EP0455625A1 - High strength corrosion-resistant duplex alloy - Google Patents
High strength corrosion-resistant duplex alloy Download PDFInfo
- Publication number
- EP0455625A1 EP0455625A1 EP91890088A EP91890088A EP0455625A1 EP 0455625 A1 EP0455625 A1 EP 0455625A1 EP 91890088 A EP91890088 A EP 91890088A EP 91890088 A EP91890088 A EP 91890088A EP 0455625 A1 EP0455625 A1 EP 0455625A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- corrosion
- alloy according
- alloy
- duplex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 54
- 239000000956 alloy Substances 0.000 title claims abstract description 54
- 230000007797 corrosion Effects 0.000 title claims abstract description 50
- 238000005260 corrosion Methods 0.000 title claims abstract description 50
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000011572 manganese Substances 0.000 claims abstract description 28
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000005520 cutting process Methods 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 30
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 239000011261 inert gas Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 239000012071 phase Substances 0.000 description 11
- 239000011651 chromium Substances 0.000 description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001262 Ferralium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000593 SAF 2205 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- ZLANVVMKMCTKMT-UHFFFAOYSA-N methanidylidynevanadium(1+) Chemical class [V+]#[C-] ZLANVVMKMCTKMT-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the invention relates to a high-strength, easily weldable, essentially containing the alloy components C, Si, Mn, Cr, Mo, Ni, W, N and V duplex alloy with excellent resistance to corrosion, in particular general or surface-removing corrosion, pitting and Crevice corrosion as well as stress and vibration crack corrosion, in chloride-containing and phosphoric acid-containing media and in the heat-treated state with a material strength RM of at least 750 MPa, a 0.2 proof stress RP 0.2 of at least 550 MPa and a Charpy-V toughness of at least 100 joules with good Machining properties.
- Alloys of this type are required for mechanically highly stressed system parts in corrosive media in the chemical industry and especially in OFF-SHORE TECHNOLOGY when searching for or extracting and distributing oil and natural gas. It is necessary that these materials are easy to weld and easy to work with, can withstand high mechanical loads and have above-average toughness properties even at temperatures below 0 ° C.
- the materials must have excellent resistance to all types of corrosion, because chloride-containing and phosphoric acid-containing media in plant parts, pipes and the like, which may be exposed to mechanical direct voltages or mechanical alternating voltages, usually in addition to general surface-removing corrosion, rapidly progressing pitting and intercrystalline crevice corrosion and cause stress and vibration crack corrosion.
- a known nitrogen-containing duplex alloy with high corrosion resistance (EP-A2-0220141) is composed in such a way that it has a ferrite content of 30 to 55%, the corrosion resistance being increased by Cr, Mo and N and reduced by manganese and sulfur.
- the contents of the elements tungsten and in particular manganese are capped at 0.5% by weight and 1.2% by weight with regard to the resistance in chloride-containing media.
- EP-A1-0107489 discloses a corrosion-resistant duplex alloy which, in order to improve the mechanical properties and the resistance to pitting corrosion and stress corrosion cracking in sea water, has in particular high manganese contents of 3.5 to 5.0% in order to increase the amount of nitrogen in solution hold and raise the tensile strength and yield strength.
- the disadvantage here is that at slower cooling speeds of such materials Sigma phase is formed and the toughness is significantly deteriorated.
- Mn contents of 5 to 7% by weight, nitrogen contents of up to 0.4% by weight and, to improve the corrosion resistance, copper contents of 1.1 to 3.0% by weight are used in a duplex alloy containing chromium plus 3x molybdenum of greater than 32% by weight according to WO 85/05129.
- a duplex alloy containing chromium plus 3x molybdenum of greater than 32% by weight according to WO 85/05129.
- EP-A1-0320548 discloses a duplex alloy with improved mechanical properties with better toughness values than FERRALIUM alloy 255 or SAF 2205. Characteristic of this alloy is the setting of a ratio of Cr equivalent and Ni equivalent within narrow limits, high nickel contents of 8.0 to 11.0% by weight being maintained due to manganese concentrations of up to 2.0. In the case of a melt-metallurgical production of this material, however, especially at higher nitrogen contents, pore formation can occur in the casting and it can also be difficult to carry out the hot deformation, so that it is preferably used to manufacture forged or, in particular, cast parts.
- DE-B2-26 16 599 discloses an alloy with a composition within wide limits for the production of pipes and pipe connections, which parts are used for the transport and further processing of acid gas. To increase the yield strength, these parts must be subjected to cold working after solution annealing, which causes considerable disadvantages in production, particularly in the case of complicated shapes.
- the invention is based on a typical duplex alloy, the composition of which lies essentially within the concentration limits given below in% by weight of the elements. Rest essentially iron.
- the object of the invention is to create a duplex alloy, in particular for the OFF-SHORE application in the petroleum and natural gas sector and for the chemical industry, which can be produced and processed economically and with a high level of production reliability and has good thermoforming properties, whereby the parts made from it are easy to weld and process or machinable and the material has high mechanical properties excellent resistance to all types of corrosion.
- it is therefore essential that the combination of properties of high material strength, high yield strength, good toughness and resistance to surface-removing corrosion, pitting and crevice corrosion as well as stress and vibration crack corrosion is optimized.
- this complex object is achieved in that, after a heat treatment by forced cooling from a temperature between 1020 ° C. and 1150 ° C., ferrite and austenite with a ratio of 40 to 60% Alloy in% by weight
- the rest contains iron and production-related impurities with the proviso that at a ratio G of the nickel content in% by weight to the manganese content in% by weight of greater than 2.0 but less than 4.0, the structural phase factor P is formed [2.9x (% Cr) + 2.9x (% Mo) + 1.4x (% W) + 4.4x (% Si) -2.1 (% Ni) -1.0x (% n) -62 , 5x (% N)] has a value greater than 40 but less than 65.
- Duplex alloys are cooled from a solution annealing temperature at which the proportion of austenite and ferrite is set depending on the temperature. Increasing proportions of ferrite increase the strength of the material, but the toughness and corrosion resistance are adversely affected. With a share of 40 to 60% of ferrite in the structure, sufficiently high toughness values are achieved with high strength of the material. It is important for the setting of the microstructure that the solution annealing temperature is from 1020 ° to 1150 ° C., preferably from 1050 ° C. to 1100 ° C.
- Carbon is a strong austenite former, but reacts with carbide-forming elements to form carbides that degrade toughness and especially corrosion resistance.
- Silicon is a strong ferrite former and is required by melt metallurgy to deoxidize the liquid steel. High levels of silicon deteriorate machinability and promote Sigma phase formation, which reduces toughness. Silicon contents of 0.15 to 0.55, preferably 0.2 to 0.5, are therefore essential.
- Manganese is an austenite former and increases the nitrogen solubility of the melt, but favors the toughness-reducing excretion of sigma phase in higher concentrations. Low manganese contents cause problems in the melt metallurgy and casting technology with reduced nitrogen solubility and possibly deterioration of the hot formability. Furthermore, manganese binds the sulfur with the formation of sulfide, which sulfide inclusions particularly favor pitting and crevice corrosion. It is therefore essential to the invention that the manganese content of the alloy is present within narrow limits, specifically with a concentration of 2.0 to 2.9, preferably 2.1 to 2.7,% by weight and that the sulfur content is less than 0.005% by weight. -% is.
- Chromium is important for establishing a passive state in relation to a corrosion medium and has a ferrite-forming effect. Good corrosion resistance is brought about in the range from 23 to 27, preferably 24 to 26,% by weight of chromium of the alloy.
- Molybdenum is particularly effective against pitting and crevice corrosion, especially in chloride-containing media.
- high molybdenum contents can form molybdenum-rich phases, which adversely affect the corrosion resistance of the material.
- a molybdenum content of the alloy of 3.0 to 5.0, preferably 3.5 to 4.5,% by weight is also important for achieving good weldability.
- Nickel is an essential austenite former and is required to adjust the duplex structure with concentrations of 5.6 to 8.0, preferably 6.2 to 7.4,% by weight.
- Tungsten in the content limits of 0.5 to 2.0, preferably 0.55 to 0.9,% by weight improves the hot-formability of the alloy decisively and is also essential for increasing the resistance of the alloy to pitting and crevice corrosion.
- phases containing copper deteriorate the pitting and crevice corrosion resistance in chloride-containing media, so that the copper content is at most 0.5, preferably at most 0.35,% by weight.
- Nitrogen is an extremely important alloying element because nitrogen, as an austenite former, solidifies the austenite phase without loss of toughness. Nitrogen also inhibits the precipitation of intermetallic phases and promotes the chromium distribution between austenite and ferrite. Nitrogen levels of 0.2 to 0.35% by weight are particularly effective.
- Vanadium forms fine vanadium carbides, in particular vanadium carbonitrides, in a concentration range from 0.04 to 0.25, preferably from 0.05 to 0.15,% by weight, as a result of which grain refinement and solidification of the material result in improved weldability and thermal structural stability becomes.
- Lower vanadium contents can lead to coarse grain formation, higher concentrations can lead to a coagulation of the carbonitrides and nitrides which is disadvantageous for the material properties.
- An aluminum content of the alloy cannot be absolutely prevented in most of the melt-metallurgical processes, but must be limited to a maximum of 0.06, preferably to a maximum of 0.04,% by weight because of the aluminum nitride formation, which significantly reduces the toughness.
- Niobium / tantalum enhances the beneficial effect of vanadium and can contain up to 0.02, preferably up to 0.01,% by weight in the alloy be provided.
- Calcium is a particularly effective deoxidation element and a strong sulfide former and improves the purity and the properties, in particular the machinability, of the alloy at concentrations of up to 0.04% by weight. Calcium with a content of 0.001 to 0.015% by weight largely prevents the formation of harmful manganese sulfides, with calcium inclusions having a positive effect on machining.
- Magnesium contents of up to 0.02% by weight favor the thermoforming properties and can increase the degree of purity of the material.
- Essential to the invention for a high property level of the mechanical and corrosion-chemical-metallurgical characteristics of the material corresponding to the complex requirements of the alloy is a ratio value G of the nickel content to the manganese content with a structure factor P, which reflects the different and differently strong effects of the individual elements on the phase distribution heat treatment.
- the hot formability determined by duplex alloys is compared with the respective nickel to manganese ratio value G by compression tests.
- a hot upsetting test cylindrical samples with a diameter of 12 mm and a height of 18 mm at a temperature of 1150 C were compressed in a press or percussion mechanism to a third of the initial height and the side surface formed by the free spreading was examined for cracks. In these experiments, mesh-like cracks usually develop on poorly deformable materials.
- the hot-formability of the material drops sharply from a ratio G of 4, that is to say above the range according to the invention.
- Fig. 3 shows the influence of the sulfur and manganese content of duplex alloys on the pitting corrosion potential in synthetic sea water, aerated at a temperature of 80 ° C.
- the diagram shows that, according to the invention, sulfur contents of less than 0.005% by weight are required to achieve a high resistance of the material to pitting corrosion, the manganese content essentially increasing the nitrogen solubility of the melt or the nitrogen content of the alloy, which improves the corrosion resistance is effected.
- FIG. 4 shows the corrosion behavior of duplex alloys according to the invention in phosphoric acid as a function of the temperature on the basis of isocorrosion lines a, b and c.
- the cutting behavior of ferrite-austenite materials is shown in the diagram in FIG. 5. Cutting behavior is checked by drilling when measuring the total drilling depth and / or by turning when determining the machined volume. Alloys according to the invention with a ratio G (nickel content to manganese content) of 2 to 4 and a calcium content of approx. 0.006% by weight have good machining behavior, whereas comparison alloys, in particular those with low manganese concentrations or high G values, are difficult to machine.
- G nickel content to manganese content
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Chemically Coating (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Secondary Cells (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Die Erfindung betrifft eine hochfeste, gut schweißbare, im wesentlichen die Legierungsbestandteile C, Si, Mn, Cr, Mo, Ni, W, N und V enthaltende Duplex- Legierung mit ausgezeichneter Beständigkeit gegen korrosion, insbesondere allgemeine bzw. flächenabtragende korrosion, Loch- und Spaltkorrosion sowie Spannungs- und Schwingungsrißkorrosion, in chloridhaltigen und phosphorsäurehaltigen Medien und im wärmebehandelten Zustand mit einer Materialfestigkeit RM von mindestens 750 MPa, einer 0,2 Dehngrenze RP0,2 von mindestens 550 MPa und einer Charpy-V Zähigkeit von mindestens 100 Joule bei guten Zerspanungseigenschaften.The invention relates to a high-strength, easily weldable, essentially containing the alloy components C, Si, Mn, Cr, Mo, Ni, W, N and V duplex alloy with excellent resistance to corrosion, in particular general or surface-removing corrosion, pitting and Crevice corrosion as well as stress and vibration crack corrosion, in chloride-containing and phosphoric acid-containing media and in the heat-treated state with a material strength RM of at least 750 MPa, a 0.2 proof stress RP 0.2 of at least 550 MPa and a Charpy-V toughness of at least 100 joules with good Machining properties.
Legierungen dieser Art werden für mechanisch hochbeanspruchte Anlagenteile in korrosiven Medien in der chemischen Industrie und insbesondere in der OFF-SHORE-TECHNIK bei der Suche nach bzw. Förderung und Verteilung von Erdöl und Erdgas benötigt. Dabei ist es erforderlich, daß diese Werkstoffe gut schweißbar und leicht bearbeitbar sind, hohen mechanischen Beanspruchungen widerstehen können und auch bei Temperaturen unter 0°C überdurchschnittliche Zähigkeitseigenschaften besitzen.Alloys of this type are required for mechanically highly stressed system parts in corrosive media in the chemical industry and especially in OFF-SHORE TECHNOLOGY when searching for or extracting and distributing oil and natural gas. It is necessary that these materials are easy to weld and easy to work with, can withstand high mechanical loads and have above-average toughness properties even at temperatures below 0 ° C.
Weiters müssen die Werkstoffe eine ausgezeichnete Beständigkeit gegen jegliche Art von korrosion aufweisen, weil chloridhaltige und phosphorsäurehaltige Medien bei Anlagenteilen, Rohren und dergleichen, die gegebenenfalls mechanischen Gleichspannungen oder mechanischen Wechselspannungen ausgesetzt sind, zumeist neben einer allgemeinen flächenabtragenden korrosion eine rasch fortschreitende Loch- und interkristalline Spaltkorrosion sowie eine Spannungs- und Schwingungsrißkorrosion bewirken.Furthermore, the materials must have excellent resistance to all types of corrosion, because chloride-containing and phosphoric acid-containing media in plant parts, pipes and the like, which may be exposed to mechanical direct voltages or mechanical alternating voltages, usually in addition to general surface-removing corrosion, rapidly progressing pitting and intercrystalline crevice corrosion and cause stress and vibration crack corrosion.
Es wurde versucht, die Festigkeit und die korrosionsbeständigkeit der Legierung durch vermehrte Gehalte von Chrom, Molybdan und Silizium zu verbessern. Weil diese Elemente Ferritbildner sind, ist damit eine Vergrößerung des Ferritanteiles im Gefüge verbunden und es würden eine wesentliche Verschlechterung der Warmverformbarkeit, der Zähigkeit und der Schweißbarkeit sowie eine Versprödung des Werkstoffes bewirkt.Attempts have been made to improve the strength and corrosion resistance of the alloy by increasing the contents of chromium, molybdenum and silicon. Because these elements are ferrite formers, an increase in the ferrite content in the structure is associated with this and a significant deterioration in the hot deformability, the toughness and the weldability as well as embrittlement of the material would be brought about.
Um diese Nachteile zu vermeiden, wurde weiters versucht, den Gehalt an austenitbildenden Elementen zu erhöhen und insbesondere den Stickstoffgehalt zu vergrößern, weil Stickstoff einerseits ein starker Austenitbildner ist und andererseits die korrosionsbeständigkeit günstig beeinflußt. Hohe Stickstoffkonzentrationen sind jedoch bei Anwendung einer üblichen Herstelltechnologie für derartige Legierungen nicht möglich, weil auf Grund des Löslichkeitssprunges bei der Erstarrung gasförmiger Stickstoff gebildet wird, welcher Ungänzen, z.B. Blasen und Poren, im Gußstück bewirkt. Es hat sich gezeigt, daß die komplexen Anforderungen betreffend die mechanischen kennwerte und die korrosionsbeständigkeit an eine Legierung am ehesten dann erfüllt werden können, wenn diese einen Ferrit- und Austenitanteil im Verhältnis 1:1 aufweisen und insbesondere die Gehalte der die korrosionsbeständigkeit verbessernden Elemente derart abgestimmt sind daß eine im wesentlichen ausreichende Verarbeitbarkeit, Bearbeitbarkeit und Schweißbarkeit vorliegen.In order to avoid these disadvantages, attempts were further made to increase the content of austenite-forming elements and in particular to increase the nitrogen content, because nitrogen is a strong austenite former on the one hand and has a favorable influence on the corrosion resistance on the other hand. However, high nitrogen concentrations are not possible when using a conventional manufacturing technology for such alloys, because due to the jump in solubility during the solidification, gaseous nitrogen is formed, which causes imperfections, for example bubbles and pores, in the casting. It has been shown that the complex requirements regarding the mechanical properties and the corrosion resistance of an alloy can best be met if they have a ferrite and austenite ratio of 1: 1 and in particular the contents of the elements that improve the corrosion resistance are matched in this way are that essentially sufficient workability, Machinability and weldability are present.
Zur legierungstechnischen Einstellung eines Verhältnisses von Ferrit zu Austenit im Gefüge werden in der Literatur unter Zugrundelegung des Cr-Äquivalentes und Ni-Äquivalentes Angaben gemacht, die für das Schweißen bzw. für ein Abkühlen aus der Flüssigphase gelten. Aus korrosionsbeständigen Duplex-Legierungen gefertigte Teile werden jedoch einer Glühbehandlung unterworfen, bei welcher sich in Abhängigkeit von der Temperatur und der Legierungszusammensetzung die Anteile an Ferrit und Austenit ausbilden. Sowohl der Temperatureinfluß als auch der Einfluß der konzentrationen der einzelnen Legierungselemente sind bei den bekannten Werkstoffzusammensetzungen sehr groß, sodaß die entsprechenden Eigenschaften nicht immer mit Sicherheit erreicht werden können und ein hohes komplexes Eigenschaftsniveau nicht gezielt einstellbar ist.For the alloy-technical setting of a ratio of ferrite to austenite in the structure, information is given in the literature on the basis of the Cr equivalent and Ni equivalent, which applies to welding or cooling from the liquid phase. However, parts made from corrosion-resistant duplex alloys are subjected to an annealing treatment in which the proportions of ferrite and austenite are formed depending on the temperature and the alloy composition. Both the influence of temperature and the influence of the concentrations of the individual alloy elements are very large in the known material compositions, so that the corresponding properties cannot always be achieved with certainty and a high, complex property level cannot be set in a targeted manner.
Eine bekannte stickstoffenthaltende Duplex-Legierung mit hoher korrosionsbeständigkeit ( EP-A2-0220141) ist derart zusammengesetzt, daß diese einen Ferritgehalt von 30 bis 55 % aufweist, wobei der korrosionswiderstand durch Cr,Mo und N erhöht und durch Mangan und Schwefel erniedrigt wird. Die Gehalte der Elemente Wolfram und insbesondere Mangan sind im Hinblick auf die Beständigkeit in chloridhaltigen Medien mit 0,5 Gew.-% und 1,2 Gew,-% nach oben limitiert. Bei der Herstellung sind jedoch zur Einhaltung entsprechender Nerkmale des Werkstoffes genaueste und aufwendige technische Maßnahmen zu treffen, wobei es zumeist nicht gelingt, eine gewünschte thermische Gefügestabilität bei der Lösungsglühbehandlung zu erreichen.A known nitrogen-containing duplex alloy with high corrosion resistance (EP-A2-0220141) is composed in such a way that it has a ferrite content of 30 to 55%, the corrosion resistance being increased by Cr, Mo and N and reduced by manganese and sulfur. The contents of the elements tungsten and in particular manganese are capped at 0.5% by weight and 1.2% by weight with regard to the resistance in chloride-containing media. During production, however, the most precise and complex technical measures have to be taken to maintain the corresponding characteristics of the material, and it is usually not possible to achieve a desired thermal structural stability in the solution annealing treatment.
Aus der EP-A1-0107489 ist eine korrosionsbeständige Duplex-Legierung bekannt, welche zur Verbesserung der mechanischen Eigenschaften und der Beständigkeit gegen Lochkorrosion sowie Spannungsrißkorrosion in Meerwasser insbesondere hohe Mangangehalte von 3,5 bis 5,0 % aufweist, um höhere Stickstoffmengen in Lösung zu halten und die Zugfestigkeit und Dehngrenze anzuheben. Nachteilig dabei ist, daß bei langsameren Abkühlgeschwindigkeiten derartiger Werkstoffe Sigmaphase gebildet und die Zähigkeit wesentlich verschlechtert werden.EP-A1-0107489 discloses a corrosion-resistant duplex alloy which, in order to improve the mechanical properties and the resistance to pitting corrosion and stress corrosion cracking in sea water, has in particular high manganese contents of 3.5 to 5.0% in order to increase the amount of nitrogen in solution hold and raise the tensile strength and yield strength. The disadvantage here is that at slower cooling speeds of such materials Sigma phase is formed and the toughness is significantly deteriorated.
Mn-Gehalte von 5 bis 7 Gew.-%, Stickstoffgehalte bis 0,4 Gew.-% und zur Verbesserung der Korrosionsbeständigkeit kupfergehalte von 1,1 bis 3,0 Gew.-% werden in einer Duplex-Legierung mit einem Gehalt an Chrom plus 3x Molybdän von größer als 32 Gew.-% gemäß WO 85/05129 vorgeschlagen. Derartige Werkstoffe weisen zwar schon im Gußzustand eine verbesserte korrosionsbeständigkeit auf, die Verarbeitbarkeit und die mechanischen Werte, insbesondere die Zähigkeitseigenschaften, sind jedoch zumeist nicht ausreichend hoch. Weiters entspricht das Schweißverhalten auch im Hinblick auf den Schweißzusatzwerkstoff zumeist nicht den Erfordernissen.Mn contents of 5 to 7% by weight, nitrogen contents of up to 0.4% by weight and, to improve the corrosion resistance, copper contents of 1.1 to 3.0% by weight are used in a duplex alloy containing chromium plus 3x molybdenum of greater than 32% by weight according to WO 85/05129. Although such materials already have improved corrosion resistance in the as-cast state, the processability and the mechanical values, in particular the toughness properties, are usually not sufficiently high. Furthermore, the welding behavior also mostly does not meet the requirements with regard to the filler metal.
Weiters ist aus EP-A1-0320548 eine Duplex-Legierung mit verbesserten mechanischen Eigenschaften mit besseren Zähigkeitswerten als FERRALIUM-Legierung 255 oder SAF 2205 bekannt. kennzeichnend für diese Legierung ist die Einstellung eines Verhältnisses von Cr-Äquivalent und Ni-Äquivalent in engen Grenzen, wobei auf Grund von Mangankonzentrationen bis 2,0 hohe Nickelgehalte von 8,0 bis 11,0 Gew.-% einzuhalten sind. Bei einer schmelzmetallurgischen Herstellung dieses Werkstoffes kann es jedoch , insbesondere bei höheren Stickstoffgehalten, zu einer Porenbildung im Gußstück kommen und es kann auch die Warmverformung schwer durchführbar sein, sodaß daraus vorzugsweise eine Fertigung von geschmiedeten oder insbesondere gegossenen Teilen vorgesehen ist.Furthermore, EP-A1-0320548 discloses a duplex alloy with improved mechanical properties with better toughness values than FERRALIUM alloy 255 or SAF 2205. Characteristic of this alloy is the setting of a ratio of Cr equivalent and Ni equivalent within narrow limits, high nickel contents of 8.0 to 11.0% by weight being maintained due to manganese concentrations of up to 2.0. In the case of a melt-metallurgical production of this material, however, especially at higher nitrogen contents, pore formation can occur in the casting and it can also be difficult to carry out the hot deformation, so that it is preferably used to manufacture forged or, in particular, cast parts.
Es wurde auch versucht ( EP-A3-0151487), durch zusätzliche Kupfergehalte die Korrosionsbeständigkeit und durch Kobaltkonzentrationen von 0,2 bis 4,0 Gew.-% die Streckgrenze des Werkstoffes zu erhöhen.Attempts have also been made (EP-A3-0151487) to increase the corrosion resistance by means of additional copper contents and to increase the yield strength of the material by means of cobalt concentrations of 0.2 to 4.0% by weight.
Aus der DE-B2-26 16 599 ist eine Legierung mit einer Zusammensetzung in weiten Grenzen für die Herstellung von Rohren und Rohrverbindungen bekannt, welche Teile für einen Transport und eine Weiterverarbeitung von Sauergas eingesetzt werden. Zur Erhöhung der Streckgrenze sind diese Teile nach dem Lösungsglühen einer kaltverformung zu unterwerfen, was insbesondere bei komplizierten Formen erhebliche Nachteile bei der Fertigung bewirkt.DE-B2-26 16 599 discloses an alloy with a composition within wide limits for the production of pipes and pipe connections, which parts are used for the transport and further processing of acid gas. To increase the yield strength, these parts must be subjected to cold working after solution annealing, which causes considerable disadvantages in production, particularly in the case of complicated shapes.
Die Erfindung geht von einer typischen Duplex-Legierung aus, deren Zusammensetzung im wesentlikchen innerhalb der nachfolgend angegebenen konzentrationsgrenzen in Gew.-% der Elemente liegt.
Rest im wesentlichen Eisen.The invention is based on a typical duplex alloy, the composition of which lies essentially within the concentration limits given below in% by weight of the elements.
Rest essentially iron.
Die Erfindung hat sich zur Aufgabe gestellt, eine Duplex-Legierung, insbesondere für die OFF-SHORE-Anwendung im Erdöl-und Erdgasbereich sowie für die chemische Industrie zu schaffen, die wirtschaftlich und mit hoher Erzeugungssicherheit herstellbar und verarbeitbar ist sowie gute Warmverformungseigenschaften aufweist, wobei die daraus gefertigten Teile gut schweißbar und gut bearbeitbar bzw. zerspanbar sind und der Werkstoff hohe mechanische kennwerte bei ausgezeichneter Beständigkeit gegen jegliche Art von korrosion besitzt.
Zusätzlich zur verbesserten Herstellbarkeit ist es hiebei somit wesentlich, daß die Eigenschaftskombination aus hoher Materialfestigkeit, hoher Dehngrenze, guter Zähigkeit und Beständigkeit gegen flächenabtragende korrosion, Loch- und Spaltkorrosion sowie Spannungs- und Schwingungsrißkorrosion optimiert wird.The object of the invention is to create a duplex alloy, in particular for the OFF-SHORE application in the petroleum and natural gas sector and for the chemical industry, which can be produced and processed economically and with a high level of production reliability and has good thermoforming properties, whereby the parts made from it are easy to weld and process or machinable and the material has high mechanical properties excellent resistance to all types of corrosion.
In addition to the improved producibility, it is therefore essential that the combination of properties of high material strength, high yield strength, good toughness and resistance to surface-removing corrosion, pitting and crevice corrosion as well as stress and vibration crack corrosion is optimized.
Es hat sich nun völlig überraschend gezeigt, daß gemäß der vorliegenden Erfindung diese komplexe Aufgabe dadurch gelöst wird, daß die nach einer Wärmebehandlung durch forcierte Abkühlung von einer Temperatur zwischen 1020°C und 1150°C Ferrit und Austenit mit einem Verhältnis von 40 bis 60 % aufweisende Legierung in Gew.-%
Rest Eisen und herstellungsbedingte Verunreinigungen enthält mit der Maßgabe, daß bei einem Verhältniswert G des Nickelgehaltes in Gew.-% zum Mangangehalt in Gew.-% von größer als 2,0 jedoch kleiner als 4,0 der Gefügephasenfaktor P gebildet aus [2,9x(%Cr)+2,9x(%Mo)+1,4x(%W)+4,4x(%Si)-2,1(%Ni)-1,0x(%n)-62,5x(%N)] einen Wert von größer als 40 jedoch kleiner als 65 aufweist.It has now been shown completely surprisingly that, according to the present invention, this complex object is achieved in that, after a heat treatment by forced cooling from a temperature between 1020 ° C. and 1150 ° C., ferrite and austenite with a ratio of 40 to 60% Alloy in% by weight
The rest contains iron and production-related impurities with the proviso that at a ratio G of the nickel content in% by weight to the manganese content in% by weight of greater than 2.0 but less than 4.0, the structural phase factor P is formed [2.9x (% Cr) + 2.9x (% Mo) + 1.4x (% W) + 4.4x (% Si) -2.1 (% Ni) -1.0x (% n) -62 , 5x (% N)] has a value greater than 40 but less than 65.
Dieses gewünschte Eigenschaftsniveau, welches den komplexen Anforderungen Rechnung trägt, kann offensichtlich nur durch synergetische Wirkung im wesentlichen aller Elemente mit bestimmten konzentrationsverhältnissen in engen Grenzen zueinander erreicht werden.This desired level of properties, which takes the complex requirements into account, can obviously only be achieved by synergistic effects of essentially all elements with certain concentration ratios within narrow limits.
Im folgenden wird die Erfindung mit den Wirkungsmechanismen der Gefügeteile und der Legierungselemente näher erläutert.The invention is explained in more detail below with the mechanisms of action of the structural parts and the alloy elements.
Duplex-Legierungen werden von einer Lösungsglühtemperatur, bei welcher sich temperaturabhängig der Anteil an Austenit und Ferrit einstellt, abgekühlt. Steigende Ferritanteile erhöhen die Festigkeit des Werkstoffes, die Zähigkeit und korrosionsbeständigkeit werden dadurch jedoch negativ beeinflußt. Bei einem Anteil von 40 bis 60 % von Ferrit im Gefüge werden bei hoher Festigkeit des Materials auch ausreichend hohe Zähigkeitswerte erreicht. Wichtig für die Einstellung der Gefügeanteile ist die Höhe der Lösungsglühtemperatur von 1020°bis 1150'C, vorzugsweise von 1050°C bis 1100°C.Duplex alloys are cooled from a solution annealing temperature at which the proportion of austenite and ferrite is set depending on the temperature. Increasing proportions of ferrite increase the strength of the material, but the toughness and corrosion resistance are adversely affected. With a share of 40 to 60% of ferrite in the structure, sufficiently high toughness values are achieved with high strength of the material. It is important for the setting of the microstructure that the solution annealing temperature is from 1020 ° to 1150 ° C., preferably from 1050 ° C. to 1100 ° C.
kohlenstoff ist ein starker Austenitbildner, reagiert jedoch mit karbidbildenden Elementen, wobei karbide entstehen, die die Zähigkeit und insbesondere die korrosionsbeständigkeit verschlechtern. Maximale kohlenstoffgehalte von 0,04 Gew.-%, vorzugsweise von 0,03 Gew.-%, haben keinen nachteiligen Einfluß auf die Werkstoffeigenschaften.Carbon is a strong austenite former, but reacts with carbide-forming elements to form carbides that degrade toughness and especially corrosion resistance. Maximum carbon contents of 0.04% by weight, preferably 0.03% by weight, have no adverse effect on the material properties.
Silizium ist ein starker Ferritbildner und ist schmelzmetallurgisch für eine Desoxidation des flüssigen Stahles erforderlich. Hohe Gehalte an Silizium verschlechtern die Zerspanbarkeit und fördern die Sigmaphasenbildung, welche zähigkeitsvermindernd wirkt. Deshalb sind Siliziumgehalte von 0,15 bis 0,55, vorzugsweise von 0,2 bis 0,5, wesentlich.Silicon is a strong ferrite former and is required by melt metallurgy to deoxidize the liquid steel. High levels of silicon deteriorate machinability and promote Sigma phase formation, which reduces toughness. Silicon contents of 0.15 to 0.55, preferably 0.2 to 0.5, are therefore essential.
Mangan ist ein Austenitbildner und vergrößert die Stickstofflöslichkeit der Schmelze, begünstigt jedoch in höheren konzentrationen die zähigkeitsmindernde Ausscheidung von Sigmaphase. Geringe Mangangehalte bewirken schmelzmetallurgische und gießtechnische Probleme bei verminderter Stickstofflöslichkeit und gegebenenfalls Verschlechterung der Warmverformbarkeit. Weiters bindet Mangan den Schwefel unter Sulfidbildung, welche Sulfideinschlüsse insbesondere die Loch-und Spaltkorrosion begünstigen. Es ist somit erfindungswesentlich, daß der Mangangehalt der Legierung in engen Grenzen und zwar mit einer konzentration von 2,0 bis 2,9, vorzugsweise 2,1 bis 2,7, Gew.-% vorliegt und daß der Schwefelgehalt geringer als 0,005 Gew.-% ist.Manganese is an austenite former and increases the nitrogen solubility of the melt, but favors the toughness-reducing excretion of sigma phase in higher concentrations. Low manganese contents cause problems in the melt metallurgy and casting technology with reduced nitrogen solubility and possibly deterioration of the hot formability. Furthermore, manganese binds the sulfur with the formation of sulfide, which sulfide inclusions particularly favor pitting and crevice corrosion. It is therefore essential to the invention that the manganese content of the alloy is present within narrow limits, specifically with a concentration of 2.0 to 2.9, preferably 2.1 to 2.7,% by weight and that the sulfur content is less than 0.005% by weight. -% is.
Chrom ist wichtig zur Einstellung eines Passivzustandes gegenüber einem korrosionsmedium und wirkt ferritbildend. Im Bereich von 23 bis 27, vorzugsweise 24 bis 26, Gew.-% Chrom der Legierung wird gute korrosionsbeständigkeit bewirkt.Chromium is important for establishing a passive state in relation to a corrosion medium and has a ferrite-forming effect. Good corrosion resistance is brought about in the range from 23 to 27, preferably 24 to 26,% by weight of chromium of the alloy.
Molybdän ist besonders wirksam gegen Loch-und Spaltkorrosion, insbesondere in chloridhaltigen Medien. Durch hohe Molybdängehalte können jedoch molybdänreiche Phasen gebildet werden, welche die korrosionsbeständigkeit des Werkstoffes nachteilig beeinflussen. Auch zur Erzielung einer guten Schweißbarkeit ist ein Molybdängehalt der Legierung von 3,0 bis 5,0, vorzugsweise 3,5 bis 4,5, Gew.-% wichtig.Molybdenum is particularly effective against pitting and crevice corrosion, especially in chloride-containing media. However, high molybdenum contents can form molybdenum-rich phases, which adversely affect the corrosion resistance of the material. A molybdenum content of the alloy of 3.0 to 5.0, preferably 3.5 to 4.5,% by weight is also important for achieving good weldability.
Nickel ist ein wesentlicher Austenitbildner und wird zur Einstellung des Duplexgefüges mit konzentrationen von 5,6 bis 8,0, vorzugsweise 6,2 bis 7,4, Gew.-% benötigt.Nickel is an essential austenite former and is required to adjust the duplex structure with concentrations of 5.6 to 8.0, preferably 6.2 to 7.4,% by weight.
Wolfram in den Gehaltsgrenzen von 0,5 bis 2,0, vorzugsweise 0,55 bis 0,9, Gew.-% verbessert die Warmverformbarkeit der Legierung entscheidend und ist auch wesentlich für die Erhöhung der Beständigkeit der Legierung gegen Loch- und Spaltkorrosion.Tungsten in the content limits of 0.5 to 2.0, preferably 0.55 to 0.9,% by weight improves the hot-formability of the alloy decisively and is also essential for increasing the resistance of the alloy to pitting and crevice corrosion.
kupferhaltige Phasen verschlechtern die Loch- und Spaltkorrosionsbeständigkeit in chloridhaltigen Medien, sodaß der kupfergehalt maximal 0,5, vorzugsweise maximal 0,35,- Gew.-% beträgt.phases containing copper deteriorate the pitting and crevice corrosion resistance in chloride-containing media, so that the copper content is at most 0.5, preferably at most 0.35,% by weight.
Stickstoff ist ein äußerst wichtiges Legierungselement, weil Stickstoff als Austenitbildner die Austenitphase ohne Zähigkeitsverlust verfestigt. Weiters hemmt Stickstoff die Ausscheidung intermetallischer Phasen und begünstigt die Chromverteilung zwischen Austenit und Ferrit. Stickstoffgehalte von 0,2 bis 0,35 Gew.-% sind besonders wirksam.Nitrogen is an extremely important alloying element because nitrogen, as an austenite former, solidifies the austenite phase without loss of toughness. Nitrogen also inhibits the precipitation of intermetallic phases and promotes the chromium distribution between austenite and ferrite. Nitrogen levels of 0.2 to 0.35% by weight are particularly effective.
Vanadin bildet in einem konzentrationsbereich von 0,04 bis 0,25, vorzugsweise von 0,05 bis 0,15, Gew.-% feine Vanadinkarbide, insbesondere Vanadinkarbonitride, wodurch eine Kornfeinung und eine Verfestigung des Werkstoffes bei einer verbesserten Schweißbarkeit und thermischen Gefügestabilität bewirkt wird. Niedrigere Vanadingehalte können zu Grobkornbildung, höhere konzentrationen zu einer für die Werkstoffeigenschaften nachteiligen koagulation der karbonitride und Nitride führen.Vanadium forms fine vanadium carbides, in particular vanadium carbonitrides, in a concentration range from 0.04 to 0.25, preferably from 0.05 to 0.15,% by weight, as a result of which grain refinement and solidification of the material result in improved weldability and thermal structural stability becomes. Lower vanadium contents can lead to coarse grain formation, higher concentrations can lead to a coagulation of the carbonitrides and nitrides which is disadvantageous for the material properties.
Ein Aluminiumgehalt der Legierung kann in den meisten schmelzmetallurgischen Prozessen nicht absolut verhindert werden, muß jedoch wegen der die Zähigkeit entscheidend verschlechternden Aluminiumnitridbildung auf maximal 0,06, vorzugsweise auf maximal 0,04, Gew.-% beschränkt sein.An aluminum content of the alloy cannot be absolutely prevented in most of the melt-metallurgical processes, but must be limited to a maximum of 0.06, preferably to a maximum of 0.04,% by weight because of the aluminum nitride formation, which significantly reduces the toughness.
Niob/Tantal verstärkt die günstige Wirkung von Vanadin und kann mit Gehalten bis 0,02, vorzugsweise bis 0,01, Gew.-% in der Legierung vorgesehen sein.Niobium / tantalum enhances the beneficial effect of vanadium and can contain up to 0.02, preferably up to 0.01,% by weight in the alloy be provided.
Calzium ist ein besonders wirksames Desoxidationselement sowie ein starker Sulfidbildner und verbessert bei konzentrationen bis 0,04 Gew.-% den Reinheitsgrad und die Eigenschaften, insbesondere die Bearbeitbarkeit, der Legierung. Durch Calzium mit Gehalten von 0,001 bis 0,015 Gew.-% wird die Bildung von schädlichen Mangansulfiden weitestgehend verhindert, wobei Calziumeinschlüsse die spanabhebende Bearbeitung positiv beeinflussen.Calcium is a particularly effective deoxidation element and a strong sulfide former and improves the purity and the properties, in particular the machinability, of the alloy at concentrations of up to 0.04% by weight. Calcium with a content of 0.001 to 0.015% by weight largely prevents the formation of harmful manganese sulfides, with calcium inclusions having a positive effect on machining.
Magnesiumgehalte bis 0,02 Gew.-% begünstigen die Warmverformungseigenschaften und können den Reinheitsgrad des Werkstoffes erhöhen.Magnesium contents of up to 0.02% by weight favor the thermoforming properties and can increase the degree of purity of the material.
Erfindungswesentlich für ein den komplexen Anforderungen an die Legierung entsprechendes hohes Eigenschaftsniveau der mechanischen und korrosions-chemisch-metallurgischen kennwerte des Werkstoffes ist ein Verhältniswert G des Nickelgehaltes zum Mangangehalt bei einem Gefügefaktor P, der die unterschiedliche und verschieden starke Wirkung der einzelnen Elemente auf die Phasenverteilung nach einer Wärmebehandlung berücksichtigt.Essential to the invention for a high property level of the mechanical and corrosion-chemical-metallurgical characteristics of the material corresponding to the complex requirements of the alloy is a ratio value G of the nickel content to the manganese content with a structure factor P, which reflects the different and differently strong effects of the individual elements on the phase distribution heat treatment.
Vollkommen überraschend hat sich gezeigt, daß in einem sehr engen Bereich des Nickelgehaltes zum Mangangehalt der Legierung, also bei einem Verhältniswert G von 2,0 bis 4,0, vorzugsweise von 2,3 bis 3,5, in einem durch einen Gefügephasenfaktor P von 40 bis 60, insbesondere von 45 bis 59, bestimmten, engen Zusammensetzungsbereich bei hoher Erzeugungssicherheit wesentlich verbesserte mechanische Eigenschaften und überragende Beständigkeit gegen alle Arten der korrosion erreicht werden.Completely surprisingly, it has been shown that in a very narrow range of the nickel content to the manganese content of the alloy, that is to say at a ratio G of 2.0 to 4.0, preferably from 2.3 to 3.5, in a structure phase factor P of 40 to 60, in particular from 45 to 59, defined, narrow composition range with high production reliability, significantly improved mechanical properties and outstanding resistance to all types of corrosion can be achieved.
Bei einer durch den Verhältniswert G und den Gefügephasenfaktor P bestimmten engen Auswahl aus einer Duplex-Legierung mit eingeengten konzentrationsbereichen der Legierungskomponenten ist eine gute Warmverformbarkeit bei feiner Gefügeausbildung gegeben. Es können Festigkeitswerte RM von über 750 MPa bei einer Dehngrenze RP0,2von größer als 550 MPa und eine Charpy-V-Zähigkeit von größer als 100 Joule des Werkstoffes eingestellt werden, wobei ausgezeichnete Beständigkeit gegen korrosion, insbesondere Loch-und Spaltkorrosion sowie Spannungsrißkorrosion, gegeben ist. Weiters wird eine hohe Gefügestabilität und Temperaturstabilität der Ferrit/Austenit-Legierung erreicht. Der Werkstoff besitzt gute Schweißbarkeit, wobei auch in den wärmebeeinflußten Zonen des Grundmaterials keinerlei Beeinträchtigung der Eigenschaften bewirkt wird. Auch die Bearbeitbarkeit, insbesondere die Zerspanbarkeit, des Materials ist wesentlich verbessert, wodurch bei einer dementsprechenden Formgebung die Werkzeugkosten gesenkt werden.With a narrow selection of a duplex alloy with narrow concentration ranges of the alloy components, determined by the ratio value G and the structural phase factor P, this is a good one Hot deformability given with fine microstructure. Strength values RM of over 750 MPa with an elastic limit RP 0.2 of greater than 550 MPa and a Charpy V toughness of greater than 100 joules of the material can be set, with excellent resistance to corrosion, in particular pitting and crevice corrosion and stress corrosion cracking , given is. Furthermore, a high structural stability and temperature stability of the ferrite / austenite alloy is achieved. The material has good weldability, even in the heat-affected zones of the base material, the properties are not impaired. The machinability, in particular the machinability, of the material is also significantly improved, as a result of which the tool costs are reduced if the material is shaped accordingly.
Anhand von Diagrammen mit Untersuchungsergebnissen wird die Erfindung weiter erläutert.The invention is further explained on the basis of diagrams with examination results.
Es zeigen
- Fig. 1 Versprödungsverhalten in Abhängigkeit vom Ni/Mn-Verhältniswert G
- Fig. 2 Warmstauchversuche in Abhängigkeit vom Ni/Mn-Verhältniswert G
- Fig. 3 Lochkorrosionspotentiale in synth. Meerwasser
- Fig. 4 korrosionsverhalten in Phosphorsäure
- Fig. 5 Zerspanungsverhalten in Abhängigkeit vom Ni/Mn-Verhältniswert G
- Fig. 1 embrittlement behavior depending on the Ni / Mn ratio value G
- Fig. 2 hot upsetting tests depending on the Ni / Mn ratio value G
- Fig. 3 pitting corrosion potential in synthetic sea water
- Fig. 4 corrosion behavior in phosphoric acid
- Fig. 5 cutting behavior depending on the Ni / Mn ratio value G
In Fig. 1 ist die kerbschlagzähigkeit nach einer 475⁴C -Versprödungsbehandlung gemessen im Charpy-V-Test in Relation zum Verhältniswert G aus Nickelgehalt zu Mangangehalt dargestellt, wobei der maximal erreichbaren Zähigkeit der Wert 100% zugeordnet ist. Es zeigt sich, daß erfindungsgemäße Legierungen im engen Bereich zwischen 2,0 und 4,0 des Verhältniswertes G keine wesentliche Versprödungsneigung besitzen, wogegen bei Vergleichslegierungen ein deutlicher Abfall der kerbschlagzähigkeit durch eine einstündige Glühung bei 475°C eintritt.1 shows the notched impact strength after a 475 ° C. embrittlement treatment measured in the Charpy V test in relation to the ratio G of nickel content to manganese content, where the maximum achievable toughness is assigned the
In Fig. 2 ist die von Duplex-Legierungen ermittelte Warmverformbarkeit durch Stauchversuche dem jeweiligen Nickel- zu Mangan- Verhältniswert G gegenübergestellt. Bei einer Warmstauchuntersuchung werden zylindrische Proben mit einem Durchmesser von 12 mm und einer Höhe von 18 mm bei einer Temperatur von 1150 C in einer Presse oder einem Schlagwerk auf ein Drittel der Ausgangshöhe gestaucht und die durch eine freie Breitung tonnenförmig gebildete Seitenfläche auf Risse untersucht. Bei diesen Versuchen entstehen an schlecht warmverformbaren Materialien meist netzförmige Risse.In FIG. 2, the hot formability determined by duplex alloys is compared with the respective nickel to manganese ratio value G by compression tests. In a hot upsetting test, cylindrical samples with a diameter of 12 mm and a height of 18 mm at a temperature of 1150 C were compressed in a press or percussion mechanism to a third of the initial height and the side surface formed by the free spreading was examined for cracks. In these experiments, mesh-like cracks usually develop on poorly deformable materials.
Wie aus dem Schaubild der Fig. 2 hervorgeht, sinkt ab einem Verhältniswert G von 4, also oberhalb des erfindungsgemäßen Bereiches, die Warmverformbarkeit des Werkstoffes stark ab.As can be seen from the diagram in FIG. 2, the hot-formability of the material drops sharply from a ratio G of 4, that is to say above the range according to the invention.
Fig. 3 zeigt den Einfluß des Schwefel- und Mangangehaltes von Duplex-Legierungen auf das Lochkorrosionspotential in synth. Meerwasser, belüftet bei einer Temperatur von 8o°C. Dem Diagramm ist zu entnehmen, daß erfindungsgemäß zur Erlangung einer hohen Beständigkeit des Werkstoffes gegen Lochkorrosion Schwefelgehalte von unter 0,005 Gew.-% erforderlich sind, wobei der Mangangehalt im wesentlichen die Stickstofflöslichkeit der Schmelze bzw. den Stickstoffgehalt der Legierung erhöht, wodurch eine Verbesserung der korrosionsbeständigkeit bewirkt wird.Fig. 3 shows the influence of the sulfur and manganese content of duplex alloys on the pitting corrosion potential in synthetic sea water, aerated at a temperature of 80 ° C. The diagram shows that, according to the invention, sulfur contents of less than 0.005% by weight are required to achieve a high resistance of the material to pitting corrosion, the manganese content essentially increasing the nitrogen solubility of the melt or the nitrogen content of the alloy, which improves the corrosion resistance is effected.
Das Diagramm der Fig. 4 zeigt das Korrosionsverhalten von erfindungsgemäßen Duplex- Legierungen in Phosphorsäure in Abhängigkeit von der Temperatur anhand von Isokorrosionslinien a, b und c.The diagram in FIG. 4 shows the corrosion behavior of duplex alloys according to the invention in phosphoric acid as a function of the temperature on the basis of isocorrosion lines a, b and c.
Das Zerspanungsverhalten von Ferrit-Austenit- Werkstoffen zeigt das Schaubild der Fig. 5. Ein Zerspanungsverhalten wird durch Bohren bei Messung der Gesamtbohrtiefe und/oder durch Drehen bei Ermittlung des zerspanten Volumens geprüft. Erfindungsgemäße Legierungen mit einem Verhältniswert G ( Nickelgehalt zu Mangangehalt) von 2 bis 4 und einem Calziumgehalt von ca 0,006 Gew.-% weisen ein gutes Zerspanungsverhalten auf, wogegen Vergleichlegierungen, insbesondere solche mit niedrigen Mangankonzentrationen bzw. hohen G- Werten, schlecht zerspanbar sind.The cutting behavior of ferrite-austenite materials is shown in the diagram in FIG. 5. Cutting behavior is checked by drilling when measuring the total drilling depth and / or by turning when determining the machined volume. Alloys according to the invention with a ratio G (nickel content to manganese content) of 2 to 4 and a calcium content of approx. 0.006% by weight have good machining behavior, whereas comparison alloys, in particular those with low manganese concentrations or high G values, are difficult to machine.
Claims (7)
[ 2,9 x (% Cr)+ 2,9 x ( % Mo)+ 1,4 x (% W )+4,4 x (% Si)- 2-1 ( % Ni) - 1,0 x ( % Mn) - 62,5 x (% N )] einen Wert von größer als 40 jedoch kleiner als 65 aufweist.High-strength, easy-to-weld duplex alloy essentially containing the alloy components C, Si, Mn, Cr, Mo, Ni, W, N and V with excellent resistance to corrosion, in particular general or surface-removing corrosion, pitting and crevice corrosion as well as stress and vibration crack corrosion , in media containing chloride and phosphoric acid and in the heat-treated state with a material strength RM of at least 750 MPa, a 0.2 proof stress RP 0.2 of at least 550 MPa and a Charpy-V toughness of at least 100 joules with good cutting properties, characterized in that that after a heat treatment by forced cooling from a temperature between 1020'C and 1150 ° C ferrite and austenite with a ratio of 40 to 60% in% by weight The rest contains iron and production-related impurities with the proviso that at a ratio G of the nickel content in% by weight to the manganese content in% by weight of greater than 2.0 but less than 4.0, the structural phase factor P is formed
[2.9 x (% Cr) + 2.9 x (% Mo) + 1.4 x (% W) +4.4 x (% Si) - 2-1 (% Ni) - 1.0 x ( % Mn) - 62.5 x (% N)] has a value greater than 40 but less than 65.
Calzium 0,001 bis 0,015
enthält.Duplex alloy according to Claim 1 or 2, characterized in that it is in% by weight
Calcium 0.001 to 0.015
contains.
Aluminium max 0,025
enthält.Duplex alloy according to one of Claims 1 to 3, characterized in that it is in% by weight
Aluminum max 0.025
contains.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT1007/90 | 1990-05-03 | ||
AT0100790A AT397515B (en) | 1990-05-03 | 1990-05-03 | HIGH-STRENGTH CORROSION-RESISTANT DUPLEX ALLOY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0455625A1 true EP0455625A1 (en) | 1991-11-06 |
EP0455625B1 EP0455625B1 (en) | 1994-07-06 |
Family
ID=3504787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91890088A Revoked EP0455625B1 (en) | 1990-05-03 | 1991-04-25 | High strength corrosion-resistant duplex alloy |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0455625B1 (en) |
AT (2) | AT397515B (en) |
DE (1) | DE59102100D1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0864663A1 (en) * | 1995-09-27 | 1998-09-16 | Sumitomo Metal Industries, Ltd. | High-strength welded steel structures having excellent corrosion resistance |
EP0897018A1 (en) * | 1997-08-13 | 1999-02-17 | BÖHLER Edelstahl GmbH | Duplex stainless steel with high tensile strength and good corrosion properties |
EP0937783A1 (en) * | 1998-02-18 | 1999-08-25 | Sandvik Aktiebolag | New use of a high strength stainless steel |
WO2003020994A1 (en) * | 2001-09-02 | 2003-03-13 | Sandvik Ab | Duplex steel alloy |
WO2003020995A1 (en) * | 2001-09-02 | 2003-03-13 | Sandvik Ab | Use of a duplex stainless steel alloy |
WO2004079028A1 (en) * | 2003-03-02 | 2004-09-16 | Sandvik Intellectual Property Ab | Duplex stainless steel alloy and use thereof |
WO2004079027A1 (en) * | 2003-03-02 | 2004-09-16 | Sandvik Intellectual Property Ab | Duplex stainless steel alloy for use in seawater applications |
WO2009054799A1 (en) * | 2007-10-26 | 2009-04-30 | Sandvik Intellectual Property Ab | Use of a duplex stainless steel in a phosphoric acid production system |
EP2684973A1 (en) * | 2011-03-09 | 2014-01-15 | Nippon Steel & Sumikin Stainless Steel Corporation | Two-phase stainless steel exhibiting excellent corrosion resistance in weld |
EP2947169A4 (en) * | 2013-01-15 | 2016-12-21 | Kobe Steel Ltd | Duplex stainless steel material and duplex stainless steel pipe |
US9862168B2 (en) | 2011-01-27 | 2018-01-09 | Nippon Steel & Sumikin Stainless Steel Corporation | Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2123437A (en) * | 1982-05-13 | 1984-02-01 | Kobe Steel Ltd | Dual phase stainless steel suitable for use in sour wells |
EP0107489A1 (en) * | 1982-10-23 | 1984-05-02 | MATHER & PLATT LIMITED | Stainless steel alloy |
EP0151487A2 (en) * | 1984-02-07 | 1985-08-14 | Kubota Ltd. | Ferritic-austenitic duplex stainless steel |
WO1985005129A1 (en) * | 1984-04-27 | 1985-11-21 | Bonar Langley Alloys Limited | High chromium duplex stainless steel |
GB2160221A (en) * | 1984-06-13 | 1985-12-18 | Nippon Kokan Kk | Two phase stainless steel having improved impact characteristic |
EP0220141A2 (en) * | 1985-09-05 | 1987-04-29 | Santrade Ltd. | High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability |
US4816085A (en) * | 1987-08-14 | 1989-03-28 | Haynes International, Inc. | Tough weldable duplex stainless steel wire |
EP0320548A1 (en) * | 1987-12-17 | 1989-06-21 | Esco Corporation | Method of making a duplex stainless steel and a duplex stainless steel product with improved mechanical properties |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2815439C3 (en) * | 1978-04-10 | 1980-10-09 | Vereinigte Edelstahlwerke Ag (Vew), Wien Niederlassung Vereinigte Edelstahlwerke Ag (Vew) Verkaufsniederlassung Buederich, 4005 Meerbusch | Use of a ferritic-austenitic chrome-nickel steel |
-
1990
- 1990-05-03 AT AT0100790A patent/AT397515B/en not_active IP Right Cessation
-
1991
- 1991-04-25 EP EP91890088A patent/EP0455625B1/en not_active Revoked
- 1991-04-25 AT AT91890088T patent/ATE108220T1/en not_active IP Right Cessation
- 1991-04-25 DE DE59102100T patent/DE59102100D1/en not_active Revoked
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2123437A (en) * | 1982-05-13 | 1984-02-01 | Kobe Steel Ltd | Dual phase stainless steel suitable for use in sour wells |
EP0107489A1 (en) * | 1982-10-23 | 1984-05-02 | MATHER & PLATT LIMITED | Stainless steel alloy |
EP0151487A2 (en) * | 1984-02-07 | 1985-08-14 | Kubota Ltd. | Ferritic-austenitic duplex stainless steel |
WO1985005129A1 (en) * | 1984-04-27 | 1985-11-21 | Bonar Langley Alloys Limited | High chromium duplex stainless steel |
GB2160221A (en) * | 1984-06-13 | 1985-12-18 | Nippon Kokan Kk | Two phase stainless steel having improved impact characteristic |
EP0220141A2 (en) * | 1985-09-05 | 1987-04-29 | Santrade Ltd. | High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability |
US4816085A (en) * | 1987-08-14 | 1989-03-28 | Haynes International, Inc. | Tough weldable duplex stainless steel wire |
EP0320548A1 (en) * | 1987-12-17 | 1989-06-21 | Esco Corporation | Method of making a duplex stainless steel and a duplex stainless steel product with improved mechanical properties |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0864663A1 (en) * | 1995-09-27 | 1998-09-16 | Sumitomo Metal Industries, Ltd. | High-strength welded steel structures having excellent corrosion resistance |
EP0864663A4 (en) * | 1995-09-27 | 1998-10-21 | ||
EP0897018A1 (en) * | 1997-08-13 | 1999-02-17 | BÖHLER Edelstahl GmbH | Duplex stainless steel with high tensile strength and good corrosion properties |
EP0937783A1 (en) * | 1998-02-18 | 1999-08-25 | Sandvik Aktiebolag | New use of a high strength stainless steel |
US6174386B1 (en) | 1998-02-18 | 2001-01-16 | Sandvik Ab | NaOH evaporator comprising at least one component formed by a high strength stainless steel |
WO2003020994A1 (en) * | 2001-09-02 | 2003-03-13 | Sandvik Ab | Duplex steel alloy |
WO2003020995A1 (en) * | 2001-09-02 | 2003-03-13 | Sandvik Ab | Use of a duplex stainless steel alloy |
WO2004079027A1 (en) * | 2003-03-02 | 2004-09-16 | Sandvik Intellectual Property Ab | Duplex stainless steel alloy for use in seawater applications |
WO2004079028A1 (en) * | 2003-03-02 | 2004-09-16 | Sandvik Intellectual Property Ab | Duplex stainless steel alloy and use thereof |
EA009108B1 (en) * | 2003-03-02 | 2007-10-26 | Сандвик Интеллекчуал Проперти Аб | Duplex stainless steel alloy for use in seawater applications |
EA009438B1 (en) * | 2003-03-02 | 2007-12-28 | Сандвик Интеллекчуал Проперти Аб | Duplex stainless steel alloy and use thereof |
US7892366B2 (en) | 2003-03-02 | 2011-02-22 | Sandvik Intellectual Property Ab | Duplex stainless steel alloy and use thereof |
WO2009054799A1 (en) * | 2007-10-26 | 2009-04-30 | Sandvik Intellectual Property Ab | Use of a duplex stainless steel in a phosphoric acid production system |
EP2215421A4 (en) * | 2007-10-26 | 2010-10-06 | Sandvik Intellectual Property | Use of a duplex stainless steel in a phosphoric acid production system |
US9862168B2 (en) | 2011-01-27 | 2018-01-09 | Nippon Steel & Sumikin Stainless Steel Corporation | Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same |
EP2684973A1 (en) * | 2011-03-09 | 2014-01-15 | Nippon Steel & Sumikin Stainless Steel Corporation | Two-phase stainless steel exhibiting excellent corrosion resistance in weld |
EP2684973A4 (en) * | 2011-03-09 | 2015-04-15 | Nippon Steel & Sumikin Sst | Two-phase stainless steel exhibiting excellent corrosion resistance in weld |
US9365914B2 (en) | 2011-03-09 | 2016-06-14 | Nippon Steel & Sumikin Stainless Steel Corporation | Duplex stainless steel superior in corrosion resistance of weld |
EP2947169A4 (en) * | 2013-01-15 | 2016-12-21 | Kobe Steel Ltd | Duplex stainless steel material and duplex stainless steel pipe |
Also Published As
Publication number | Publication date |
---|---|
ATE108220T1 (en) | 1994-07-15 |
ATA100790A (en) | 1993-09-15 |
EP0455625B1 (en) | 1994-07-06 |
DE59102100D1 (en) | 1994-08-11 |
AT397515B (en) | 1994-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69429610T2 (en) | High strength martensitic stainless steel and process for its manufacture | |
AT412727B (en) | CORROSION RESISTANT, AUSTENITIC STEEL ALLOY | |
DE69421281T2 (en) | FERRITIC-AUSTENITIC STAINLESS STEEL AND ITS USE | |
DE69208059T2 (en) | Stainless duplex steel with improved strength and corrosion resistance properties | |
DE602004000140T2 (en) | Stainless austenitic steel | |
DE60023699T2 (en) | HOT-REST STAINLESS STEEL AUSTERITIC STEEL | |
DE69303518T2 (en) | Heat-resistant, ferritic steel with low chromium content and with improved fatigue strength and toughness | |
DE69700057T2 (en) | Heat-resistant, ferritic steel with low Cr and Mn content and with excellent strength at high temperatures | |
DE60203865T2 (en) | FERRITIC HEAT-RESISTANT STEEL | |
DE69506537T2 (en) | STAINLESS STEEL TWO-PHASE STEEL | |
DE69423930T2 (en) | Martensitic stainless steel with improved machinability | |
DE69508876T2 (en) | Temperature-resistant ferritic steel with a high chromium content | |
DE69802602T2 (en) | Welding filler material for high-tough ferritic steel with low chromium content | |
DE69821493T2 (en) | Use of heat-resistant cast steel for components of turbine housings | |
EP0455625B1 (en) | High strength corrosion-resistant duplex alloy | |
DE68905066T2 (en) | HIGH TEMPERATURE RESISTANT STEEL TUBE WITH LOW SILICON CONTENT AND WITH IMPROVED DUCTILITY AND CAPABILITY PROPERTIES. | |
DE69601340T2 (en) | HIGH-STRENGTH, HIGH-STRENGTH HEAT-RESISTANT STEEL AND METHOD FOR THE PRODUCTION THEREOF | |
DE69204123T2 (en) | Heat-resistant ferritic steel with a high chromium content and with higher resistance to embrittlement due to intergranular precipitation of copper. | |
DE69025468T2 (en) | Austenitic stainless steel | |
DE10244972B4 (en) | Heat resistant steel and method of making the same | |
AT405297B (en) | DUPLEX ALLOY FOR COMPLEXLY STRESSED COMPONENTS | |
DE3528537A1 (en) | METHOD FOR PRODUCING STEEL OF HIGH STRENGTH AND TOUGHNESS FOR PRESSURE TANKS | |
DE69432780T2 (en) | INERT GAS ARC WELDING WIRE FOR TEMPERATURE-RESISTANT HIGH-CHROME FERRITIC STEEL | |
EP2396440A1 (en) | Steel alloy | |
DE69705167T2 (en) | Ferritic steels with a low Cr content and ferritic cast steels with a low Cr content, which have excellent high-temperature strength and weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910503 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOEHLER EDELSTAHL GMBH |
|
17Q | First examination report despatched |
Effective date: 19931125 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19940706 Ref country code: BE Effective date: 19940706 |
|
REF | Corresponds to: |
Ref document number: 108220 Country of ref document: AT Date of ref document: 19940715 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 59102100 Country of ref document: DE Date of ref document: 19940811 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19941007 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19941007 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 91890088.7 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950430 |
|
26 | Opposition filed |
Opponent name: SANDVIK AB Effective date: 19950405 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SANDVIK AB |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: BOEHLER EDELSTAHL GMBH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970324 Year of fee payment: 7 Ref country code: FR Payment date: 19970324 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970326 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970327 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19970328 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970331 Year of fee payment: 7 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19980320 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 980320 |
|
NLR2 | Nl: decision of opposition |