl von Stapeln besteht. Dadurch wird die Dicke der einzelnen Stapel verringert, die einzelnen Blechlagen sind gleichmäßig in der Metallträgermatrix verteilt und die Kräfte, die zum Verschlingen der Stapel erforderlich sind, werden verkleinert. Besonders vorteilhaft ist auch die Ausgestaltung der Metallträgermatrix aus vier Stapeln, da diese Ausgestaltung eine sehr gleichmäßige Verteilung der Berührungslinien der Blechlagen mit dem Mantel auf der inneren Mantelfläche ergibt.Catalyst forms with larger diameters can advantageously be designed in such a way that the metal support matrix consists of a larger number of stacks. This reduces the thickness of the individual stacks, the individual sheet layers are evenly distributed in the metal support matrix, and the forces required for the stacks to be devoured are reduced. The configuration of the metal carrier matrix from four stacks is also particularly advantageous, since this configuration results in a very uniform distribution of the lines of contact of the sheet metal layers with the jacket on the inner jacket surface.
Die Ausführung nach Anspruch 5 ermöglicht die vorteilhafte Ausgestaltung einer elliptischen oder ellipsenähnlichen Katalysatorform. Die gleichmäßige Verteilung der Berührungslinien auf der inneren Mantelfläche bei elliptischen oder ellipsenähnlichen Katalysatorformen ist zweckmäßigerweise dadurch zu erhalten, daß eine runde Metallträgermatrix, die einen größeren Hohlraum im Inneren aufweist, zu der gewünschten elliptischen oder ellipsenähnlichen Form gepreßt wird.The embodiment according to
Die Form der Stapel, aus denen die Metallträgermatrix gefertigt wird, weist in der Seitenansicht immer zwei parallele Kanten auf. Die Enden der Stapel können in verschiedenen Winkeln auslaufen, so daß sich die im Kennzeichen des Anspruchs 1 beschriebenen geometrischen Formen ergeben.The shape of the stack from which the metal carrier matrix is made always has two parallel edges in the side view. The ends of the stack can run out at different angles, so that the geometric shapes described in the characterizing part of
Die Erfindung ist in der Zeichnung anhand von Ausführungsbeispielen dargestellt und wird im folgenden näher beschrieben. Es zeigen:
- Fig. 1a
- eine runde Katalysatorform und
- Fig. 1b
- die zugehörige Anordnung der Stapel vor dem Verschlingen,
- Fig. 2a
- eine quadratische Katalysatorform und
- Fig. 2b
- die zugehörige Anordnung der Stapel vor dem Verschlingen,
- Fig. 3a
- eine längliche Katalysatorform und
- Fig. 3b
- die zugehörige Anordnung der Stapel vor dem Verschlingen,
- Fig. 4a
- eine elliptische Katalysatorform und
- Fig. 4b
- die zugehörige Anordnung der Stapel vor dem Verschlingen,
- Fig. 5a
- eine längliche elliptische Katalysatorform und
- Fig. 5b
- die zugehörige Anordnung der Stapel vor dem Verschlingen,
- Fig. 6a
- eine elliptische Katalysatorform,
- Fig. 6b
- die zugehörige Anordnung der Stapel mit zentralem viereckigem Hohlraum vor dem Verschlingen und
- Fig. 6c
- die zugehörige Anordnung der Stapel mit viereckigem Hohlraum nach dem Verschlingen,
- Fig. 7a
- eine runde Katalysatorform aus acht Stapeln und
- Fig. 7b
- die zugehörige Anordnung der acht Stapel vor dem Verschlingen.
- Fig. 1a
- a round catalyst shape and
- Fig. 1b
- the associated arrangement of the stacks before devouring,
- Fig. 2a
- a square catalyst shape and
- Fig. 2b
- the associated arrangement of the stacks before devouring,
- Fig. 3a
- an elongated catalyst shape and
- Fig. 3b
- the associated arrangement of the stacks before devouring,
- Fig. 4a
- an elliptical catalyst shape and
- Fig. 4b
- the associated arrangement of the stacks before devouring,
- Fig. 5a
- an elongated elliptical catalyst shape and
- Fig. 5b
- the associated arrangement of the stacks before devouring,
- Fig. 6a
- an elliptical catalyst shape,
- Fig. 6b
- the associated arrangement of the stack with a central square cavity before engulfing and
- Fig. 6c
- the associated arrangement of the stacks with a square cavity after devouring,
- Fig. 7a
- a round catalyst form made up of eight stacks and
- Fig. 7b
- the corresponding arrangement of the eight stacks before devouring.
In der Fig. 1a ist eine kreisrunde Katalysatorform und in der Fig. 1b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Stapel (3) sind in ihren Abmessungen identisch. Sie haben eine rechteckige Form, in der hier gezeigten Darstellung sind abwechselnd gewellte (4) und glatte (5) Blechlagen aufeinandergeschichtet. Die Stapel (3) sind derartig angeordnet, daß die Berührungslinien in der Seitenansicht die Form eines rechtwinkligen Kreuzes (6) ergeben, welches in der Zeichnung durch stärkere Linien dargestellt ist. Die Stapel (3) werden im Uhrzeigersinn um einen Symmetriepunkt (8) geschlungen, der hier der Mittelpunkt des Kreuzes (6) ist. Die so erzeugte Metallträgermatrix (1) wird anschließend in einen Mantel (2) eingeschoben. Die Blechlagen (4,5) der Metallträgermatrix (1) und der Mantel (2) werden im nächsten Produktionsschritt durch ein fügetechnisches Verfahren, vorzugsweise durch Verlöten, verbunden.A circular catalyst shape is shown in FIG. 1a and the associated arrangement of the stacks (3) is shown schematically in FIG. 1b. The dimensions of the stacks (3) are identical. They have a rectangular shape, in the illustration shown here corrugated (4) and smooth (5) sheet metal layers are stacked on top of each other. The stacks (3) are arranged such that the lines of contact in the side view give the shape of a right-angled cross (6), which is shown in the drawing by thick lines. The stacks (3) are wrapped clockwise around a point of symmetry (8), which is the center of the cross (6) here. The metal carrier matrix (1) thus produced is then inserted into a jacket (2). The sheet metal layers (4, 5) of the metal carrier matrix (1) and the jacket (2) are connected in the next production step by a joining technique, preferably by soldering.
In der Fig. 2 wird eine quadratische Katalysatorform (mit abgerundeten Ecken) gezeigt. Die Anordnung der Stapel (3) ist, wie bei der runden Katalysatorform, kreuzförmig. Die einzelnen Stapel (3) sind hierbei in der Seitenansicht aber nicht rechteckig, sondern am außenliegenden Ende spitz zulaufend, d.h. trapezförmig. Der Fertigungsprozeß verläuft wie in der Beschreibung zu Fig. 1 angegeben.2 shows a square catalyst shape (with rounded corners). The arrangement of the stacks (3) is cruciform, as in the round catalyst shape. The individual stacks (3) are not rectangular in the side view, but tapering at the outer end, ie trapezoidal. The manufacturing process proceeds as indicated in the description of FIG. 1.
In der Fig. 3a wird eine längliche Katalysatorform und in der Fig. 3b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ebenfalls kreuzförmig. Allerdings sind die Stapel (3) oberhalb und unterhalb einer Verschiebeebene E-E, die zur Zeichenebene senkrecht steht, relativ zueinander verschoben, so daß sich ein verschobenes Kreuz (7) ergibt, welches in der Zeichnung durch stärkere Linien dargestellt ist. Der Abstand der senkrecht auf der Verschiebeebene E-E stehenden Stapel (3) bestimmt die Breite des Katalysators. Die Stapel (3) werden, wie in der Beschreibung zu Fig. 1 bereits dargestellt, im Uhrzeigersinn um den Symmetriepunkt (8), der auf der Verschiebeebene E-E und mittig zu beiden verschobenen Stapeln (3) angeordnet ist, geschlungen. Die weiteren Fertigungsschritte erfolgen wie oben bereits angegeben.In Fig. 3a an elongated catalyst shape and in Fig. 3b the associated arrangement of the stacks (3) is shown schematically. The arrangement of the stacks (3) is also cruciform. However, the stacks (3) above and below a displacement plane E-E, which is perpendicular to the plane of the drawing, are displaced relative to each other, so that a displaced cross (7) results, which is shown in the drawing by thick lines. The distance between the stacks (3) perpendicular to the displacement plane E-E determines the width of the catalyst. The stacks (3), as already shown in the description of FIG. 1, are wrapped clockwise around the point of symmetry (8), which is arranged on the displacement plane E-E and centrally to both displaced stacks (3). The further production steps take place as already stated above.
In den Fig. 4a und 5a sind elliptische Katalysatorformen und in den Fig. 4b und 5b die zugehörigen Anordnungen der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ähnlich der in Fig. 3b gezeigten Anordnung. Die hier gezeigten Stapel (3) sind aber in der Dicke und in der Länge variiert. Daraus ergeben sich weitere unterschiedliche Formen für den Katalysator. Der Herstellungsprozeß verläuft wie in der Beschreibung zu Fig. 1 erläutert.4a and 5a schematically illustrate elliptical catalyst shapes and in FIGS. 4b and 5b the associated arrangements of the stacks (3). The arrangement of the stacks (3) is similar to the arrangement shown in Fig. 3b. The stacks (3) shown here vary in thickness and length. This results in further different forms for the catalyst. The manufacturing process proceeds as explained in the description of FIG. 1.
In der Fig. 6a ist eine weitere Ausgestaltung einer elliptischen Katalysatorform, in der Fig. 6b die zugehörige Anordnung der Stapel vor dem Verschlingen und in der Fig. 6c die zugehörige Anordnung der Stapel nach dem Verschlingen dargestellt. Die Stapel (3) sind in der Seitenansicht parallelogrammförmig. Sie sind kreuzförmig so um den Symmetriepunkt (8) angeordnet, daß sich ein zentraler viereckiger Hohlraum (9) bildet. Die Stapel (3) werden im Uhrzeigersinn um den Hohlraum (9) bzw. den Symmetriepunkt (8), der den Mittelpunkt des Hohlraums (9) bildet, verschlungen. Nach dem Verschlingen ergibt sich eine runde Form der Metallträgermatrix (1), die in Fig. 6c schematisch dargestellt ist. Die Metallträgermatrix (1) wird, von dieser runden Form ausgehend, mit Hilfe von geeigneten Werkzeugen in die gewünschte elliptische Form gepreßt. Dabei wird der zentrale Hohlraum (9) geschlossen. Die Metallträgermatrix (1) wird in einen Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.FIG. 6a shows a further embodiment of an elliptical catalytic converter shape, FIG. 6b shows the associated arrangement of the stacks before devouring, and FIG. 6c shows the associated arrangement of the stacks after devouring. The stacks (3) are in the side view parallelogram. They are arranged in a cross shape around the point of symmetry (8) in such a way that a central square cavity (9) is formed. The stacks (3) are devoured clockwise around the cavity (9) or the point of symmetry (8), which forms the center of the cavity (9). After the devouring, a round shape of the metal carrier matrix (1) results, which is shown schematically in FIG. 6c. Starting from this round shape, the metal support matrix (1) is pressed into the desired elliptical shape using suitable tools. The central cavity (9) is closed. The metal support matrix (1) is inserted into a jacket (2) and connected to it by joining technology.
In der Fig. 7a ist eine runde Katalysatorform dargestellt, die aus acht Stapeln (3) besteht. Fig. 7b zeigt die symmetrische Annordnung der acht parallelogrammförmigen Stapel (3) um den Symmetriepunkt (8) vor dem Verschlingen. Die Stapel (3) sind in der Dicke und der Länge gleich. Ihre Stirnseiten sind mit den Seitenflächen der jeweils benachbarten Stapel (3) zur Anlage gebracht, die freien Enden der Stapel (3) sind gleichsinnig um den Symmetriepunkt (8) verschlungen. Die so erzeugte Metallträgermatrix (1) wird in den Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.In Fig. 7a a round catalyst shape is shown, which consists of eight stacks (3). Fig. 7b shows the symmetrical arrangement of the eight parallelogram stacks (3) around the point of symmetry (8) before devouring. The stacks (3) are the same in thickness and length. Their end faces are brought into contact with the side faces of the respective adjacent stacks (3), the free ends of the stacks (3) are intertwined in the same direction around the point of symmetry (8). The metal carrier matrix (1) thus produced is inserted into the jacket (2) and connected to it by joining technology.
Wie die wenigen Ausführungsbeispiele bereits zeigen, ist eine Vielfalt von weiteren Formvarianten mit Hilfe der erfindungsgemäßen Metallträgermatrix (1) möglich.As the few exemplary embodiments already show, a variety of further shape variants is possible with the aid of the metal carrier matrix (1) according to the invention.
Claims (8)
- A metal support matrix (1) for a catalytic reactor for purifying exhaust gases, particularly for internal-combustion engines, consisting of wavy (4) or of wavy (4) and smooth (5) metal strips which are folded or stacked and twisted into a plurality of adjoining layers,
characterised in that,
at least four stacks (3) are arranged each with one end brought together symmetrically about a point and are jointly twisted in the same direction about a point of symmetry (8),
that in the side view the stacks (3) are shaped like a twisted quadrilateral, trapeze or parallelogram, and
that the free ends of the metal strips (4, 5) are joined, using a jointing technique, to an enclosing casing (2). - A metal support matrix according to Claim 1, characterised in that the metal support matrix (1) consists of stacks (3) which vary both in terms of thickness and length.
- A metal support matrix according to Claim 1 or Claim 2, characterised in that for round or approximately square cross-sectional forms of the metal support matrix (1), the contact surfaces of the four stacks (3) placed on each other form the shape of a cross (6) prior to the twisting operation.
- A metal support matrix according to Claim 1 or Claim 2, characterised in that for elliptic or other cross-sectional shapes of the metal support matrix (1), the contact faces of the four stacks (3) placed on each other form the shape of a cross (7) which is displaced in a plane of displacement (E-E) prior to the twisting operation.
- A metal support matrix according to Claim 1 or Claim 2, characterised in that for elliptic or approximately elliptic cross-sectional forms of the metal support matrix (1), four stacks (3) in the shape of a parallelogram are placed on each other to form a cross in such a way that a quadrilateral cavity (9) results in the centre of the metal support matrix (1), this cavity being closed after the twisting operation by the metal support matrix (1) being pressed into the desired elliptic or approximately elliptic cross-sectional shape.
- A metal support matrix according to one of the preceding Claims, characterised in that the central region of the metal support matrix (1) is point symmetrical in design, and deviates from the point symmetrical shape in the peripheral regions.
- A metal support matrix according to one of the preceding claims, characterised in that the metal strips (4, 5) of the metal support matrix (1) are joined together by a jointing method.
- A metal support matrix according to one of Claims 1, 6 or 7, characterised in that the metal support matrix (1) consists of eight stacks (3) which are arranged like a star about a point of symmetry (8) and are twisted about that point of symmetry in the same direction, wherein the ends of the stacks (3) make contact at the point of symmetry (8) enclosing an acute angle.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4016276A DE4016276C1 (en) | 1990-05-21 | 1990-05-21 | |
| DE4016276 | 1990-05-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0458045A1 EP0458045A1 (en) | 1991-11-27 |
| EP0458045B1 true EP0458045B1 (en) | 1994-07-13 |
Family
ID=6406854
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP91105500A Expired - Lifetime EP0458045B1 (en) | 1990-05-21 | 1991-04-08 | Metal carrier matrix for a catalytic reactor |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US5342588A (en) |
| EP (1) | EP0458045B1 (en) |
| JP (1) | JPH0736896B2 (en) |
| DE (2) | DE4016276C1 (en) |
| ES (1) | ES2056512T3 (en) |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4112354A1 (en) * | 1991-04-16 | 1992-10-22 | Behr Gmbh & Co | DEVICE FOR CATALYTIC DETOXING OF EXHAUST GAS |
| DE4129824A1 (en) * | 1991-09-07 | 1993-03-11 | Behr Gmbh & Co | Mfg. supporting structure for a catalytic converter - by winding metal layers into star or cross pattern and compressing to final shape in negative mould |
| DE4132439A1 (en) * | 1991-09-28 | 1993-04-01 | Behr Gmbh & Co | EXHAUST CATALYST |
| DE4215986A1 (en) * | 1992-05-14 | 1993-11-18 | Emitec Emissionstechnologie | Automotive catalytic converter sheet metal layers - have smooth overlapping ends creating channels through which solder flows in mfg. then improving join to mantle |
| JP3392895B2 (en) * | 1993-01-08 | 2003-03-31 | 臼井国際産業株式会社 | X-wrap type metal honeycomb body |
| CZ86495A3 (en) * | 1994-04-11 | 1995-11-15 | Scambia Ind Dev Ag | Catalyst means for catalytic treatment of exhaust gases, the catalyst as such and process for producing the catalyst means |
| US5670264A (en) * | 1994-05-10 | 1997-09-23 | Shertech, Inc. | Thermal barrier |
| US5620666A (en) * | 1994-07-11 | 1997-04-15 | Usui Kokusai Sangyo Kabushiki Kaisha, Ltd. | Exhaust gas cleaning metallic substrate |
| JPH0824670A (en) * | 1994-07-11 | 1996-01-30 | Usui Internatl Ind Co Ltd | Metal honeycomb body for exhaust gas purification |
| US5820835A (en) * | 1995-07-12 | 1998-10-13 | Engelhard Corporation | Assembly and method for making catalytic converter structure |
| US5846495A (en) * | 1995-07-12 | 1998-12-08 | Engelhard Corporation | Structure for converter body |
| AU6488196A (en) * | 1995-07-12 | 1997-02-10 | Engelhard Corporation | Structure for converter body |
| US5651906A (en) * | 1995-07-12 | 1997-07-29 | W. R. Grace & Co.-Conn. | Electrically heatable converter body having plural thin metal core elements attached only at outer ends |
| US5791044A (en) * | 1995-12-22 | 1998-08-11 | Engelhard Corporation | Assembly and method for catalytic converter structures |
| WO1997023275A1 (en) * | 1995-12-22 | 1997-07-03 | W.R. Grace & Co.-Conn. | Assembly and method for making catalytic converter structures |
| US6602477B2 (en) | 1996-08-05 | 2003-08-05 | Usui Kokusai Sangyo Kaisha, Ltd. | Metal honeycomb structure |
| DE19825018A1 (en) * | 1998-06-04 | 1999-12-09 | Emitec Emissionstechnologie | Method and laminated core for producing a honeycomb body with a plurality of channels that are permeable to a fluid |
| EP1248675B1 (en) * | 2000-01-11 | 2005-08-24 | Accentus plc | Catalytic reactor |
| EP1336068B1 (en) * | 2000-11-13 | 2006-09-13 | Catalytica Energy Systems, Inc. | Thermally tolerant support structure for a catalytic combustion catalyst |
| AU2002331937B2 (en) * | 2001-10-12 | 2007-07-05 | Compactgtl Plc | Catalytic reactor |
| GB0125000D0 (en) * | 2001-10-18 | 2001-12-05 | Accentus Plc | Catalytic reactor |
| GB0124999D0 (en) * | 2001-10-18 | 2001-12-05 | Accentus Plc | Catalytic reactor |
| GB0125035D0 (en) * | 2001-10-18 | 2001-12-12 | Accentus Plc | Catalytic reactor |
| GB0218540D0 (en) * | 2002-08-09 | 2002-09-18 | Johnson Matthey Plc | Engine exhaust treatment |
| GB0408896D0 (en) * | 2004-04-20 | 2004-05-26 | Accentus Plc | Catalytic reactor |
| US7320778B2 (en) * | 2004-07-21 | 2008-01-22 | Catacel Corp. | High-performance catalyst support |
| DE102005028044A1 (en) * | 2005-06-17 | 2006-12-28 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Honeycomb body for after-treatment of exhaust gas in automobile sector has housing and layers with curved gradient and of specific length, which in each case comprises partly structured metal film |
| US7501102B2 (en) * | 2005-07-28 | 2009-03-10 | Catacel Corp. | Reactor having improved heat transfer |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3890104A (en) * | 1970-11-03 | 1975-06-17 | Getters Spa | Catalytic cartridge |
| ES2010201B3 (en) * | 1986-05-12 | 1989-11-01 | Interatom Ges Mit Beschrankter Haftung | ALVEOLATED BODY, ESPECIALLY CATALYST CARRYING BODY, WITH INTERLOCKED METAL SHEET LAYERS IN OPPOSITE SENSES AND PROCEDURE FOR ITS MANUFACTURE. |
| DE8612882U1 (en) * | 1986-05-12 | 1987-10-29 | INTERATOM GmbH, 5060 Bergisch Gladbach | Metallic catalyst carrier body with involute layers |
| DE8717916U1 (en) * | 1986-05-12 | 1991-03-21 | Siemens AG, 80333 München | Metallic catalyst carrier body with involute layers |
| DE3743723C1 (en) * | 1987-12-23 | 1989-04-20 | Sueddeutsche Kuehler Behr | Method and device for producing a support body for a catalytic reactor |
| WO1990003220A1 (en) * | 1988-09-22 | 1990-04-05 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Honeycomb structure, in particular catalyst support, composed of a plurality of interlaced bundles of sheet metal |
| US4928485A (en) * | 1989-06-06 | 1990-05-29 | W. R. Grace & Co.,-Conn. | Metallic core member for catalytic converter and catalytic converter containing same |
-
1990
- 1990-05-21 DE DE4016276A patent/DE4016276C1/de not_active Expired - Lifetime
-
1991
- 1991-04-08 DE DE59102153T patent/DE59102153D1/en not_active Expired - Fee Related
- 1991-04-08 ES ES91105500T patent/ES2056512T3/en not_active Expired - Lifetime
- 1991-04-08 EP EP91105500A patent/EP0458045B1/en not_active Expired - Lifetime
- 1991-05-09 JP JP3198944A patent/JPH0736896B2/en not_active Expired - Fee Related
-
1993
- 1993-01-13 US US08/004,185 patent/US5342588A/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| ES2056512T3 (en) | 1994-10-01 |
| EP0458045A1 (en) | 1991-11-27 |
| US5342588A (en) | 1994-08-30 |
| JPH0736896B2 (en) | 1995-04-26 |
| DE59102153D1 (en) | 1994-08-18 |
| JPH04227855A (en) | 1992-08-17 |
| DE4016276C1 (en) | 1991-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0458045B1 (en) | Metal carrier matrix for a catalytic reactor | |
| EP0245737B1 (en) | Honeycomb body, particularly a catalyst carrier, provided with opposedly folded metal sheet layers, and its manufacturing process | |
| EP0186801B1 (en) | Support matrix, in particular for a catalytic exhaust converter | |
| DE2733640A1 (en) | CARRIER MATRIX FOR A CATALYTIC REACTOR FOR EXHAUST GAS CLEANING IN COMBUSTION ENGINES, IN PARTICULAR GASOLINE ENGINES, OF MOTOR VEHICLES | |
| DE2452929A1 (en) | METHOD FOR MANUFACTURING HONEYCOMB BODIES | |
| DE3341868A1 (en) | MATRIX FOR A CATALYTIC REACTOR | |
| WO1990003220A1 (en) | Honeycomb structure, in particular catalyst support, composed of a plurality of interlaced bundles of sheet metal | |
| DE2642521C2 (en) | Device for mutual spacing of parallel cylindrical elements which are used for heat transfer | |
| EP1089819B1 (en) | Monolithic, metallic honeycomb bodies with a number of varying channels | |
| EP0152560B1 (en) | Matrix for a catalytic reactor for purifying exhaust gases | |
| EP0929738B1 (en) | Honeycombed body with heat insulation, preferably for an exhaust gas catalyzer | |
| DE102012007020A1 (en) | Electrical connection of several sheet metal layers of an electrically heatable honeycomb body and associated honeycomb body | |
| EP0220468A1 (en) | Catalyst support body made of wound or layered sheet metal having a structure with two or more corrugations | |
| DE4025434A1 (en) | HONEYCOMB BODY WITH CROSS-SECTIONAL AREAS OF DIFFERENT CHANNEL SIZES, IN PARTICULAR CATALYST SUPPORT BODY | |
| EP0316596A2 (en) | Process and apparatus for producing a carrier body for a catalytic reactor | |
| DE3744265A1 (en) | Soot filter for the purification of exhaust gas in motor vehicles | |
| DE69002684T2 (en) | Catalyst carrier and assembly. | |
| EP0761303B1 (en) | Packing element for mass or heat exchange columns | |
| DE2636671A1 (en) | BODY INSERTED WITH CHANNELS AND PROCESS FOR ITS MANUFACTURING | |
| DE3517035C1 (en) | Matrix for a catalytic reactor for exhaust gas cleaning | |
| EP0577117A2 (en) | Process for preparing a catalyst | |
| DE3844350C2 (en) | Support body for a catalytic reactor for exhaust gas purification | |
| EP0958053B1 (en) | Method and device for producing a honeycomb body | |
| EP0332891B1 (en) | Apparatus for catalytically purifying exhaust gases, and process for its production | |
| DE3817490A1 (en) | Carrier body for a catalytic reactor for exhaust emission control |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT SE |
|
| 17P | Request for examination filed |
Effective date: 19911210 |
|
| 17Q | First examination report despatched |
Effective date: 19921207 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
| REF | Corresponds to: |
Ref document number: 59102153 Country of ref document: DE Date of ref document: 19940818 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2056512 Country of ref document: ES Kind code of ref document: T3 |
|
| ITF | It: translation for a ep patent filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940912 |
|
| ET | Fr: translation filed | ||
| EAL | Se: european patent in force in sweden |
Ref document number: 91105500.2 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080423 Year of fee payment: 18 Ref country code: ES Payment date: 20080423 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080422 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080422 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080422 Year of fee payment: 18 |
|
| EUG | Se: european patent has lapsed | ||
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090408 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090408 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080422 Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090408 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090409 |