EP0451512A1 - Process for coating impeller blades - Google Patents
Process for coating impeller blades Download PDFInfo
- Publication number
- EP0451512A1 EP0451512A1 EP91103660A EP91103660A EP0451512A1 EP 0451512 A1 EP0451512 A1 EP 0451512A1 EP 91103660 A EP91103660 A EP 91103660A EP 91103660 A EP91103660 A EP 91103660A EP 0451512 A1 EP0451512 A1 EP 0451512A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blades
- protective layer
- subjected
- flame spraying
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000000576 coating method Methods 0.000 title claims abstract description 19
- 239000011248 coating agent Substances 0.000 title claims abstract description 15
- 239000011241 protective layer Substances 0.000 claims abstract description 35
- 239000010410 layer Substances 0.000 claims abstract description 17
- 238000004140 cleaning Methods 0.000 claims abstract description 16
- 230000003628 erosive effect Effects 0.000 claims abstract description 13
- 238000010285 flame spraying Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 4
- 230000003746 surface roughness Effects 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract 4
- 239000008187 granular material Substances 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000004922 lacquer Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/002—Cleaning of turbomachines
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
Definitions
- the present invention relates to a method for coating blades according to the preamble of claim 1.
- the air drawn in by the compressor also contains water vapor and solid and gaseous impurities. These have a negative impact due to erosion, pollution and corrosion.
- the deposits on the blades sometimes have a considerable concentration of corrosive components such as NaCl and KCl.
- the salts also lead to increased pitting corrosion in the compressor area and to a complex chemical reduction in the strength of the blade material.
- water vapor concentration occurs in the compressor inlet area, which explains the increased corrosion attack of the front rows of blades.
- blades of rotating thermal machines are often provided with protective layers. This is used both for steam and gas turbine blades and for compressor blades.
- the main thing is to increase resistance to corrosion and oxidizing attacks as well as erosion and wear (wear and tear). If, despite the surface treatment, the blades show damage whose degree could jeopardize operational safety, you proceed to Removing the blades: either they are replaced with new ones or reconditioned and reinstalled. This removal and installation is associated with relatively high costs and time. Furthermore, the actual state of the blading is only visible after a relatively long time, ie after pre-cleaning, so the decision as to whether or not reconditioning of the blades is feasible or already necessary can only be made much later. The disadvantages of this method are the great loss of time, the higher operating costs of the system, higher costs for revisions and the uncertainty about the question of the reconditionability of the blades.
- This sintering or baking process during coating consists of a heat treatment at approx. 350 degrees Celsius over a holding time of approx. 10-12 hours.
- quite large plants with a specific geometric configuration must be provided for carrying out the individual process steps, just think that during the sintering process the entire bladed part of the rotor must be enclosed by a furnace cover.
- the invention seeks to remedy this.
- the invention as characterized in the claims, is based on the object of proposing a more rational method for reconditioning the blades with a method of the type mentioned with regard to the times required and the costs involved.
- the object of the invention is also to maximize the life of the coating by means of suitable methods and protective layers.
- the bladed rotor does not have to be lifted out of its storage in the stator for the first process of reconditioning: the cleaning or protective layer removal can be done before the machine, ie the compressor, is actually switched off, i.e. during a Final phase of the operation ("on line"). A uniform loading of the blades to be treated is thus achieved, the efficiency of this cleaning process thus achieved, which ensures extensive removal of any protective layer that may be present, making an immediate decision about the reconditionability of the blades possible. This decision can be made after the machine has been switched off and the upper part of the stator has been removed.
- the blades pretreated in the installed state receive a suitable protective layer, preferably based on Si and Al, locally and as required, this coating method without heat treatment over longer periods and can be carried out without the help of special additional systems.
- a suitable protective layer preferably based on Si and Al
- this coating method without heat treatment over longer periods and can be carried out without the help of special additional systems.
- the service life of this type of coating is much longer than that of the layers currently used for this so-called complete coating. Since the pretreatment of the blades or the post-treatment after spraying on the protective layer is of great importance for the life of the coating, immediate corrections can be made depending on the determined need. What is created in a very short time with low reconditioning costs by means of a process of high environmental compatibility is top-quality blading, which guarantees the operational safety of the system over a longer period of time.
- FIG. 1 shows a conventional gas turbine group 11, consisting essentially of a compressor part 11a, a combustion chamber 11b and a turbine part 11c.
- a distinction must be made as to whether they were uncoated or coated in their original condition. Irrespective of this requirement, the blades are cleaned for the first time before the machine, ie the compressor, is switched off. In the case of coated blades, this cleaning is preferably based on erosion by means of a soft jet granulate. Of course, the cleaning of uncoated blades can only be carried out using an aqueous solvent, for example trichlorethylene. Through a centrally placed three-jet nozzle 1 (see also Fig.
- the circuit relating to the multi-jet nozzle 1 consists of a ball valve 2, which is connected downstream of a mixing chamber 3 in the direction of flow of the cleaning agent and serves to regulate the quantity.
- the pressure in this mixing chamber 3 is represented by a manometer 7.
- a container 4 is provided upstream of the mixing chamber 3, in which, for example, a granulate is in stock, a sieve 5 and an inlet valve 6 each ensuring that the mixing chamber 3 is supplied with a homogeneous material.
- the required pressure in the container 4 is provided via an air supply line 10, a pressure reducing valve 8 and a main valve 9 in the air line being further aids of the circuit. Appropriate precautions can also be used to treat turbine blading.
- the blades are subjected to further cleaning or protective layer removal. This is done, as shown in FIGS. 3 and 4, by means of an oscillating, erosive bath 14.
- the bladed rotor 11a and 11c is removed from the stator and placed on trestles 13a and 13b in such a way that a certain part of the blading immersed in the bath 14.
- the individual are erosive by means of a vibration generator 15 Components of the bath 14 are excited to vibrate, whereupon the residual dirt or the residual protective layer on the blades is removed.
- all blade types of a rotor of a gas turbine group can be treated with it.
- a final cleaning is carried out according to FIG. 5 with an industrial glass blasting agent 18. This final cleaning is based on erosion removal by the means mentioned, which can consist of glass. A certain part of the blading is covered with a special capsule 16; with simultaneous suction 19 of the injected agent, cleaning is accomplished using one or more jet nozzles 17.
- FIG. 6 shows one way in which the high speed flame spraying process can be carried out.
- a sheath 16 accessible from the side is provided, which encircles a number of prepared blades.
- the protective layer is applied to the blades by means of a spray nozzle 20, it being readily possible to guide the jet nozzle 20 manually.
- a suction device 19 ensures that excess agent can be removed immediately from the area surrounding the blades.
- the chemical structure of the above protective layers as well the application process (high-speed flame spraying process) also described above provides a less erosion-sensitive "sacrificial anode" layer, which actively protects the base material against corrosion.
- the application process which is a high-energy coating process, provides well-adhering and erosion-resistant protective layers, which have the desired electrical connection to the base material without further protective layer-specific aftertreatment.
- the proposed protective layers can additionally be provided with a cover layer. This protective layer can be black, for example. Such a dirt-repellent cover layer enables ice to be more easily recognized on the blades by means of ice detectors.
- the high-speed flame spraying process which runs at a particle speed of at least 300 m / s, represents an optimal interlocking of the coating with the base material of the blades. Even with a thicker protective layer, it is ensured that the coating does not flake off. This can be explained by the fact that when the powder particles impact, the high kinetic energy creates residual compressive stresses in the previously sprayed layer. The maximized resistance to erosion is due to the fact that the layers used here have a very high hardness.
- the method proposed here results in the oxide content of the layer being lower than in the case of protective layers sprayed in air. This means that the layer is cleaner, which is why it oxidizes less quickly, with oxidation only occurring on the surface at most.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten von Schaufeln gemäss Oberbegriff des Anspruchs 1.The present invention relates to a method for coating blades according to the preamble of claim 1.
Beispielsweise im offenen Gasturbinenprozess enthält die vom Verdichter angesaugte Luft auch Wasserdampf sowie feste und gasförmige Verunreinigungen. Diese wirken sich durch Erosion, Verschmutzung und Korrosion negativ aus. Die auf den Schaufeln befindlichen Beläge weisen teilweise erhebliche Konzentration von korrosiv wirkenden Bestandteilen wie NaCl und KCl auf. Die Salze fuhren neben einer Hochtemperaturkorrosion an den Turbinenbeschaufelung auch zu einer verstärkten Lochfrasskorrosion im Verdichterbereich und zu einer komplexen chemischen Festigkeitsminderung des Schaufelwerkstoffes. Bei hoher Luftfeuchtigkeit tritt im Verdichtereintrittsbereich Wasserdampfkonzentration auf, die den verstärkten Korrosionsangriff der vorderen Schaufelreihen erklärt. Um hiergegen einigermassen Remedur zu schaffen, werden Schaufeln rotierender thermischer Maschinen vielfach mit Schutzschichten versehen. Davon wird sowohl bei Dampf- und Gasturbinenschaufeln als auch bei Kompressorschaufeln Gebrauch gemacht. Es geht also vor allem darum, den Widerstand gegen Korrosion und oxydierende Angriffe sowie gegen Erosion und Abnutzung (Verschleiss) zu erhöhen. Weisen die Schaufeln einmal, trotz Oberflächenbehandlung, eine Beschädigung auf, deren Grad die Betriebssicherheit gefährden könnte, so schreitet man zum
Ausbau der Schaufeln: Entweder werden sie durch neue ersetzt oder rekonditioniert und wieder eingebaut. Dieses Aus- und Einbauen ist mit relativ hohen Kosten und Zeitaufwand verbunden. Des weiteren, der wirkliche Zustand der Beschaufelung ist erst nach relativ langer Zeit, d.h. nach einer Vorreinigung ersichtlich, von daher kann die Entscheidung, ob eine Rekonditionierung der Schaufeln machbar ist oder nicht, oder schon nötig, erst viel später getroffen werden. Die Nachteile dieser Methode sind die grossen Zeitverluste, die höheren Betriebskosten der Anlage, höhere Kosten bei Revisionen und die Unsicherheit über die Frage der Rekonditionierbarkeit der Schaufeln. Von daher ist man dazu übergangen, Wege und Mittel zu suchen, um hiergegen Abhilfe zu schaffen. Es ist in diesem Zusammenhang ein Verfahren bekanntgeworden, wonach der ganze beschaufelte Rotor aus dem Stator gehoben wird, um in einer separaten Anlage rekonditioniert zu werden. Die zu beschichtenden beschaufelten Rotoren müssen in geeigneter Weise entfettet werden, gegebenenfalls früher aufgetragene organische Beschichtungen müssen vollständig entfernt werden. Anschliessend werden die zu beschichtenden Bereiche durch trockenes Sandstrahlen mit Aluminiumoxyd aufgerauht und die metallische Oberfläche aktiviert. Die nicht zu beschichtenden Zonen müssen mit geeigneten Materialien maskiert werden. Danach werden die Grundschichten aufgetragen, wobei sie jeweils eingebrannt werden müssen. Dies führt zu einem langwierigen Prozedere: Ein Sinterprozess oder Einbrennprozess dauert ca. 55 Stunden und muss im Schnitt viermal durchgeführt werden. Dieser Sinter- oder Einbrennprozess während des Beschichten besteht aus einer Wärmebehandlung bei ca. 350 Grad Celsius über eine Haltezeit von ca. 10-12 Stunden. Danebst müssen zur Durchführung der einzelnen Verfahrensschritte recht grosse Anlagen mit spezifischer geometrischer Ausgestaltung vorgesehen werden, man denke nur, dass beim Sinterprozess der ganze beschaufelte Teil des Rotors von einer Ofenabdeckung umschlossen sein muss.For example, in the open gas turbine process, the air drawn in by the compressor also contains water vapor and solid and gaseous impurities. These have a negative impact due to erosion, pollution and corrosion. The deposits on the blades sometimes have a considerable concentration of corrosive components such as NaCl and KCl. In addition to high-temperature corrosion on the turbine blades, the salts also lead to increased pitting corrosion in the compressor area and to a complex chemical reduction in the strength of the blade material. At high air humidity, water vapor concentration occurs in the compressor inlet area, which explains the increased corrosion attack of the front rows of blades. In order to counteract this to some extent, blades of rotating thermal machines are often provided with protective layers. This is used both for steam and gas turbine blades and for compressor blades. The main thing is to increase resistance to corrosion and oxidizing attacks as well as erosion and wear (wear and tear). If, despite the surface treatment, the blades show damage whose degree could jeopardize operational safety, you proceed to
Removing the blades: either they are replaced with new ones or reconditioned and reinstalled. This removal and installation is associated with relatively high costs and time. Furthermore, the actual state of the blading is only visible after a relatively long time, ie after pre-cleaning, so the decision as to whether or not reconditioning of the blades is feasible or already necessary can only be made much later. The disadvantages of this method are the great loss of time, the higher operating costs of the system, higher costs for revisions and the uncertainty about the question of the reconditionability of the blades. It is therefore no longer necessary to look for ways and means to remedy this. In this connection, a method has become known, according to which the entire bladed rotor is lifted out of the stator in order to be reconditioned in a separate system. The bladed rotors to be coated must be degreased in a suitable manner; any organic coatings applied earlier must be removed completely. The areas to be coated are then roughened by dry sandblasting with aluminum oxide and the metallic surface is activated. The zones that are not to be coated must be masked with suitable materials. Then the base layers are applied, whereby they have to be baked on. This leads to a lengthy procedure: a sintering or baking process takes about 55 hours and has to be carried out four times on average. This sintering or baking process during coating consists of a heat treatment at approx. 350 degrees Celsius over a holding time of approx. 10-12 hours. In addition, quite large plants with a specific geometric configuration must be provided for carrying out the individual process steps, just think that during the sintering process the entire bladed part of the rotor must be enclosed by a furnace cover.
Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde bei einem Verfahren der eingangs genannten Art hinsichtlich benötigter Zeiten und aufgewendeter Kosten eine rationellere Methode für die Rekonditionierung der Schaufeln vorzuschlagen. Aufgabe der Erfindung ist es auch, die Lebensdauer der Beschichtung durch geeignete Verfahren und Schutzschichten zu maximieren.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of proposing a more rational method for reconditioning the blades with a method of the type mentioned with regard to the times required and the costs involved. The object of the invention is also to maximize the life of the coating by means of suitable methods and protective layers.
Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass der beschaufelte Rotor für den ersten Prozess der Rekonditionierung nicht aus seiner Lagerung im Stator ausgehoben werden muss: Die Reinigung bzw. Schutzschichtentfernung kann vor dem eigentlichen Abstellen der Maschine, d.h. des Verdichters, also während einer Schlussphase des Betriebes ("on line"), durchgeführt werden. Damit wird eine gleichmässige Beaufschlagung der zu behandelnden Schaufeln erzielt, wobei die mithin erreichte Effizienz dieses Reinigungsprozesses, welche eine umfassende Abtragung einer allenfalls vorhandenen Schutzschicht sicherstellt, eine sofortige Entscheidung über die Rekonditionierbarkeit der Schaufeln ermöglicht. Diese Entscheidung kann nach Abstellen der Maschine und Entfernung des Oberteils des Stators bereits getroffen werden. Entscheidet man sich nach entsprechender Analyse über den Zustand der Schaufeln für eine Rekonditionierung derselben, so genügt es, den beschaufelten Rotor aus der Lagerung zu heben und ihn auf Böcke zu stellen, wo ohne Zuhilfenahme einer sofistizierten Struktur die weiteren Prozessschritte der Rekonditionierung durchgeführt werden können. Dies führt zu niedrigen Betriebskosten (Ueberholungskosten), was einer periodischen Durchführung dieser Behandlungsart nichts im Wege steht. Mithin wird die Betriebssicherheit der Anlage erhöht.The main advantages of the invention are that the bladed rotor does not have to be lifted out of its storage in the stator for the first process of reconditioning: the cleaning or protective layer removal can be done before the machine, ie the compressor, is actually switched off, i.e. during a Final phase of the operation ("on line"). A uniform loading of the blades to be treated is thus achieved, the efficiency of this cleaning process thus achieved, which ensures extensive removal of any protective layer that may be present, making an immediate decision about the reconditionability of the blades possible. This decision can be made after the machine has been switched off and the upper part of the stator has been removed. If, after a corresponding analysis of the condition of the blades, the decision is made to recondition them, it is sufficient to lift the bladed rotor from the storage and to place it on trestles, where the further process steps of the reconditioning can be carried out without the aid of a softened structure. This leads to low operating costs (overhaul costs), which is nothing to prevent periodic implementation of this type of treatment. This increases the operational safety of the system.
Ein weiterer gewichtiger Vorteil der Erfindung ist darin zu sehen, dass unter Verwendung eines Hochgeschwindigkeits-Flammspritzverfahrens die im eingebauten Zustand vorbehandelten Schaufeln eine entsprechende Schutzschicht, vorzugsweise auf Si- und Al-Basis, örtlich und bedarfsmässig erhalten, wobei dieses Beschichtungsverfahren ohne Wärmebehandlung über längere Zeiten und ohne Zuhilfenahme spezieller Zusatzanlagen durchgeführt werden kann. Dies vereinfacht das ganze technische Beschichtungs-Prozedere, während die Kosten ca. um die Hälfte niedriger als bei den bekannten Verfahren ausfallen. Ausserdem ist die Lebensdauer dieser Beschichtungsart viel höher als bei den für diese sogenannten Komplettbeschichtung zur Zeit verwendeten Schichten. Da die Vorbehandlung der Schaufeln resp. die Nachbehandlung nach dem Aufspritzen der Schutzschicht für die Lebensdauer der Beschichtung von grosser Bedeutung ist, können unmittelbare Korrektive, je nach festgestelltem Bedarf, gezielt vorgenommen werden. Was nach kürzester Zeit mit niedriger Rekonditionierungskosten mittels eines Prozesses von hoher Umweltverträglichkeit entsteht, ist eine Beschaufelung von höchster Güte, welche die Betriebssicherheit der Anlage über eine längere Zeitspanne garantiert.Another important advantage of the invention is that using a high-speed flame spraying method, the blades pretreated in the installed state receive a suitable protective layer, preferably based on Si and Al, locally and as required, this coating method without heat treatment over longer periods and can be carried out without the help of special additional systems. This simplifies the entire technical coating procedure, while the costs are approximately half lower than in the known processes. In addition, the service life of this type of coating is much longer than that of the layers currently used for this so-called complete coating. Since the pretreatment of the blades or the post-treatment after spraying on the protective layer is of great importance for the life of the coating, immediate corrections can be made depending on the determined need. What is created in a very short time with low reconditioning costs by means of a process of high environmental compatibility is top-quality blading, which guarantees the operational safety of the system over a longer period of time.
Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the further claims.
Im folgenden wird anhand der Zeichnung Ausführungsbeispiele der Erfindung schematisch dargestellt und näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtung der verschiedenen Medien ist mit Pfeilen angegeben. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen.Exemplary embodiments of the invention are shown schematically and explained in more detail below with reference to the drawing. All elements not necessary for the immediate understanding of the invention have been omitted. The direction of flow of the different media is indicated by arrows. Identical elements are provided with the same reference symbols in the various figures.
Es zeigt:
- Fig. 1
- eine Turbogruppe mit Aggregate für eine Vorbehandlungsstufe;
- Fig. 2
- eine Ansicht von Fig. 1 in der Ebene II-II;
- Fig. 3
- eine Reinigungsstufe bzw. Schutzschichtentfernung in einem schwingenden, erosivem Bad;
- Fig. 4
- eine Ansicht des Rotors gemäss Fig. 3 entlang der Ebene IV-IV;
- Fig. 5
- ein Schlussreinigungsverfahren mit Strahldüsen und
- Fig. 6
- eine Beschichtung der Schaufeln mit einem Hochgeschwindigkeits-Flammspritzverfahren.
- Fig. 1
- a turbo group with units for a pretreatment stage;
- Fig. 2
- a view of Figure 1 in the plane II-II.
- Fig. 3
- a cleaning stage or protective layer removal in a vibrating, erosive bath;
- Fig. 4
- a view of the rotor of Figure 3 along the plane IV-IV.
- Fig. 5
- a final cleaning process with jet nozzles and
- Fig. 6
- coating the blades with a high speed flame spraying process.
Fig. 1 zeigt eine konventionelle Gasturbogruppe 11, bestehend im wesentlichen aus einem Kompressorteil 11a, einer Brennkammer 11b und einem Turbinenteil 11c. Bei der Vorbehandlung der Schaufeln muss unterschieden werden, ob diese im Originalzustand unbeschichtet oder beschichtet waren. Unabhängig dieser Vorgabe findet eine erste Reinigung der Schaufeln vor dem Abstellen der Maschine, d.h. des Verdichters statt. Diese Reinigung basiert bei beschichteten Schaufeln vorzugsweise auf Erosionsabtragung durch ein Weichstrahl-Granulat. Selbstverständlich kann die Reinigung von unbeschichteten Schaufeln lediglich mittels eines wässrigen Lösungsmittels, beispielsweise Trichlorethylen, vorgenommen werden. Durch eine zentralplazierte Dreistrahldüse 1 (Siehe hierzu auch Fig. 2), welche im Ansaugkanal des Verdichters
wirkt, wird über eine bestimmte Zeit das Reinigungsmittel (Weichstrahl-Granulat, wässrige Lösung etc. ) in den Luftstrom zum Verdichter eingedüst. Die gleichmässige und intensive Beaufschlagung 12 der Verdichterschaufeln ergibt einen effizienten Reinigungsprozess bei unbeschichteten Schaufeln bzw. eine umfassende Abtragung der alten Schutzschicht bei beschichteten Schaufeln. Das Reinigungsverfahren wird nach Bedarf mehrmals wiederholt. Da das Weichstrahl-Granulat bei Temperaturen von ca. 300 Grad Celsius verbrennt, entsteht diesbezüglich keine Problematik hinsichtlich Entsorgung. Bei Verwendung einer wässrigen Lösung muss ebenfalls auf diese Gesichtspunkte Rücksicht genommen werden. Die Schaltung betreffend die Mehrstrahldüse 1 besteht aus einem Kugelhahn 2, der in Strömungsrichtung des Reinigungsmittels einer Mischkammer 3 nachgeschaltet ist und der Mengenregelung dient. Der Druck in dieser Mischkammer 3 wird durch einen Manometer 7 wiedergegeben. Stromauf der Mischkammer 3 ist ein Behälter 4 vorgesehen, in welchem beispielsweise ein Granulat vorrätig ist, wobei je ein Sieb 5 und ein Einlassventil 6 dafür sorgen, dass die Mischkammer 3 mit einem homogenen Gut versorgt wird. Der benötigte Druck im Behälter 4 wird über eine Luftzuleitung 10 bereitgestellt, wobei ein Druckreduzierventil 8 und ein Hauptventil 9 in der Luftleitung weitere Hilfsmittel der Schaltung sind. Durch entsprechende Vorkehrungen kann die Turbinenbeschaufelung ebenso behandelt werden.1 shows a conventional
acts, the cleaning agent (soft jet granulate, aqueous solution etc.) is injected into the air flow to the compressor over a certain period of time. The uniform and
Falls erforderlich werden die Schaufeln einer weiteren Reinigung bzw. Schutzschichtentfernung unterzogen. Dies geschieht, wie die Fig. 3 und 4 zeigen, mittels eines schwingenden, erosiven Bades 14. Zu diesem Zweck wird der beschaufelte Rotor 11a und 11c aus dem Stator genommen und auf Böcke 13a und 13b gestellt, dergestalt, dass ein bestimmter Teil der Beschaufelung in das Bad 14 eintaucht. Durch einen Schwingungserzeuger 15 werden die einzelnen erosiven
Komponenten des Bades 14 zum Schwingen angeregt, worauf zu einem Abtragen des Restschmutzes bzw. der Restschutzschicht auf den Schaufeln führt. Grundsätzlich können sämtliche Schaufelarten eines Rotors einer Gasturbogruppe damit behandelt werden.If necessary, the blades are subjected to further cleaning or protective layer removal. This is done, as shown in FIGS. 3 and 4, by means of an oscillating,
Components of the
Eine Schlussreinigung wird gemäss Fig. 5 mit einem Industrieglas-Strahlmittel 18 durchgeführt. Diese Schlussreinigung basiert auf Erosionsabtragung durch genanntes Mittel, das aus Glas bestehen kann. Ein bestimmtes Teil der Beschaufelung wird mit einer speziellen Kapsel 16 abgedeckt; bei gleichzeitiger Absaugung 19 des eingedüsten Mittels wird die Reinigung anhand eines oder meherer Strahldüsen 17 bewerkstelligt.A final cleaning is carried out according to FIG. 5 with an industrial
Weitere Verfahrensschritte können nach Bedarf vorgesehen werden:
- Abschleifen von allenfalls noch vorhandenen Lochfrassgrübchen an den meistbeanspruchten Stellen.
- Eine Rissprüfung der Schaufeln.
- Eine Masskontrolle der Schaufeln, falls diese einem Schleifprozess unterzogen wurden.
- Aufrauhen der Oberfläche durch Sandstrahlen.
- Vor der eigentlichen Beschichtung empfiehlt es sich, die Schaufeln auf ca. 80 Grad Celsius vorzuerwärmen, beispielsweise mittels Strahler.
- Sand any pitting dimples that are still present at the most stressed areas.
- A check of the blades.
- A dimensional check of the blades if they have been subjected to a grinding process.
- Roughen the surface by sandblasting.
- Before the actual coating, it is advisable to preheat the blades to approx. 80 degrees Celsius, for example using a heater.
Fig. 6 zeigt eine Möglichkeit, wie das Hochgeschwindigkeits-Flammspritzverfahren vonstatten gehen kann. Zu diesem Zweck wird eine von der Seite zugängliche Umhüllung 16 vorgesehen, welche eine Anzahl vorbereiteten Schaufeln umgrent. Mittels einer Spritzdüse 20 wird die Schutzschicht auf die Schaufeln aufgetragen, wobei es ohne weiteres möglich ist, die Führung der Strahldüse 20 manuell vorzunehmen. Eine Absaugung 19 sorgt dafür, dass überschüssiges Mittel sofort aus der Umgebung der Schaufeln entfernt werden kann.Figure 6 shows one way in which the high speed flame spraying process can be carried out. For this purpose, a
Eine Nachbehandlung der gespritzten Schaufeln umfasst in der Regel folgende Verfahrensschritte:
- Zur Verringerung der Oberflächenrauhigkeit wird ein leichtes Ueberschleifen mit Schmirgeltuch und/oder Strahlen, beispielsweise mit Glasperlen.
- Zum Schutz der Grundschicht und zur weiteren Herabsetzung der Oberflächenrauhigkeit kann eine Lack-Deckschicht mit einer Farbspritzpistole aufgetragen werden. Bedingung ist, dass dieser Lack keine hohe und lange Einbrenntemperatur benötigt (kein Ofenbau). Dazu kann mindestens für die ersten Reihen des Kompressors, wo im Betrieb noch tiefere Temperaturen vorherrschen, ein Zweikomponenten-Lack verwendet werden.
Ein Beispiel für eine solche Deckschicht kann ein Polyurethan-Reaktionslack auf Kunststoff-Basis sein.
- To reduce the surface roughness, light sanding with emery cloth and / or blasting, for example with glass beads.
- To protect the base layer and to further reduce the surface roughness, a top coat of paint can be applied with a paint spray gun. The condition is that this varnish does not require a high and long baking temperature (no oven construction). For this, a two-component paint can be used at least for the first rows of the compressor, where temperatures are even lower during operation.
An example of such a top layer can be a polyurethane reaction lacquer based on plastic.
Bezüglich der Qualität der Schutzschicht ist zu sagen, dass konventionelle Verdichterbeschichtungen sehr oft einen geringen Erosionswiderstand zeigen. Da solche galvanische Schutzschichten nur wirken, wenn sie im System Metall-Schicht-Elektrolyt vorhanden sind, wird eine lokal erodierte Schicht in ihrer Schutzwirkung vermindert.
Die hier zum Einsatz kommende Schutzschicht auf Basis von Aluminium ist eine aktive Korrosionsschutzschicht, deren Zusammensetzung vorzugsweise wie folgt aussieht:
- 1. Eine Schutzschicht besteht aus 6
bis 15 Gew.-% Si, Rest Aluminium; - 2. Eine andere Schutzschicht besteht aus Rein-Aluminium
- 3. Eine andere Schutzschicht besteht aus 80 Gew.-% Al, 5
bis 15 Gew.-% Si, Rest Cu, Mn, Mg, Ni.
The protective layer based on aluminum used here is an active corrosion protection layer, the composition of which preferably looks as follows:
- 1. A protective layer consists of 6 to 15 wt .-% Si, balance aluminum;
- 2. Another protective layer consists of pure aluminum
- 3. Another protective layer consists of 80 wt .-% Al, 5 to 15 wt .-% Si, balance Cu, Mn, Mg, Ni.
Der chemische Aufbau der obengenannten Schutzschichten sowie das ebenfalls obenbeschriebene Aufbringverfahren (Hochgeschwindigkeits-Flammspritzverfahren) stellen eine wenig erosionsempfindliche "Opferanoden"-Schicht, welche den Grundwerkstoff aktiv vor Korrosion schützt. Das AufbringVerfahren, welches ein Hochenergie-Beschichtungsverfahren ist, liefert guthaftende und erosionsbeständige Schutzschichten, welche ohne weitere schutzschichtspezifische Nachbehandlung die angestrebte elektrische Verbindung zum Grundmaterial haben. Die vorgeschlagenen Schutzschichten können zusätzlich mit einer Deckschicht versehen werden. Diese schutzabweisende Deckschicht kann beispielsweise schwarz sein. So eine schmutzabweisende Deckschicht ermöglicht bessere Erkennbarkeit einer Vereisung auf den Schaufeln mittels Eisdetektoren. Das Hochgeschwindigkeits-Flammspritzverfahren, das mit einer Partikelgeschwindigkeit von mindestens 300 m/s abläuft, stellt eine optimale Verklammerung der Beschichtung mit dem Grundmaterial der Schaufeln dar. Selbst bei dickerer Schutzschicht ist gewährleistet, dass die Beschichtung nicht abblättert. Dies ist damit zu erklären, dass beim Aufprall der Pulverteilchen durch die hohe kinetische Energie Druckeigenspannungen in der jeweils zuvor gespritzten Schicht entstehen. Die maximierte Beständigkeit gegen Erosion hat ihre Ursache darin, dass die hier zur Anwendungen gelangenden Schichten eine sehr hohe Härte haben. Durch das hier vorgeschlagene Verfahren ergibt sich, dass der Oxidgehalt der Schicht tiefer als bei in Luft gespritzten Schutzschichten. Das bedeutet, dass die Schicht reiner ist, weshalb sie weniger schnell oxidiert, wobei eine Oxidation allenfalls nur an der Oberfläche auftritt. Dadurch, dass die Schutzschichten sehr dicht sind, liegt ihre Porosität unter 0,5%. Eine Zerstörung durch Korrosion ist praktisch auszuschliessen: Im Salzsprühtest nach DIN 50021 wurde eine handelsübliche keramische Aluminiumschicht mit einer Schutzschicht nach obiger Zusammensetzung und mit obigen Verfahren verglichen. Die Resultate haben obiger Aussage voll bestätigt. In einem Ermüdungsverfahren wurde ein analoger Ver gleich durchgeführt:. Es zeigte sich, dass die Belastung bis zum ersten Ermüdungsriss in der Schaufel bei nach obiger Zu sammensetzung und obigem Verfahren beschichten Schaufeln um 20% höher lag, als bei den Vergleichsschaufeln. Dies bedeutet, dass die Sicherheit der Beschaufelung gegen Ermüdungsbruch erhöt werden konnte.
Anhand der aufgeführten Vorteile sowie der Ergebnisse nach mehreren Tausend Betriebsstunden in einem Verdichter einer meeresnahen Anlage resultierte eine Verbesserung der Standzeit der aktiven Schutzschicht um die 50%.The chemical structure of the above protective layers as well the application process (high-speed flame spraying process) also described above provides a less erosion-sensitive "sacrificial anode" layer, which actively protects the base material against corrosion. The application process, which is a high-energy coating process, provides well-adhering and erosion-resistant protective layers, which have the desired electrical connection to the base material without further protective layer-specific aftertreatment. The proposed protective layers can additionally be provided with a cover layer. This protective layer can be black, for example. Such a dirt-repellent cover layer enables ice to be more easily recognized on the blades by means of ice detectors. The high-speed flame spraying process, which runs at a particle speed of at least 300 m / s, represents an optimal interlocking of the coating with the base material of the blades. Even with a thicker protective layer, it is ensured that the coating does not flake off. This can be explained by the fact that when the powder particles impact, the high kinetic energy creates residual compressive stresses in the previously sprayed layer. The maximized resistance to erosion is due to the fact that the layers used here have a very high hardness. The method proposed here results in the oxide content of the layer being lower than in the case of protective layers sprayed in air. This means that the layer is cleaner, which is why it oxidizes less quickly, with oxidation only occurring on the surface at most. Because the protective layers are very dense, their porosity is below 0.5%. Destruction by corrosion can practically be ruled out: In the salt spray test according to DIN 50021, a commercially available ceramic aluminum layer was compared with a protective layer with the above composition and with the above methods. The results have fully confirmed the above statement. In a fatigue process, an analogous Ver carried out immediately :. It was found that the load up to the first fatigue crack in the blade was 20% higher in the case of blades coated according to the above composition and method than in the comparison blades. This means that the safety of the blades against fatigue fracture could be increased.
Based on the advantages listed and the results after several thousand hours of operation in a compressor in a plant close to the sea, the service life of the active protective layer was improved by 50%.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH123790 | 1990-04-11 | ||
CH1237/90 | 1990-04-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0451512A1 true EP0451512A1 (en) | 1991-10-16 |
EP0451512B1 EP0451512B1 (en) | 1993-08-04 |
Family
ID=4205685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91103660A Expired - Lifetime EP0451512B1 (en) | 1990-04-11 | 1991-03-11 | Process for coating impeller blades |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0451512B1 (en) |
JP (1) | JP3027214B2 (en) |
CA (1) | CA2039944C (en) |
DE (1) | DE59100238D1 (en) |
DK (1) | DK0451512T3 (en) |
ES (1) | ES2044634T3 (en) |
PL (1) | PL165873B1 (en) |
RU (1) | RU2062303C1 (en) |
UA (1) | UA27027A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT402943B (en) * | 1995-10-04 | 1997-09-25 | Engel Gmbh Maschbau | METHOD FOR PRODUCING WEAR AND CORROSION PROTECTED SURFACES ON PLASTICIZING SCREWS FOR INJECTION MOLDING MACHINES |
AT403059B (en) * | 1995-10-04 | 1997-11-25 | Engel Gmbh Maschbau | METHOD FOR PRODUCING A COATING ON THE SURFACE OF PLASTICIZING SCREWS FOR INJECTION MOLDING MACHINES |
EP1553203A1 (en) | 2004-01-10 | 2005-07-13 | MTU Aero Engines GmbH | Method for producing hollow airfoils, also to produce a rotor with hollow airfoils |
EP2752559A1 (en) * | 2013-01-08 | 2014-07-09 | Siemens Aktiengesellschaft | Method of cleaning of a gas turbine rotor within a housing |
CN110420769A (en) * | 2019-08-02 | 2019-11-08 | 张子辉 | A kind of spraying equipment of the anti-seediness with allotment function |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08193568A (en) * | 1995-01-13 | 1996-07-30 | Hitachi Ltd | Runner of hydraulic machinery and manufacture of runner |
WO2008116757A2 (en) * | 2007-03-27 | 2008-10-02 | Alstom Technology Ltd | Turbomachine blade with erosion and corrosion protective coating and method of manufacturing the same |
US8113787B2 (en) | 2007-06-20 | 2012-02-14 | Alstom Technology Ltd. | Turbomachine blade with erosion and corrosion protective coating and method of manufacturing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709569A (en) * | 1948-08-28 | 1955-05-31 | Thompson Prod Inc | Impeller member and method of making same |
US3010843A (en) * | 1958-04-28 | 1961-11-28 | Gen Motors Corp | Abradable protective coating for compressor casings |
EP0165104A1 (en) * | 1984-05-17 | 1985-12-18 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." | Repair method by diffusion |
-
1991
- 1991-03-11 EP EP91103660A patent/EP0451512B1/en not_active Expired - Lifetime
- 1991-03-11 DK DK91103660.6T patent/DK0451512T3/en not_active Application Discontinuation
- 1991-03-11 ES ES91103660T patent/ES2044634T3/en not_active Expired - Lifetime
- 1991-03-11 DE DE9191103660T patent/DE59100238D1/en not_active Expired - Fee Related
- 1991-04-08 CA CA002039944A patent/CA2039944C/en not_active Expired - Fee Related
- 1991-04-08 JP JP3074902A patent/JP3027214B2/en not_active Expired - Lifetime
- 1991-04-09 PL PL91289795A patent/PL165873B1/en unknown
- 1991-04-10 UA UA4895114A patent/UA27027A1/en unknown
- 1991-04-10 RU SU914895114A patent/RU2062303C1/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709569A (en) * | 1948-08-28 | 1955-05-31 | Thompson Prod Inc | Impeller member and method of making same |
US3010843A (en) * | 1958-04-28 | 1961-11-28 | Gen Motors Corp | Abradable protective coating for compressor casings |
EP0165104A1 (en) * | 1984-05-17 | 1985-12-18 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." | Repair method by diffusion |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT402943B (en) * | 1995-10-04 | 1997-09-25 | Engel Gmbh Maschbau | METHOD FOR PRODUCING WEAR AND CORROSION PROTECTED SURFACES ON PLASTICIZING SCREWS FOR INJECTION MOLDING MACHINES |
AT403059B (en) * | 1995-10-04 | 1997-11-25 | Engel Gmbh Maschbau | METHOD FOR PRODUCING A COATING ON THE SURFACE OF PLASTICIZING SCREWS FOR INJECTION MOLDING MACHINES |
US5855963A (en) * | 1995-10-04 | 1999-01-05 | Engel Machinenbau Gesellschaft M.B.H. | Process for the production of a coating on the surface of plasticizing screws for injection molding machines |
US5968603A (en) * | 1995-10-04 | 1999-10-19 | Engel Maschinenbau Gesellschaft M.B.H. | Process for the production of wear-protected and corrosion-protected surfaces on plasticizing screws for injection molding machines |
EP1553203A1 (en) | 2004-01-10 | 2005-07-13 | MTU Aero Engines GmbH | Method for producing hollow airfoils, also to produce a rotor with hollow airfoils |
EP2752559A1 (en) * | 2013-01-08 | 2014-07-09 | Siemens Aktiengesellschaft | Method of cleaning of a gas turbine rotor within a housing |
CN110420769A (en) * | 2019-08-02 | 2019-11-08 | 张子辉 | A kind of spraying equipment of the anti-seediness with allotment function |
CN110420769B (en) * | 2019-08-02 | 2020-06-09 | 柳州联顺戴克雷汽车部件有限公司 | Prevent spraying equipment of grain with allotment function |
Also Published As
Publication number | Publication date |
---|---|
JP3027214B2 (en) | 2000-03-27 |
RU2062303C1 (en) | 1996-06-20 |
UA27027A1 (en) | 2000-02-28 |
CA2039944C (en) | 2001-01-02 |
DK0451512T3 (en) | 1993-12-27 |
PL289795A1 (en) | 1991-12-02 |
ES2044634T3 (en) | 1994-01-01 |
PL165873B1 (en) | 1995-02-28 |
DE59100238D1 (en) | 1993-09-09 |
JPH04225865A (en) | 1992-08-14 |
EP0451512B1 (en) | 1993-08-04 |
CA2039944A1 (en) | 1991-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60222613T2 (en) | Method of locally repairing an article coated with a thermal barrier structure | |
DE69924591T2 (en) | Repair of high-pressure scraper rings of turbines | |
EP0609795B1 (en) | Ceramic insulation layer on metallic piece parts and method of manufacture | |
DE60211404T2 (en) | Process for recovering a thermally grown oxide-containing coating | |
DE69123631T2 (en) | Coating of steel bodies | |
DE102005032685B4 (en) | Process for cleaning surfaces with halogen ions and cleaning equipment | |
EP1870497A1 (en) | Method for the electrochemical stripping of a metallic coating from an element | |
EP0451512B1 (en) | Process for coating impeller blades | |
DE69717805T2 (en) | Method and device for producing porous ceramic coatings, in particular heat-insulating coatings, on metallic substrates | |
DE102015115289A1 (en) | Turbine components with stepped openings | |
DE102015121648A1 (en) | Turbine component surface treatment methods and systems | |
EP1559485A1 (en) | Method for removing a layer | |
DE102012108057A1 (en) | Protective coating for titanium vanes of the last stage | |
EP2576863A1 (en) | Method for producing a layer by means of cold spraying and use of such a layer | |
WO2007110285A1 (en) | Dielectric fluid for electrical discharge machining an electrically non-conductive material | |
EP0379699B1 (en) | Method for enhancing the corrosion and erosion resistance of the blade of a rotary thermal apparatus and blade produced ba said method | |
DE69008695T2 (en) | Method of removing a layer on pieces by projecting a high pressure water jet. | |
EP1097249B1 (en) | Method for producing a plating for a metal component | |
WO1982001898A1 (en) | Method for coating a metal with a protection layer resistant to hot gas corrosion | |
WO2009052841A1 (en) | Method of electric discharge machining by means of separately supplying the dielectric and apparatus therefor | |
DE102020000848B4 (en) | Process for coating blades of compressors, turbines and propellers | |
EP1591549B1 (en) | Method for repairing local damage to a thermal barrier coating of a component | |
DE112017005103B4 (en) | THERMAL INSULATION LAYER, TURBINE ELEMENT, AND THERMAL INSULATION PROCESS | |
DE102011087159B3 (en) | Priming preparation for cold gas spraying and cold gas spraying device | |
DE102010024224B4 (en) | Method and device for applying a dispersion layer with a matrix material and solid particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE DK ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19920307 |
|
17Q | First examination report despatched |
Effective date: 19920727 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE DK ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 59100238 Country of ref document: DE Date of ref document: 19930909 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931014 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2044634 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 91103660.6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010214 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010228 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010305 Year of fee payment: 11 Ref country code: DK Payment date: 20010305 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010313 Year of fee payment: 11 Ref country code: DE Payment date: 20010313 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010316 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020312 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021001 |
|
EUG | Se: european patent has lapsed |
Ref document number: 91103660.6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020311 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021129 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20021001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050311 |