EP0458045B1 - Metal carrier matrix for a catalytic reactor - Google Patents

Metal carrier matrix for a catalytic reactor Download PDF

Info

Publication number
EP0458045B1
EP0458045B1 EP91105500A EP91105500A EP0458045B1 EP 0458045 B1 EP0458045 B1 EP 0458045B1 EP 91105500 A EP91105500 A EP 91105500A EP 91105500 A EP91105500 A EP 91105500A EP 0458045 B1 EP0458045 B1 EP 0458045B1
Authority
EP
European Patent Office
Prior art keywords
support matrix
metal support
stacks
point
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105500A
Other languages
German (de)
French (fr)
Other versions
EP0458045A1 (en
Inventor
Bohumil Humpolik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP0458045A1 publication Critical patent/EP0458045A1/en
Application granted granted Critical
Publication of EP0458045B1 publication Critical patent/EP0458045B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • F01N2330/04Methods of manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]

Definitions

  • the invention relates to a metal support matrix for a catalytic reactor for exhaust gas purification, in particular for internal combustion engines, according to the preamble of patent claim 1.
  • the aforementioned method has the disadvantage that special shapes are produced by inserting loose filler pieces Need to become. It is also disadvantageous that devouring thicker sheet stacks, which are required for producing larger catalyst diameters, requires extraordinarily high forces.
  • the invention is therefore based on the object of designing a metal support matrix of the type mentioned at the outset in such a way that a homogeneous, easy-to-manufacture honeycomb body is formed from a multiplicity of sheet metal layers and, if possible, each sheet metal layer comes into contact with the enveloping jacket.
  • the proposed design allows the simple production of a metal support matrix from a large number of sheet metal layers.
  • the adaptation to different shapes of the jacket is easily possible.
  • a variety of shapes can be created by varying the length and / or the thickness of the individual stacks will.
  • special shapes for example elliptical carrier matrices, it is not necessary to insert filler pieces, as a result of which a substantial reduction in production costs is achieved.
  • Catalyst forms with larger diameters can advantageously be designed in such a way that the metal support matrix consists of a larger number of stacks. This reduces the thickness of the individual stacks, the individual sheet layers are evenly distributed in the metal support matrix, and the forces required for the stacks to be devoured are reduced.
  • the configuration of the metal carrier matrix from four stacks is also particularly advantageous, since this configuration results in a very uniform distribution of the lines of contact of the sheet metal layers with the jacket on the inner jacket surface.
  • the embodiment according to claim 5 enables the advantageous embodiment of an elliptical or ellipse-like catalyst shape.
  • the even distribution of the lines of contact on the inner circumferential surface in elliptical or elliptical-like catalyst shapes can be expediently obtained by pressing a round metal support matrix, which has a larger cavity inside, to the desired elliptical or elliptical-like shape.
  • the shape of the stack from which the metal carrier matrix is made always has two parallel edges in the side view.
  • the ends of the stack can run out at different angles, so that the geometric shapes described in the characterizing part of claim 1 result.
  • FIG. 1a A circular catalyst shape is shown in FIG. 1a and the associated arrangement of the stacks (3) is shown schematically in FIG. 1b.
  • the dimensions of the stacks (3) are identical. They have a rectangular shape, in the illustration shown here corrugated (4) and smooth (5) sheet metal layers are stacked on top of each other.
  • the stacks (3) are arranged such that the lines of contact in the side view give the shape of a right-angled cross (6), which is shown in the drawing by thick lines.
  • the stacks (3) are wrapped clockwise around a point of symmetry (8), which is the center of the cross (6) here.
  • the metal carrier matrix (1) thus produced is then inserted into a jacket (2).
  • the sheet metal layers (4, 5) of the metal carrier matrix (1) and the jacket (2) are connected in the next production step by a joining technique, preferably by soldering.
  • FIG. 2 shows a square catalyst shape (with rounded corners).
  • the arrangement of the stacks (3) is cruciform, as in the round catalyst shape.
  • the individual stacks (3) are not rectangular in the side view, but tapering at the outer end, ie trapezoidal. The manufacturing process proceeds as indicated in the description of FIG. 1.
  • Fig. 3a an elongated catalyst shape and in Fig. 3b the associated arrangement of the stacks (3) is shown schematically.
  • the arrangement of the stacks (3) is also cruciform.
  • the stacks (3) above and below a displacement plane E-E which is perpendicular to the plane of the drawing, are displaced relative to each other, so that a displaced cross (7) results, which is shown in the drawing by thick lines.
  • the distance between the stacks (3) perpendicular to the displacement plane E-E determines the width of the catalyst.
  • the stacks (3) as already shown in the description of FIG. 1, are wrapped clockwise around the point of symmetry (8), which is arranged on the displacement plane E-E and centrally to both displaced stacks (3). The further production steps take place as already stated above.
  • FIGS. 4b and 5b schematically illustrate elliptical catalyst shapes and in FIGS. 4b and 5b the associated arrangements of the stacks (3).
  • the arrangement of the stacks (3) is similar to the arrangement shown in Fig. 3b.
  • the stacks (3) shown here vary in thickness and length. This results in further different forms for the catalyst. The manufacturing process proceeds as explained in the description of FIG. 1.
  • FIG. 6a shows a further embodiment of an elliptical catalytic converter shape
  • FIG. 6b shows the associated arrangement of the stacks before devouring
  • FIG. 6c shows the associated arrangement of the stacks after devouring.
  • the stacks (3) are in the side view parallelogram. They are arranged in a cross shape around the point of symmetry (8) in such a way that a central square cavity (9) is formed.
  • the stacks (3) are devoured clockwise around the cavity (9) or the point of symmetry (8), which forms the center of the cavity (9).
  • a round shape of the metal carrier matrix (1) results, which is shown schematically in FIG. 6c. Starting from this round shape, the metal support matrix (1) is pressed into the desired elliptical shape using suitable tools.
  • the central cavity (9) is closed.
  • the metal support matrix (1) is inserted into a jacket (2) and connected to it by joining technology.
  • a round catalyst shape is shown, which consists of eight stacks (3).
  • Fig. 7b shows the symmetrical arrangement of the eight parallelogram stacks (3) around the point of symmetry (8) before devouring.
  • the stacks (3) are the same in thickness and length. Their end faces are brought into contact with the side faces of the respective adjacent stacks (3), the free ends of the stacks (3) are intertwined in the same direction around the point of symmetry (8).
  • the metal carrier matrix (1) thus produced is inserted into the jacket (2) and connected to it by joining technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

Die Erfindung betrifft eine Metallträgermatrix für einen katalytischen Reaktor zur Abgasreinigung, insbesondere für Brennkraftmaschinen, nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a metal support matrix for a catalytic reactor for exhaust gas purification, in particular for internal combustion engines, according to the preamble of patent claim 1.

Es ist bekannt (EP-A1 245 737) eine Metallträgermatrix für einen katalytischen Reaktor dadurch herzustellen, daß mehrere glatte und gewellte Metallbänder abwechselnd zu einem Stapel aufeinander geschichtet und daß die Enden dieses Stapels um zwei Fixpunkte verschlungen werden. Diese Metallträgermatrix wird in einen rohrförmigen Mantel eingesetzt und mit diesem fügetechnisch verbunden.It is known (EP-A1 245 737) to produce a metal support matrix for a catalytic reactor in that several smooth and corrugated metal strips are stacked alternately in a stack and that the ends of this stack are devoured by two fixed points. This metal support matrix is inserted into a tubular jacket and connected to it by joining technology.

Die vorgenannte Methode weist den Nachteil auf, daß Sonderformen durch das Einlegen loser Füllstücke hergestellt werden müssen. Nachteilig ist außerdem, daß ein Verschlingen dickerer Blechstapel, die zur Herstellung größerer Katalysatordurchmesser erforderlich sind, ausserordentlich hohe Kräfte erfordert.The aforementioned method has the disadvantage that special shapes are produced by inserting loose filler pieces Need to become. It is also disadvantageous that devouring thicker sheet stacks, which are required for producing larger catalyst diameters, requires extraordinarily high forces.

Es ist auch bekannt (DE-U1 89 08 671), Metallträgermatrizen aus mehr als zwei Stapeln herzustellen, wobei die einzelnen Stapel um eine Knicklinie gefaltet und anschließend gemeinsam verschlungen werden. Nachteilig ist hierbei, daß jeder einzelne Stapel in einem zusätzlichen Arbeitsgang gefaltet werden muß. Außerdem verbleiben bei dieser Art der Herstellung einer Metallträgermatrix im Inneren der Trägermatrix größere Bereiche, die nicht durch den Wabenkörper ausgefüllt werden, insbesondere im Zentrum der Trägermatrix.It is also known (DE-U1 89 08 671) to produce metal carrier matrices from more than two stacks, the individual stacks being folded around a folding line and then being devoured together. The disadvantage here is that each individual stack must be folded in an additional operation. In addition, with this type of production of a metal carrier matrix, larger areas remain inside the carrier matrix that are not filled by the honeycomb body, in particular in the center of the carrier matrix.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Metallträgermatrix der eingangs genannten Art so auszubilden, daß ein homogener, einfach zu fertigender Wabenkörper aus einer Vielzahl von Blechlagen entsteht und möglichst jede Blechlage mit dem umhüllenden Mantel in Berührung kommt.The invention is therefore based on the object of designing a metal support matrix of the type mentioned at the outset in such a way that a homogeneous, easy-to-manufacture honeycomb body is formed from a multiplicity of sheet metal layers and, if possible, each sheet metal layer comes into contact with the enveloping jacket.

Zur Lösung der Aufgabe wird ein Wabenkörper mit den kennzeichnenden Merkmalen des Anspruchs 1 vorgeschlagen. Weitere vorteilhafte Ausgestaltungen einer solchen Metallträgermatrix sind in den Unteransprüchen 2 bis 8 aufgezeigt.To achieve the object, a honeycomb body with the characterizing features of claim 1 is proposed. Further advantageous configurations of such a metal support matrix are shown in subclaims 2 to 8.

Die vorgeschlagene Ausgestaltung erlaubt die einfache Herstellung einer Metallträgermatrix aus einer Vielzahl von Blechlagen. Insbesondere die Anpassung an unterschiedliche Formen des Mantels ist leicht möglich. Durch eine Variierung der Länge und/oder der Dicke der einzelnen Stapel kann eine Vielzahl von Formen erzeugt werden. So ist zur Herstellung von Sonderformen, z.B. von elliptischen Trägermatrizen, ein Einlegen von Füllstücken nicht erforderlich, wodurch eine wesentliche Verminderung der Produktionskosten erreicht wird.The proposed design allows the simple production of a metal support matrix from a large number of sheet metal layers. In particular, the adaptation to different shapes of the jacket is easily possible. A variety of shapes can be created by varying the length and / or the thickness of the individual stacks will. For the production of special shapes, for example elliptical carrier matrices, it is not necessary to insert filler pieces, as a result of which a substantial reduction in production costs is achieved.

Katalysatorformen mit größeren Durchmessern sind vorteilhaft dadurch zu gestalten, daß die Metallträgermatrix aus einer größeren Anzahl von Stapeln besteht. Dadurch wird die Dicke der einzelnen Stapel verringert, die einzelnen Blechlagen sind gleichmäßig in der Metallträgermatrix verteilt und die Kräfte, die zum Verschlingen der Stapel erforderlich sind, werden verkleinert. Besonders vorteilhaft ist auch die Ausgestaltung der Metallträgermatrix aus vier Stapeln, da diese Ausgestaltung eine sehr gleichmäßige Verteilung der Berührungslinien der Blechlagen mit dem Mantel auf der inneren Mantelfläche ergibt.Catalyst forms with larger diameters can advantageously be designed in such a way that the metal support matrix consists of a larger number of stacks. This reduces the thickness of the individual stacks, the individual sheet layers are evenly distributed in the metal support matrix, and the forces required for the stacks to be devoured are reduced. The configuration of the metal carrier matrix from four stacks is also particularly advantageous, since this configuration results in a very uniform distribution of the lines of contact of the sheet metal layers with the jacket on the inner jacket surface.

Die Ausführung nach Anspruch 5 ermöglicht die vorteilhafte Ausgestaltung einer elliptischen oder ellipsenähnlichen Katalysatorform. Die gleichmäßige Verteilung der Berührungslinien auf der inneren Mantelfläche bei elliptischen oder ellipsenähnlichen Katalysatorformen ist zweckmäßigerweise dadurch zu erhalten, daß eine runde Metallträgermatrix, die einen größeren Hohlraum im Inneren aufweist, zu der gewünschten elliptischen oder ellipsenähnlichen Form gepreßt wird.The embodiment according to claim 5 enables the advantageous embodiment of an elliptical or ellipse-like catalyst shape. The even distribution of the lines of contact on the inner circumferential surface in elliptical or elliptical-like catalyst shapes can be expediently obtained by pressing a round metal support matrix, which has a larger cavity inside, to the desired elliptical or elliptical-like shape.

Die Form der Stapel, aus denen die Metallträgermatrix gefertigt wird, weist in der Seitenansicht immer zwei parallele Kanten auf. Die Enden der Stapel können in verschiedenen Winkeln auslaufen, so daß sich die im Kennzeichen des Anspruchs 1 beschriebenen geometrischen Formen ergeben.The shape of the stack from which the metal carrier matrix is made always has two parallel edges in the side view. The ends of the stack can run out at different angles, so that the geometric shapes described in the characterizing part of claim 1 result.

Die Erfindung ist in der Zeichnung anhand von Ausführungsbeispielen dargestellt und wird im folgenden näher beschrieben. Es zeigen:

Fig. 1a
eine runde Katalysatorform und
Fig. 1b
die zugehörige Anordnung der Stapel vor dem Verschlingen,
Fig. 2a
eine quadratische Katalysatorform und
Fig. 2b
die zugehörige Anordnung der Stapel vor dem Verschlingen,
Fig. 3a
eine längliche Katalysatorform und
Fig. 3b
die zugehörige Anordnung der Stapel vor dem Verschlingen,
Fig. 4a
eine elliptische Katalysatorform und
Fig. 4b
die zugehörige Anordnung der Stapel vor dem Verschlingen,
Fig. 5a
eine längliche elliptische Katalysatorform und
Fig. 5b
die zugehörige Anordnung der Stapel vor dem Verschlingen,
Fig. 6a
eine elliptische Katalysatorform,
Fig. 6b
die zugehörige Anordnung der Stapel mit zentralem viereckigem Hohlraum vor dem Verschlingen und
Fig. 6c
die zugehörige Anordnung der Stapel mit viereckigem Hohlraum nach dem Verschlingen,
Fig. 7a
eine runde Katalysatorform aus acht Stapeln und
Fig. 7b
die zugehörige Anordnung der acht Stapel vor dem Verschlingen.
The invention is illustrated in the drawing using exemplary embodiments and is described in more detail below. Show it:
Fig. 1a
a round catalyst shape and
Fig. 1b
the associated arrangement of the stacks before devouring,
Fig. 2a
a square catalyst shape and
Fig. 2b
the associated arrangement of the stacks before devouring,
Fig. 3a
an elongated catalyst shape and
Fig. 3b
the associated arrangement of the stacks before devouring,
Fig. 4a
an elliptical catalyst shape and
Fig. 4b
the associated arrangement of the stacks before devouring,
Fig. 5a
an elongated elliptical catalyst shape and
Fig. 5b
the associated arrangement of the stacks before devouring,
Fig. 6a
an elliptical catalyst shape,
Fig. 6b
the associated arrangement of the stack with a central square cavity before engulfing and
Fig. 6c
the associated arrangement of the stacks with a square cavity after devouring,
Fig. 7a
a round catalyst form made up of eight stacks and
Fig. 7b
the corresponding arrangement of the eight stacks before devouring.

In der Fig. 1a ist eine kreisrunde Katalysatorform und in der Fig. 1b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Stapel (3) sind in ihren Abmessungen identisch. Sie haben eine rechteckige Form, in der hier gezeigten Darstellung sind abwechselnd gewellte (4) und glatte (5) Blechlagen aufeinandergeschichtet. Die Stapel (3) sind derartig angeordnet, daß die Berührungslinien in der Seitenansicht die Form eines rechtwinkligen Kreuzes (6) ergeben, welches in der Zeichnung durch stärkere Linien dargestellt ist. Die Stapel (3) werden im Uhrzeigersinn um einen Symmetriepunkt (8) geschlungen, der hier der Mittelpunkt des Kreuzes (6) ist. Die so erzeugte Metallträgermatrix (1) wird anschließend in einen Mantel (2) eingeschoben. Die Blechlagen (4,5) der Metallträgermatrix (1) und der Mantel (2) werden im nächsten Produktionsschritt durch ein fügetechnisches Verfahren, vorzugsweise durch Verlöten, verbunden.A circular catalyst shape is shown in FIG. 1a and the associated arrangement of the stacks (3) is shown schematically in FIG. 1b. The dimensions of the stacks (3) are identical. They have a rectangular shape, in the illustration shown here corrugated (4) and smooth (5) sheet metal layers are stacked on top of each other. The stacks (3) are arranged such that the lines of contact in the side view give the shape of a right-angled cross (6), which is shown in the drawing by thick lines. The stacks (3) are wrapped clockwise around a point of symmetry (8), which is the center of the cross (6) here. The metal carrier matrix (1) thus produced is then inserted into a jacket (2). The sheet metal layers (4, 5) of the metal carrier matrix (1) and the jacket (2) are connected in the next production step by a joining technique, preferably by soldering.

In der Fig. 2 wird eine quadratische Katalysatorform (mit abgerundeten Ecken) gezeigt. Die Anordnung der Stapel (3) ist, wie bei der runden Katalysatorform, kreuzförmig. Die einzelnen Stapel (3) sind hierbei in der Seitenansicht aber nicht rechteckig, sondern am außenliegenden Ende spitz zulaufend, d.h. trapezförmig. Der Fertigungsprozeß verläuft wie in der Beschreibung zu Fig. 1 angegeben.2 shows a square catalyst shape (with rounded corners). The arrangement of the stacks (3) is cruciform, as in the round catalyst shape. The individual stacks (3) are not rectangular in the side view, but tapering at the outer end, ie trapezoidal. The manufacturing process proceeds as indicated in the description of FIG. 1.

In der Fig. 3a wird eine längliche Katalysatorform und in der Fig. 3b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ebenfalls kreuzförmig. Allerdings sind die Stapel (3) oberhalb und unterhalb einer Verschiebeebene E-E, die zur Zeichenebene senkrecht steht, relativ zueinander verschoben, so daß sich ein verschobenes Kreuz (7) ergibt, welches in der Zeichnung durch stärkere Linien dargestellt ist. Der Abstand der senkrecht auf der Verschiebeebene E-E stehenden Stapel (3) bestimmt die Breite des Katalysators. Die Stapel (3) werden, wie in der Beschreibung zu Fig. 1 bereits dargestellt, im Uhrzeigersinn um den Symmetriepunkt (8), der auf der Verschiebeebene E-E und mittig zu beiden verschobenen Stapeln (3) angeordnet ist, geschlungen. Die weiteren Fertigungsschritte erfolgen wie oben bereits angegeben.In Fig. 3a an elongated catalyst shape and in Fig. 3b the associated arrangement of the stacks (3) is shown schematically. The arrangement of the stacks (3) is also cruciform. However, the stacks (3) above and below a displacement plane E-E, which is perpendicular to the plane of the drawing, are displaced relative to each other, so that a displaced cross (7) results, which is shown in the drawing by thick lines. The distance between the stacks (3) perpendicular to the displacement plane E-E determines the width of the catalyst. The stacks (3), as already shown in the description of FIG. 1, are wrapped clockwise around the point of symmetry (8), which is arranged on the displacement plane E-E and centrally to both displaced stacks (3). The further production steps take place as already stated above.

In den Fig. 4a und 5a sind elliptische Katalysatorformen und in den Fig. 4b und 5b die zugehörigen Anordnungen der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ähnlich der in Fig. 3b gezeigten Anordnung. Die hier gezeigten Stapel (3) sind aber in der Dicke und in der Länge variiert. Daraus ergeben sich weitere unterschiedliche Formen für den Katalysator. Der Herstellungsprozeß verläuft wie in der Beschreibung zu Fig. 1 erläutert.4a and 5a schematically illustrate elliptical catalyst shapes and in FIGS. 4b and 5b the associated arrangements of the stacks (3). The arrangement of the stacks (3) is similar to the arrangement shown in Fig. 3b. The stacks (3) shown here vary in thickness and length. This results in further different forms for the catalyst. The manufacturing process proceeds as explained in the description of FIG. 1.

In der Fig. 6a ist eine weitere Ausgestaltung einer elliptischen Katalysatorform, in der Fig. 6b die zugehörige Anordnung der Stapel vor dem Verschlingen und in der Fig. 6c die zugehörige Anordnung der Stapel nach dem Verschlingen dargestellt. Die Stapel (3) sind in der Seitenansicht parallelogrammförmig. Sie sind kreuzförmig so um den Symmetriepunkt (8) angeordnet, daß sich ein zentraler viereckiger Hohlraum (9) bildet. Die Stapel (3) werden im Uhrzeigersinn um den Hohlraum (9) bzw. den Symmetriepunkt (8), der den Mittelpunkt des Hohlraums (9) bildet, verschlungen. Nach dem Verschlingen ergibt sich eine runde Form der Metallträgermatrix (1), die in Fig. 6c schematisch dargestellt ist. Die Metallträgermatrix (1) wird, von dieser runden Form ausgehend, mit Hilfe von geeigneten Werkzeugen in die gewünschte elliptische Form gepreßt. Dabei wird der zentrale Hohlraum (9) geschlossen. Die Metallträgermatrix (1) wird in einen Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.FIG. 6a shows a further embodiment of an elliptical catalytic converter shape, FIG. 6b shows the associated arrangement of the stacks before devouring, and FIG. 6c shows the associated arrangement of the stacks after devouring. The stacks (3) are in the side view parallelogram. They are arranged in a cross shape around the point of symmetry (8) in such a way that a central square cavity (9) is formed. The stacks (3) are devoured clockwise around the cavity (9) or the point of symmetry (8), which forms the center of the cavity (9). After the devouring, a round shape of the metal carrier matrix (1) results, which is shown schematically in FIG. 6c. Starting from this round shape, the metal support matrix (1) is pressed into the desired elliptical shape using suitable tools. The central cavity (9) is closed. The metal support matrix (1) is inserted into a jacket (2) and connected to it by joining technology.

In der Fig. 7a ist eine runde Katalysatorform dargestellt, die aus acht Stapeln (3) besteht. Fig. 7b zeigt die symmetrische Annordnung der acht parallelogrammförmigen Stapel (3) um den Symmetriepunkt (8) vor dem Verschlingen. Die Stapel (3) sind in der Dicke und der Länge gleich. Ihre Stirnseiten sind mit den Seitenflächen der jeweils benachbarten Stapel (3) zur Anlage gebracht, die freien Enden der Stapel (3) sind gleichsinnig um den Symmetriepunkt (8) verschlungen. Die so erzeugte Metallträgermatrix (1) wird in den Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.In Fig. 7a a round catalyst shape is shown, which consists of eight stacks (3). Fig. 7b shows the symmetrical arrangement of the eight parallelogram stacks (3) around the point of symmetry (8) before devouring. The stacks (3) are the same in thickness and length. Their end faces are brought into contact with the side faces of the respective adjacent stacks (3), the free ends of the stacks (3) are intertwined in the same direction around the point of symmetry (8). The metal carrier matrix (1) thus produced is inserted into the jacket (2) and connected to it by joining technology.

Wie die wenigen Ausführungsbeispiele bereits zeigen, ist eine Vielfalt von weiteren Formvarianten mit Hilfe der erfindungsgemäßen Metallträgermatrix (1) möglich.As the few exemplary embodiments already show, a variety of further shape variants is possible with the aid of the metal carrier matrix (1) according to the invention.

Claims (8)

  1. A metal support matrix (1) for a catalytic reactor for purifying exhaust gases, particularly for internal-combustion engines, consisting of wavy (4) or of wavy (4) and smooth (5) metal strips which are folded or stacked and twisted into a plurality of adjoining layers,
    characterised in that,
    at least four stacks (3) are arranged each with one end brought together symmetrically about a point and are jointly twisted in the same direction about a point of symmetry (8),
    that in the side view the stacks (3) are shaped like a twisted quadrilateral, trapeze or parallelogram, and
    that the free ends of the metal strips (4, 5) are joined, using a jointing technique, to an enclosing casing (2).
  2. A metal support matrix according to Claim 1, characterised in that the metal support matrix (1) consists of stacks (3) which vary both in terms of thickness and length.
  3. A metal support matrix according to Claim 1 or Claim 2, characterised in that for round or approximately square cross-sectional forms of the metal support matrix (1), the contact surfaces of the four stacks (3) placed on each other form the shape of a cross (6) prior to the twisting operation.
  4. A metal support matrix according to Claim 1 or Claim 2, characterised in that for elliptic or other cross-sectional shapes of the metal support matrix (1), the contact faces of the four stacks (3) placed on each other form the shape of a cross (7) which is displaced in a plane of displacement (E-E) prior to the twisting operation.
  5. A metal support matrix according to Claim 1 or Claim 2, characterised in that for elliptic or approximately elliptic cross-sectional forms of the metal support matrix (1), four stacks (3) in the shape of a parallelogram are placed on each other to form a cross in such a way that a quadrilateral cavity (9) results in the centre of the metal support matrix (1), this cavity being closed after the twisting operation by the metal support matrix (1) being pressed into the desired elliptic or approximately elliptic cross-sectional shape.
  6. A metal support matrix according to one of the preceding Claims, characterised in that the central region of the metal support matrix (1) is point symmetrical in design, and deviates from the point symmetrical shape in the peripheral regions.
  7. A metal support matrix according to one of the preceding claims, characterised in that the metal strips (4, 5) of the metal support matrix (1) are joined together by a jointing method.
  8. A metal support matrix according to one of Claims 1, 6 or 7, characterised in that the metal support matrix (1) consists of eight stacks (3) which are arranged like a star about a point of symmetry (8) and are twisted about that point of symmetry in the same direction, wherein the ends of the stacks (3) make contact at the point of symmetry (8) enclosing an acute angle.
EP91105500A 1990-05-21 1991-04-08 Metal carrier matrix for a catalytic reactor Expired - Lifetime EP0458045B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4016276A DE4016276C1 (en) 1990-05-21 1990-05-21
DE4016276 1990-05-21

Publications (2)

Publication Number Publication Date
EP0458045A1 EP0458045A1 (en) 1991-11-27
EP0458045B1 true EP0458045B1 (en) 1994-07-13

Family

ID=6406854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105500A Expired - Lifetime EP0458045B1 (en) 1990-05-21 1991-04-08 Metal carrier matrix for a catalytic reactor

Country Status (5)

Country Link
US (1) US5342588A (en)
EP (1) EP0458045B1 (en)
JP (1) JPH0736896B2 (en)
DE (2) DE4016276C1 (en)
ES (1) ES2056512T3 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4112354A1 (en) * 1991-04-16 1992-10-22 Behr Gmbh & Co DEVICE FOR CATALYTIC DETOXING OF EXHAUST GAS
DE4129824A1 (en) * 1991-09-07 1993-03-11 Behr Gmbh & Co Mfg. supporting structure for a catalytic converter - by winding metal layers into star or cross pattern and compressing to final shape in negative mould
DE4132439A1 (en) * 1991-09-28 1993-04-01 Behr Gmbh & Co EXHAUST CATALYST
DE4215986A1 (en) * 1992-05-14 1993-11-18 Emitec Emissionstechnologie Automotive catalytic converter sheet metal layers - have smooth overlapping ends creating channels through which solder flows in mfg. then improving join to mantle
JP3392895B2 (en) * 1993-01-08 2003-03-31 臼井国際産業株式会社 X-wrap type metal honeycomb body
CZ86495A3 (en) * 1994-04-11 1995-11-15 Scambia Ind Dev Ag Catalyst means for catalytic treatment of exhaust gases, the catalyst as such and process for producing the catalyst means
US5670264A (en) * 1994-05-10 1997-09-23 Shertech, Inc. Thermal barrier
US5620666A (en) * 1994-07-11 1997-04-15 Usui Kokusai Sangyo Kabushiki Kaisha, Ltd. Exhaust gas cleaning metallic substrate
JPH0824670A (en) * 1994-07-11 1996-01-30 Usui Internatl Ind Co Ltd Metal honeycomb body for exhaust gas purification
US5820835A (en) * 1995-07-12 1998-10-13 Engelhard Corporation Assembly and method for making catalytic converter structure
US5846495A (en) * 1995-07-12 1998-12-08 Engelhard Corporation Structure for converter body
AU6488196A (en) * 1995-07-12 1997-02-10 Engelhard Corporation Structure for converter body
US5651906A (en) * 1995-07-12 1997-07-29 W. R. Grace & Co.-Conn. Electrically heatable converter body having plural thin metal core elements attached only at outer ends
US5791044A (en) * 1995-12-22 1998-08-11 Engelhard Corporation Assembly and method for catalytic converter structures
WO1997023275A1 (en) * 1995-12-22 1997-07-03 W.R. Grace & Co.-Conn. Assembly and method for making catalytic converter structures
US6602477B2 (en) 1996-08-05 2003-08-05 Usui Kokusai Sangyo Kaisha, Ltd. Metal honeycomb structure
DE19825018A1 (en) * 1998-06-04 1999-12-09 Emitec Emissionstechnologie Method and laminated core for producing a honeycomb body with a plurality of channels that are permeable to a fluid
EP1248675B1 (en) * 2000-01-11 2005-08-24 Accentus plc Catalytic reactor
EP1336068B1 (en) * 2000-11-13 2006-09-13 Catalytica Energy Systems, Inc. Thermally tolerant support structure for a catalytic combustion catalyst
AU2002331937B2 (en) * 2001-10-12 2007-07-05 Compactgtl Plc Catalytic reactor
GB0125000D0 (en) * 2001-10-18 2001-12-05 Accentus Plc Catalytic reactor
GB0124999D0 (en) * 2001-10-18 2001-12-05 Accentus Plc Catalytic reactor
GB0125035D0 (en) * 2001-10-18 2001-12-12 Accentus Plc Catalytic reactor
GB0218540D0 (en) * 2002-08-09 2002-09-18 Johnson Matthey Plc Engine exhaust treatment
GB0408896D0 (en) * 2004-04-20 2004-05-26 Accentus Plc Catalytic reactor
US7320778B2 (en) * 2004-07-21 2008-01-22 Catacel Corp. High-performance catalyst support
DE102005028044A1 (en) * 2005-06-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Honeycomb body for after-treatment of exhaust gas in automobile sector has housing and layers with curved gradient and of specific length, which in each case comprises partly structured metal film
US7501102B2 (en) * 2005-07-28 2009-03-10 Catacel Corp. Reactor having improved heat transfer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890104A (en) * 1970-11-03 1975-06-17 Getters Spa Catalytic cartridge
ES2010201B3 (en) * 1986-05-12 1989-11-01 Interatom Ges Mit Beschrankter Haftung ALVEOLATED BODY, ESPECIALLY CATALYST CARRYING BODY, WITH INTERLOCKED METAL SHEET LAYERS IN OPPOSITE SENSES AND PROCEDURE FOR ITS MANUFACTURE.
DE8612882U1 (en) * 1986-05-12 1987-10-29 INTERATOM GmbH, 5060 Bergisch Gladbach Metallic catalyst carrier body with involute layers
DE8717916U1 (en) * 1986-05-12 1991-03-21 Siemens AG, 80333 München Metallic catalyst carrier body with involute layers
DE3743723C1 (en) * 1987-12-23 1989-04-20 Sueddeutsche Kuehler Behr Method and device for producing a support body for a catalytic reactor
WO1990003220A1 (en) * 1988-09-22 1990-04-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Honeycomb structure, in particular catalyst support, composed of a plurality of interlaced bundles of sheet metal
US4928485A (en) * 1989-06-06 1990-05-29 W. R. Grace & Co.,-Conn. Metallic core member for catalytic converter and catalytic converter containing same

Also Published As

Publication number Publication date
ES2056512T3 (en) 1994-10-01
EP0458045A1 (en) 1991-11-27
US5342588A (en) 1994-08-30
JPH0736896B2 (en) 1995-04-26
DE59102153D1 (en) 1994-08-18
JPH04227855A (en) 1992-08-17
DE4016276C1 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
EP0458045B1 (en) Metal carrier matrix for a catalytic reactor
EP0245737B1 (en) Honeycomb body, particularly a catalyst carrier, provided with opposedly folded metal sheet layers, and its manufacturing process
EP0186801B1 (en) Support matrix, in particular for a catalytic exhaust converter
DE2733640A1 (en) CARRIER MATRIX FOR A CATALYTIC REACTOR FOR EXHAUST GAS CLEANING IN COMBUSTION ENGINES, IN PARTICULAR GASOLINE ENGINES, OF MOTOR VEHICLES
DE2452929A1 (en) METHOD FOR MANUFACTURING HONEYCOMB BODIES
DE3341868A1 (en) MATRIX FOR A CATALYTIC REACTOR
WO1990003220A1 (en) Honeycomb structure, in particular catalyst support, composed of a plurality of interlaced bundles of sheet metal
DE2642521C2 (en) Device for mutual spacing of parallel cylindrical elements which are used for heat transfer
EP1089819B1 (en) Monolithic, metallic honeycomb bodies with a number of varying channels
EP0152560B1 (en) Matrix for a catalytic reactor for purifying exhaust gases
EP0929738B1 (en) Honeycombed body with heat insulation, preferably for an exhaust gas catalyzer
DE102012007020A1 (en) Electrical connection of several sheet metal layers of an electrically heatable honeycomb body and associated honeycomb body
EP0220468A1 (en) Catalyst support body made of wound or layered sheet metal having a structure with two or more corrugations
DE4025434A1 (en) HONEYCOMB BODY WITH CROSS-SECTIONAL AREAS OF DIFFERENT CHANNEL SIZES, IN PARTICULAR CATALYST SUPPORT BODY
EP0316596A2 (en) Process and apparatus for producing a carrier body for a catalytic reactor
DE3744265A1 (en) Soot filter for the purification of exhaust gas in motor vehicles
DE69002684T2 (en) Catalyst carrier and assembly.
EP0761303B1 (en) Packing element for mass or heat exchange columns
DE2636671A1 (en) BODY INSERTED WITH CHANNELS AND PROCESS FOR ITS MANUFACTURING
DE3517035C1 (en) Matrix for a catalytic reactor for exhaust gas cleaning
EP0577117A2 (en) Process for preparing a catalyst
DE3844350C2 (en) Support body for a catalytic reactor for exhaust gas purification
EP0958053B1 (en) Method and device for producing a honeycomb body
EP0332891B1 (en) Apparatus for catalytically purifying exhaust gases, and process for its production
DE3817490A1 (en) Carrier body for a catalytic reactor for exhaust emission control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19911210

17Q First examination report despatched

Effective date: 19921207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59102153

Country of ref document: DE

Date of ref document: 19940818

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056512

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940912

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 91105500.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080423

Year of fee payment: 18

Ref country code: ES

Payment date: 20080423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080422

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080422

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080422

Year of fee payment: 18

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090408

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090408

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080422

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090409