EP0447283A1 - Système pour le pilotage d'un missile au moyen de tuyères latérales - Google Patents

Système pour le pilotage d'un missile au moyen de tuyères latérales Download PDF

Info

Publication number
EP0447283A1
EP0447283A1 EP91400520A EP91400520A EP0447283A1 EP 0447283 A1 EP0447283 A1 EP 0447283A1 EP 91400520 A EP91400520 A EP 91400520A EP 91400520 A EP91400520 A EP 91400520A EP 0447283 A1 EP0447283 A1 EP 0447283A1
Authority
EP
European Patent Office
Prior art keywords
shutter
nozzles
nozzle
gas
missile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91400520A
Other languages
German (de)
English (en)
Other versions
EP0447283B1 (fr
Inventor
Jean-Pierre Morgand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0447283A1 publication Critical patent/EP0447283A1/fr
Application granted granted Critical
Publication of EP0447283B1 publication Critical patent/EP0447283B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/663Steering by varying intensity or direction of thrust using a plurality of transversally acting auxiliary nozzles, which are opened or closed by valves

Definitions

  • the present invention relates to a system for piloting a missile by means of lateral gas jets and a missile comprising such a system.
  • transverse forces can pass at points on the axis of the missile different from the center of gravity. Said transverse forces then create, in a manner similar to conventional aerodynamic control surfaces, moments allowing the missile to be controlled in attitude with respect to the center of gravity.
  • each of said nozzles is associated with an individual rotary shutter, itself individually controlled by an oscillator. Thanks to this structure, each rotary shutter can have a low inertia, so that the response time of the shutter means, and therefore of the control, can be very low.
  • the object of the present invention is a system of the type mentioned above having, at the same time, shutters with low inertia and a shutter control without oscillations.
  • each shutter can have a low inertia, and the positioning of each shutter is determined, without oscillations, both by the corresponding jack, and by the action of said mechanical connection.
  • each nozzle has an oblong section, at least in the vicinity of its neck cooperating with a shutter.
  • each obturator can be constituted by a shaft secured to a projecting radial pallet, the longitudinal end face of which cooperates with the neck of the corresponding nozzle.
  • the lateral face of the radial vane, facing the neck of the nozzle in the open position of said shutter is concave and curved.
  • said shutters are mounted in a rigid block integral with the structure of said missile.
  • Control of the gas flow through a jack is preferably obtained using a linear motor moving a ball, in a flare provided on the circuit of said gas flow.
  • the shutters of the two nozzles are controlled by the same motor.
  • said mechanical connection comprises two connecting rods, respectively integral in rotation with a shutter, said connecting rods being connected to each other by their free opposite ends by means of a joint, the axis of which is capable of moving longitudinally relative to one of said connecting rods.
  • a joint can be of any known type, for example with a ball joint or a roller rolling in a slot and is arranged away from the gas flows emitted by the gas generator.
  • each connecting rod is integral in rotation with the shaft of the corresponding shutter and, at its end opposite to said articulation with the other connecting rod, each connecting rod is articulated to the piston of the corresponding jack.
  • each nozzle comprises a gas stilling chamber, connected to said nozzle, on the side opposite to said neck, by a throttle such that the gas flow inside said nozzle is subsonic.
  • a device for measuring the pressure in each stilling chamber.
  • Figure 1 is a schematic view of an exemplary embodiment of the missile according to the invention, with partial cutaway.
  • FIG. 2 is a partial cross-section, on a larger scale, of the missile according to the invention, along line II-II of FIG. 1.
  • FIG. 3 is a partial longitudinal section of the missile according to the invention, the left and right parts of this figure corresponding respectively to lines III-III and III′-III ′ of FIG. 2.
  • FIG. 4 schematically illustrates the means of actuation of each shutter member, said shutter members being in the middle position.
  • FIG. 5 shows an exemplary embodiment of the mechanical coupling connection between said shutter members, in elevation with cutaway and partial section.
  • Figure 6 is a section along line VI-VI of Figure 5.
  • Figure 7 is a view similar to Figure 4, one of the shutter members being completely closed and the other completely open.
  • FIG. 8 schematically shows the application of the system according to the invention to a missile comprising two pairs of nozzles, in longitudinal and orthogonal planes.
  • FIG. 9 shows an alternative embodiment of the control system of FIG. 8.
  • the embodiment of the missile 1 according to the invention shown diagrammatically in FIGS. 1 to 3, comprises an elongated body 2 of axis LL provided with wings 3 and empennages 4.
  • the wings 3 and the empennages 4 are provided with control surfaces 5 and 6, respectively.
  • the wings 3 are four in number and they are two to two diametrically opposite, the planes of two consecutive wings being orthogonal to each other and passing through the axis LL.
  • the empennages 4 are four in number and they are two to two diametrically opposite, the planes of two consecutive empennages being orthogonal to each other and passing through the axis LL.
  • the tail units 4 are located in the bisector planes of the wings 3.
  • a force piloting device 7 controlling four nozzles 8, two in two diametrically opposite and arranged in the wings 3.
  • the nozzles 8 are placed in the vicinity of the combustion chamber of a gas generator 9, for example with solid propellant, and are connected to said generator 9, by conduits 10.
  • the nozzles 8 can be connected to the conduits 10 through an inlet orifice 11 and they open to the outside through an outlet orifice 12, of larger section than the inlet orifice 11, said orifices 11 and 12 being connected by a divergent 13.
  • the outlet orifices 12 are located at the longitudinal edge 3a of the wings 3, so that the gas jets passing through the nozzles 8 are separated from the body 2 of the missile and only interfere little with the aerodynamic flow around the skin 2a of said body 2.
  • each of the nozzles 8 is equipped, at its inlet 11, with a shutter or rotary shutter 14 (not shown in FIG. 1) making it possible to close off or at least partially clear the corresponding nozzle 8.
  • the action of the force control device 7 is not necessarily necessary, because then the missile 1 can be piloted in a conventional manner thanks to its aerodynamic control surfaces 5 and 6. Consequently, if the gas generator 9 is of the controlled operation type, it may be stopped. If the gas generator 9 is of the continuous operating type, the shutter members 14 of two opposite nozzles are controlled so that the gas jets which they emit exert forces on the missile, the result of which is nothing ; in this case, as will be seen below, the shutter members 14 of the two opposite nozzles are constantly half open to allow the gases produced by the generator 9 to escape.
  • the nozzles 8 have the shape of a flattened funnel.
  • the outlet 12 is oblong, the large dimension of its section being parallel to the longitudinal axis L-L of the missile 1, while the small dimension of this section is transverse to said axis L-L. This small transverse dimension is advantageously constant and the ends of the outlet orifice 12 can be rounded.
  • the inlet or neck 11 located on the inner side of the missile 1, is also oblong, of constant width and with rounded ends.
  • the section of said neck 11 is similar to that of the outlet orifice 12, but smaller than that of the latter.
  • the divergent 13 is connected to the two orifices 11 and 12 by a regulated surface.
  • the section ratio necessary to sufficiently relax the combustion gases coming from the generator 9 is largely obtained by determining the respective lengths of the orifices 11 and 12.
  • the lateral control jets have the form of plies having a small frontal dimension for aerodynamic flow.
  • the interactions between said lateral control jets and said aerodynamic flow are, if not totally eliminated, at least even more reduced, so that the aerodynamic elements 3, 4, 5 and 6 can continue to fulfill their function by cooperating with the aerodynamic flow, even when the lateral control jets are used at their maximum power.
  • the force control device 7 is composed of two parts 7a and 7b, namely a part 7a in which the shutter members 14 are mounted and a part 7b intended for controlling the said elements obturation organs.
  • Part 7a of the force control device 7 comprises a central rigid block 15, coaxial with the axis LL and forming a housing inside which the movable closure members 14 are disposed.
  • the rigid block 15 is rigidly connected to the internal structure of the body 2 of the missile 1 by end rings 16, 17.
  • This rigid block 15 is hollow and has an internal recess 18 in communication with the conduits 10 by peripheral openings 19.
  • the rigid block 15 has other peripheral openings, forming the nozzle necks 11 and in communication with the internal recess 18, depending on the obturation members 14.
  • the rotary shutter members 14 each comprise a shaft 20 of axis 1-1, parallel to the axis LL of the missile, mounted relative to the rigid block 15 on low friction bearings 21, for example bearings.
  • Each organ shutter 14 comprises a radial pallet 22, integral with the corresponding shaft 20 and projecting outwardly relative to the latter.
  • the outer longitudinal face 22a of the radial vanes 22 cooperates with the corresponding nozzle neck 11 either to close the latter (see the position of the shutter members 14 from the left and from above in FIG. 2), or to release at least partially said nozzle neck 11 (see the position of the shutter members 14 on the right and at the bottom in FIG. 2).
  • the shutter members 14 When the shutter members 14 are in this shutter position, they isolate the internal recess 18 of the nozzles 8 and therefore the latter from the conduits 10. On the other hand, when the shutter members 14 are in their release position necks 11, they put the nozzles 8 in communication with the conduits 10, through said nozzle necks 11, the internal recess 18 and the peripheral openings 19.
  • the axes 1-1 of the shutter members 14 are respectively arranged in the median longitudinal plane of the nozzles 8.
  • the lateral face 22b of the pallets 22, facing the nozzle necks 11 in the open position of said closure members 14, is concave and curved, profiled to form with the internal wall 18a of the internal recess 18 a convergent in the direction said nozzle necks 11.
  • the curved lateral faces 22a serve as bearing faces for setting the speed of the gases and report the depression generated at a distance from the axes of rotation 1-1 of the shutter members 14.
  • each closure member 14 has very little rotational inertia and maneuvering movement, so as to obtain a very short response time with a power of minimum order. It is thus seen that, thanks to such an embodiment of the shutter members 14, these have a very low inertia, which allows them to have a very reduced response time, and limit the torque which is opposed at the opening of the nozzle necks, which avoids having to provide complex compensation systems.
  • the outer face 22a of the closure members 14 has a minimum clearance relative to the internal wall 18a of the block 15, in order to reduce leaks in the closed position, while allowing the expansions caused by the high temperature of the gases. , for example when these come from a gas generator 9 of the powder type.
  • the choice of the constituent materials of the block 15 and of the shutter members 14, as well as the choice of their shape can also contribute to the minimization of friction: for example, carbon or molybdenum is used, protected or not by coatings or sleeves thermal protection.
  • the feet 8a of the nozzles 8 are fitted into indentations 23, of corresponding shape, provided in the external wall of the rigid block 15, so that the connection between said said nozzles 8 and said rigid block 15 is of the sliding adjustment type.
  • the nozzles 8, which are integral with the skin 2a of the body 2 can follow the deformations thereof.
  • the deformations between the internal rigid structure of the missile 1 and the external skin 2a of the body 2 are thus dissociated, due in part to the significant load factor to which the missile 1 is subjected during the force piloting maneuvers, deformations which would cause operating disturbances.
  • FIG 4 there is shown a pair of opposite nozzles 8, respectively bearing the references 8.1 and 8.2 and associated with respective shutters 14.1 and 14.2. Similarly, the devices respectively associated with said nozzles 8.1 and 8.2 have the same references assigned indices 1 or 2 respectively.
  • each shutter member 14.1 or 14.2 is associated with a cylinder 30.1 or 30.2, whose piston 31 is connected to said member 14.1 or 14.2 for example by a rod 34, respectively articulated at 35 and 36 on said closure member 14.1 or 14.2 and on the rod 37 of said piston 31.
  • each cylinder 30.1 or 30.2 divides the interior of the corresponding cylinder 38 into two chambers 38a and 38b of different sections.
  • a conduit 39 for example connected to a conduit 10, introducing the pressure of the generator 9 and tending to push the piston 31 towards the chamber 38a of larger section, possibly up to a position such that the shutter member 14.1 or 14.2 then seals the neck 11 of the corresponding nozzle 8.1 or 8.2.
  • the piston 31 can come to bear against a stop 40, provided in the chamber of larger section 38a and delimiting the minimum volume that the latter can occupy.
  • an intake duct 41 of calibrated section and an exhaust duct 42 of modular section In this minimum volume of the chamber of larger section 38a of a cylinder 30.1 or 30.2 open an intake duct 41 of calibrated section and an exhaust duct 42 of modular section.
  • the intake duct 41 receives, like the duct 39, a portion, for example of the order of 1%, of the gas flow generated by the generator 9 by being for example connected to a duct 10.
  • the exhaust duct 42 is vented, for example by being connected to the outside of the missile 1, so that a slight pressure po prevails in the chamber of larger section 38a.
  • the free end of the latter is extended by a part 43 flared in a funnel and a refractory ball 44 is provided so as to be able to move inside said flared part 43, in the axis thereof.
  • a motor 45.1 or 45.2 for example a linear electric motor, is provided for such displacement of said ball 44. It can be seen that with such a device, ball 44 is automatically centered relative to conduit 42 in the closed position.
  • the positions of the shutter members 14.1 or 14.2 do not depend solely on the pressures prevailing in the chambers 38a and 38b of the jacks 30.1 and 30.2, because said shutter members are mechanically coupled to each other in rotation by a mechanical link 50, which is shown diagrammatically in FIG. 4, but an exemplary embodiment of which is illustrated by FIGS. 5 and 6.
  • said mechanical connection 50 comprises a connecting rod 51, integral in rotation with the shaft 20 of the shutter member 14.1, and a connecting rod 52, integral in rotation with the shaft 20 of the shutter member 14.2, said connecting rods 51 and 52 being directed towards one another and articulated to one another.
  • the connecting rod 52 comprises a yoke 53 in which is engaged one end 54 of the connecting rod 51.
  • This end 54 is pierced with an oblong opening 55, in which a roller 56 can be rolled, rotatably mounted around an axis 57, integral with the connecting rod 52 and passing through the yoke 53, said axis 57 being parallel to the axes 1-1 of the shafts 20.
  • the connecting rods 51 and 52 are articulated respectively on the connecting rods 34 associated with the jacks 30.1 and 30.2 by articulations 35, represented in the form of 'ball joint.
  • the oblong opening 55 and the roller 56 form, between the connecting rods 51 and 52, an articulation whose axis 57 is capable of moving longitudinally relative to the connecting rod 51, when said connecting rods rotate with the associated shafts 20 .
  • the two motors 45.1 and 45.2 are in their neutral position for which their respective balls 44 are spaced from the funnel 43 with which they cooperate and at equal distance from them, the sections exhaust of the two conduits 42 are identical, so that in the chambers 38a of large section of the cylinders 30.1 and 30.2 prevails the same pressure, equal to the value po defined above. Furthermore, the chambers 38b of small section of the jacks 30.1 and 30.2 receive the same pressure of gas coming from the generator 9, so that, in these chambers also, the same pressure prevails, equal to that of the gas stream derived from the conduits 10.
  • FIG. 8 the application of the system of FIGS. 4 and 7 is shown diagrammatically, for piloting a missile 1 provided with four nozzles, two with two diametrically opposite and distributed at 90 ° around the axis LL of said missile .
  • the nozzles 8.3 and 8.4 are associated respectively with closure members 14.3 and 14.4 and jacks 30.3 and 30.4.
  • the shutter members 14.1 and 14.2 are coupled by the mechanical link 50.12, while the shutter members 14.3 and 14.4 are linked by the mechanical link 50.34.
  • the mechanical connections 50.12 and 50.34 are similar to the connection 50, described above. They intersect in the vicinity of their articulation, and that is why they have a central recess 60 (see FIG. 6).
  • each pair of shutter members 14.1-14.2 and 14.3-14.4 is associated with a position measuring member of one of said shutter members, bearing the references 61.12 and 61.34 respectively.
  • These position measuring members can be of the potentiometer type and they are intended to communicate, when controlling the shutter members (not shown), the ex act position reached by said shutter members. It will be noted that, because of the mechanical connections 50.12 and 50.34. each position measuring member 61.12 and 61.34 delivers signals representative, at the same time, of the positions of the two associated shutter members.
  • a single motor 45 is associated for two diametrically opposite nozzles: this is how the motor 45.12 controls the shutter members 14.1 and 14.2, respectively associated with the nozzles 8.1 and 8.2, while the motor 45.34 controls the shutter members 14.3 and 14.4, respectively associated with the nozzles 8.3 and 8.4.
  • Each of these motors 45.12 and 45.34 is for example a linear motor of the type described in patent FR-A-2 622 066, comprising an elongated core 62 movable in translation parallel to itself.
  • a ball 44 is carried by each end of the core 62, in order to be able to cooperate with the funnels 43 associated with the exhaust conduits 42 of the cylinders 30.1 and 30.2, or 30.3 and 30.4, corresponding, so that when a ball 44 approaches its associated funnel, the other ball 44 moves away from its own and vice versa.
  • the position of the balls 44 can be such that the force provided by a piston 31 is equal to the torque which tends to close each shutter member 14.
  • the connections mechanical 50 which guarantee operating safety, are little used.
  • these mechanical connections 50 arranged in part 7b of the system, are outside the gas flows (passing through part 7a), so that they are subjected to moderate temperatures.
  • the rollers 56 can have the shape of a barrel, so that the mechanical connections 50 tolerate reverse bending.
  • the servo-control in transverse thrust of piloting can be done, in known manner, by a feedback loop (not shown) ensuring the measurement of the position of each pair of shutter members, using members 61.12 and 61.34 . Operation can be stabilized by regulating the speed of the motors 45, fitted for this purpose with tachometric generators (not shown), over the difference between the positions requested and achieved.
  • a gas stilling chamber 63 is provided between the nozzle necks 11 and said nozzles 8, these stilling chambers 63 themselves being connected to the nozzles 8 by a constriction 64 of section known, one can ensure that the gas flow in said nozzles is subsonic. By measuring, using devices 65, the pressure in each chamber 63, it is easy to determine the thrust of each nozzle 8 and the resulting value per pair of nozzles.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Système pour le pilotage d'un missile (1) au moyen de jets gazeux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales (8) par l'intermédiaire de moyens d'obturation rotatifs (14), mobiles sous l'action de moyens moteurs (30) et commandant le passage des gaz à travers lesdites tuyères. Selon l'invention : à chaque tuyère (8) est associé un obturateur rotatif individuel (14) ; chaque obturateur (14) est commandé en rotation par un piston (31) partageant un vérin (30) en deux chambres (38a,38b) de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre (38a) de plus grande section ; et les deux obturateurs (14) sont liés l'un à l'autre par une liaison mécanique (50) telle que, lorqu'un obturateur tourne dans un sens, l'autre obturateur tourne dans le sens opposé, de la même amplitude angulaire. <IMAGE>

Description

  • La présente invention concerne un système pour le pilotage d'un missile au moyen de jets gazeux latéraux et un missile comportant un tel système.
  • Il est déjà connu, notamment lorsqu'un missile doit être piloté avec de forts facteurs de charge, de prévoir à bord de ce missile des tuyères latérales, susceptibles d'être alimentées en gaz à partir soit d'un générateur de gaz du propulseur principal, soit d'un générateur de gaz spécialement prévu à cet effet. Ainsi, il en résulte des jets de gaz latéraux engendrant des forces propulsives transversales aptes à infléchir de façon rapide et importante la trajectoire du missile. On peut faire en sorte que les lignes d'action de telles forces transversales passent par le centre de gravité du missile, ou tout au moins au voisinage de ce centre de gravité et l'on dit alors que le missile est piloté en force, le temps de réponse à la commande étant alors particulièrement rapide. Cependant, ceci n'est pas une obligation et les lignes d'action desdites forces transversales peuvent passer en des points de l'axe du missile différents du centre de gravité. Lesdites forces transversales créent alors, de façon semblable à des gouvernes aérodynamiques classiques, des moments permettant la commande du missile en attitude par rapport au centre de gravité.
  • Par le brevet américain US-A-4 531 693 et par le brevet français FR-A-2 620 812, on connaît déjà un système pour le pilotage d'un missile au moyen de jets gazeux latéraux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales par l'intermédiaire de moyens d'obturation rotatifs, mobiles sous l'action de moyens moteurs et commandant le passage des gaz à travers lesdites tuyères.
  • Dans le système du brevet américain US-A-4 531 693, à chacune desdites tuyères est associé un obturateur rotatif individuel, lui-même individuellement commandé par un oscillateur. Grâce à cette structure, chaque obturateur rotatif peut présenter une faible inertie, de sorte que le temps de réponse des moyens d'obturation, et donc du pilotage, peut être très faible.
  • Par ailleurs, du fait que l'on dispose d'un oscillateur pour chacun desdits obturateurs, il est aisé de commander l'ensemble desdits oscillateurs pour que, à chaque instant, la position de chacun desdits obturateurs (ouverture complète, obturation totale ou obturation partielle) corresponde exactement à la phase de pilotage et/ou à l'état dudit générateur de gaz. En revanche, à cause de la commande desdits obturateurs rotatifs par des oscillateurs, une position commandée d'un obturateur par rapport à la tuyère correspondante n'est pas atteinte directement, mais par un train d'oscillations. De plus, ces oscillations peuvent induire des oscillations parasites dans le missile, compliquant le pilotage de celui-ci.
  • En revanche, dans le système du brevet français FR-A-2 620 812, pour assurer le nécessaire couplage de commande entre lesdites tuyères, on prévoit un obturateur rotatif commun aux deux tuyères, cet obturateur étant commandé par le piston d'un vérin dont les deux chambres, de sections différentes, reçoivent une partie du gaz engendré par ledit générateur, la position du piston dudit vérin, et donc celle dudit obturateur, étant commandée par contrôle du débit dudit gaz dans celle desdites chambres du vérin qui présente la plus grande section. Grâce à une telle commande, l'obturateur rotatif peut atteindre sa position directement, sans oscillations. Toutefois, dans ce cas, l'obturateur rotatif est forcément important, de sorte que son inertie et son temps de réponse sont élevés.
  • L'objet de la présente invention est un système du type mentionné ci-dessus présentant, à la fois, des obturateurs à faible inertie et une commande d'obturateurs sans oscillations.
  • A cette fin, selon l'invention, le système pour le pilotage d'un missile au moyen de jets gazeux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales par l'intermédiaire de moyens d'obturation rotatifs, mobiles sous l'action de moyens moteurs et commandant le passage des gaz à travers lesdites tuyères est remarquable en ce que :
    • à chaque tuyère est associé un obturateur rotatif individuel ;
    • chaque obturateur est commandé en rotation par un piston partageant un vérin en deux chambres de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre de plus grande section ; et
    • les deux obturateurs sont liés l'un à l'autre par une liaison mécanique telle que, lorsqu'un obturateur tourne dans un sens, l'autre obturateur tourne dans le sens opposé, de la même amplitude angulaire.
  • Ainsi, chaque obturateur peut présenter une faible inertie, et le positionnement de chaque obturateur est déterminé, sans oscillations, à la fois par le vérin correspondant, et par l'action de ladite liaison mécanique.
  • Afin de réduire au maximum l'inertie des obturateurs, chaque tuyère présente une section oblongue, au moins au voisinage de son col coopérant avec un obturateur. Ainsi, chaque obturateur peut être constitué par un arbre solidaire d'une palette radiale en saillie, dont la face longitudinale d'extrémité coopère avec le col de la tuyère correspondante.
  • Avantageusement, afin de réduire le couple exercé par les gaz sur les obturateurs et tendant à s'opposer à l'ouverture de ceux-ci, la face latérale de la palette radiale, en regard du col de la tuyère en position d'ouverture dudit obturateur, est concave et courbe.
  • De préférence, lesdits obturateurs sont montés dans un bloc rigide solidaire de la structure dudit missile.
  • Lorsque lesdites tuyères sont ménagées dans des ailes dudit missile solidaires de la peau de celui-ci, il est avantageux que les pieds desdites tuyères soient emboîtés à frottement polissant dans ledit bloc rigide. Ainsi, on découple les déformations desdites tuyères du reste du missile.
  • Le contrôle du débit de gaz à travers un vérin est de préférence obtenu à l'aide d'un moteur linéaire déplaçant une bille, dans un évasement prévu sur le circuit dudit débit de gaz. De préférence, les obturateurs des deux tuyères sont commandés par le même moteur.
  • De préférence, ladite liaison mécanique comporte deux bielles, respectivement solidaires en rotation d'un obturateur, lesdites bielles étant reliées l'une à l'autre par leurs extrémités libres en regard par l'intermédiaire d'une articulation, dont l'axe est susceptible de se déplacer longitudinalement par rapport à l'une desdites bielles. Une telle articulation peut être de tout type connu, par exemple à rotule ou à galet roulant dans une fente et est disposée à l'écart des flux gazeux émis par le générateur de gaz.
  • Avantageusement, chaque bielle est solidaire en rotation de l'arbre de l'obturateur correspondant et, à son extrémité opposée à ladite articulation avec l'autre bielle, chaque bielle est articulée au piston du vérin correspondant.
  • Dans le cas où les deux tuyères sont diamètralement opposées par rapport au corps du missile, il est avantageux que, en position neutre du système, les deux articulations des bielles auxdits vérins et l'articulation entre lesdites bielles soient alignées et que les deux obturateurs obturent à demi les tuyères correspondantes.
  • Pour la commande du système, on prévoit que, en aval de son col coopérant avec l'obturateur rotatif correspondant, chaque tuyère comporte une chambre de tranquillisation des gaz, reliée à ladite tuyère, du côté opposé audit col, par un étranglement tel que l'écoulement gazeux à l'intérieur de ladite tuyère est subsonique. Ainsi, il est possible de piloter le missile en fonction de la mesure de la pression à l'intérieur desdites chambres de tranquillisation.
  • A cet effet, un dispositif est prévu pour la mesure de la pression dans chaque chambre de tranquillisation.
  • Les figures des dessins annexés feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
  • La figure 1 est une vue schématique d'un exemple de réalisation du missile selon l'invention, avec arrachement partiel.
  • La figure 2 est une coupe transversale partielle, à plus grande échelle, du missile selon l'invention, suivant la ligne II-II de la figure 1.
  • La figure 3 est une coupe longitudinale partielle du missile selon l'invention, les parties gauche et droite de cette figure correspondant respectivement aux lignes III-III et III′-III′ de la figure 2.
  • La figure 4 illustre schématiquement les moyens d'actionnement de chaque organe d'obturation, lesdits organes d'obturation étant en position médiane.
  • La figure 5 montre un exemple de réalisation de la liaison mécanique de couplage entre lesdits organes d'obturation, en élévation avec arrachement et coupe partiels.
  • La figure 6 est une coupe selon la ligne VI-VI de la figure 5.
  • La figure 7 est une vue semblable à la figure 4, l'un des organes d'obturation étant complètement fermé et l'autre complètement ouvert.
  • La figure 8 montre schématiquement l'application du système selon l'invention à un missile comportant deux couples de tuyères, dans des plans longitudinaux et orthogonaux.
  • La figure 9 montre une variante de réalisation du système de commande de la figure 8.
  • L'exemple de réalisation du missile 1 selon l'invention, montré schématiquement sur les figures 1 à 3, comporte un corps allongé 2 d'axe L-L pourvu d'ailes 3 et d'empennages 4. Les ailes 3 et les empennages 4 sont pourvus de gouvernes 5 et 6, respectivement. Les ailes 3 sont au nombre de quatre et elles sont deux à deux diamétralement opposées, les plans de deux ailes consécutives étant orthogonaux entre eux et passant par l'axe L-L. De même, les empennages 4 sont au nombre de quatre et ils sont deux à deux diamétralement opposés, les plans de deux empennages consécutifs étant orthogonaux entre eux et passant par l'axe L-L. De plus, les empennages 4 se trouvent dans les plans bissecteurs des ailes 3.
  • Au voisinage du centre de gravité G du missile 1, est prévu, dans le corps 2, un dispositif de pilotage en force 7 commandant quatre tuyères 8, deux à deux diamètralement opposées et disposées dans les ailes 3. Les tuyères 8 sont placées au voisinage de la chambre de combustion d'un générateur de gaz 9, par exemple à propergol solide, et sont reliées audit générateur 9, par des conduits 10.
  • Les tuyères 8 peuvent être mises en liaison avec les conduits 10 à travers un orifice d'entrée ou col 11 et elles débouchent à l'extérieur par un orifice de sortie 12, de plus grande section que l'orifice d'entrée 11, lesdits orifices 11 et 12 étant reliés par un divergent 13. Les orifices de sortie 12 se trouvent au niveau du bord longitudinal 3a des ailes 3, de sorte que les jets gazeux traversant les tuyères 8 sont écartés du corps 2 du missile et n'interfèrent que peu avec l'écoulement aérodynamique autour de la peau 2a dudit corps 2.
  • Comme cela sera expliqué plus en détail par la suite, chacune des tuyères 8 est équipée, au niveau de son orifice d'entrée 11, d'un organe d'obturation ou obturateur rotatif 14 (non représenté sur la figure 1) permettant d'obturer ou au contraire de dégager au moins partiellement la tuyère 8 correspondante.
  • En vol sans facteur de charge important, l'action du dispositif de pilotage en force 7 n'est pas forcément nécessaire, car alors le missile 1 peut être piloté de façon classique grâce à ses gouvernes aérodynamiques 5 et 6. Par suite, si le générateur de gaz 9 est de type à fonctionnement commandé, il peut être à l'arrêt. Si le générateur de gaz 9 est du type à fonctionnement continu, les organes d'obturation 14 de deux tuyères opposées sont commandés pour que les jets de gaz qu'elles émettent exercent sur le missile des forces dont la résultante est nulle ; dans ce cas, comme on le verra ci-après, les organes d'obturation 14 des deux tuyères opposées sont constamment à demi ouverts pour laisser échapper les gaz produits par le générateur 9.
  • En revanche, en vol avec facteur de charge important imposant un brusque changement d'orientation de la trajectoire du missile, il est nécessaire de faire fonctionner à plein au moins l'une des tuyères 8, pour obtenir ce brusque changement d'orientation. Alors, l'organe d'obturation 14 de la ou des tuyères commandées au fonctionnement est totalement effacé, de sorte que le ou les jets gazeux latéraux et transversaux émis sont importants et obligent le missile 1 à changer brusquement de direction, alors que les organes d'obturation 14 de la ou des tuyères non commandées en fonctionnement obturent totalement les tuyères correspondantes.
  • On remarquera que, puisqu'elles sont incorporées aux ailes 3, les tuyères 8 présentent la forme d'un entonnoir aplati. L'orifice de sortie 12 est de forme oblongue, la grande dimension de sa section étant parallèle à l'axe longitudinal L-L du missile 1, tandis que la petite dimension de cette section est transversale audit axe L-L. Cette petite dimension transversale est avantageusement constante et les extrémités de l'orifice de sortie 12 peuvent être arrondies.
  • L'orifice d'entrée ou col 11, situé du côté intérieur du missile 1, est également de forme oblongue, de largeur constante et à extrémités arrondies. La section dudit col 11 est semblable à celle de l'orifice de sortie 12, mais plus petite que celle de cette dernière. Le divergent 13 se raccorde aux deux orifices 11 et 12 par une surface réglée.
  • Le rapport de section nécessaire pour détendre suffisamment les gaz de combustion provenant du générateur 9 s'obtient en grande partie par détermination des longueurs respectives des orifices 11 et 12.
  • Grâce à la structure oblongue des tuyères 8, les jets de pilotage latéraux présentent la forme de nappes ayant une faible dimension frontale pour l'écoulement aérodynamique. Par suite, les interactions entre lesdits jets de pilotage latéraux et ledit écoulement aérodynamique, déjà amoindries par l'écartement des orifices de sortie 12 de la peau 2a du corps 2, sont, sinon totalement supprimées, du moins encore plus réduites, de sorte que les éléments aérodynamiques 3, 4, 5 et 6 peuvent continuer à remplir leur fonction en coopérant avec l'écoulement aérodynamique, même lorsque les jets latéraux de pilotage sont utilisés à leur puissance maximale.
  • Comme cela est particulièrement visible sur la figure 3, le dispositif de pilotage en force 7 est composé de deux parties 7a et 7b, à savoir une partie 7a dans laquelle sont montés les organes d'obturation 14 et une partie 7b destinée à la commande desdits organes d'obturation.
  • La partie 7a du dispositif de pilotage en force 7 comporte un bloc rigide central 15, coaxial à l'axe L-L et formant boîtier à l'intérieur duquel sont disposés les organes d'obturation mobiles 14. Le bloc rigide 15 est relié rigidement à la structure interne au corps 2 du missile 1 par des viroles d'extrémité 16,17. Ce bloc rigide 15 est creux et comporte un évidement interne 18 en communication avec les conduits 10 par des ouvertures périphériques 19. Par ailleurs, le bloc rigide 15 comporte d'autres ouvertures périphériques, formant les cols de tuyère 11 et en communication avec l'évidement interne 18, sous la dépendance des organes d'obturation 14.
  • Les organes d'obturation rotatifs 14 comportent chacun un arbre 20 d'axe 1-1, parallèle à l'axe L-L du missile, monté par rapport au bloc rigide 15 sur des paliers à faible frottement 21, par exemple des roulements. Chaque organe d'obturation 14 comporte une palette radiale 22, solidaire de l'arbre 20 correspondant et en saillie vers l'extérieur, par rapport à celui-ci. La face longitudinale extérieure 22a des palettes radiales 22 coopère avec le col de tuyère 11 correspondant soit pour obturer celui-ci (voir la position des organes d'obturation 14 de gauche et du haut sur la figure 2), soit pour dégager au moins partiellement ledit col de tuyère 11 (voir la position des organes d'obturation 14 de droite et du bas sur la figure 2).
  • Lorsque les organes d'obturation 14 sont dans cette position d'obturation, ils isolent l'évidement interne 18 des tuyères 8 et donc celles-ci des conduits 10. En revanche, lorsque les organes d'obturation 14 sont dans leur position de dégagement des cols 11, ils mettent en communication les tuyères 8 avec les conduits 10, à travers lesdits cols de tuyère 11, l'évidement interne 18 et les ouvertures périphériques 19.
  • Les axes 1-1 des organes d'obturation 14 sont respectivement disposés dans le plan longitudinal médian des tuyères 8.
  • Afin de limiter le couple s'opposant à l'ouverture des cols de tuyères 11 par les organes d'obturation 14 (ce couple étant dû à la mise en vitesse des gaz et à la dépression qui en résulte au niveau desdits cols de tuyère 11), la face latérale 22b des palettes 22, en regard des cols de tuyère 11 en position ouverte desdits organes d'obturation 14, est concave et courbe, profilée pour former avec la paroi interne 18a de l'évidement interne 18 un convergent en direction desdits cols de tuyère 11. Ainsi, les faces latérales courbes 22a servent de faces d'appui pour la mise en vitesse des gaz et reportent la dépression engendrée à distance des axes de rotation 1-1 des organes d'obturation 14.
  • La saillie des palettes 22 par rapport aux arbres 20 est réduite de manière à ce que chaque organe d'obturation 14 présente une inertie de rotation et un débattement de manoeuvre très faibles, de façon à obtenir un temps de réponse très court avec une puissance de commande minimale. On voit ainsi que, grâce à un tel mode de réalisation des organes d'obturation 14, ceux-ci présentent une très faible inertie, ce qui leur permet d'avoir un temps de réponse très réduit, et limitent le couple qui s'oppose à l'ouverture des cols de tuyère, ce qui évite de prévoir des systèmes de compensation complexes.
  • Bien entendu, la face extérieure 22a des organes d'obturation 14, possède un jeu minimal par rapport à la paroi interne 18a du bloc 15, afin de réduire les fuites en position fermée, tout en autorisant les dilatations provoquées par la température élevée des gaz, par exemple lorsque ceux-ci proviennent d'un générateur de gaz 9 du type à poudre. Le choix des matériaux constitutifs du bloc 15 et des organes d'obturation 14, ainsi que le choix de leur forme peuvent contribuer également à la minimisation des frottements : on utilise par exemple du carbone, du molybdène, protégés ou non par des revêtements ou manchons de protection thermique.
  • Par ailleurs, comme cela est montré sur les figures 2 et 3, les pieds 8a des tuyères 8 sont emboîtés dans des empreintes 23, de forme correspondante, prévues dans la paroi externe du bloc rigide 15, de façon à ce que la liaison entre lesdites tuyères 8 et ledit bloc rigide 15 soit du type à ajustement glissant. Ainsi, les tuyères 8, qui sont solidaires de la peau 2a du corps 2, peuvent suivre les déformations de celle-ci. On dissocie ainsi les déformations entre la structure rigide interne du missile 1 et la peau externe 2a du corps 2, dues en partie au facteur de charge important auquel est soumis le missile 1 au cours des manoeuvres en pilotage en force, déformations qui engendreraient des perburbations de fonctionnement.
  • Comme cela est visible sur la figure 3, les arbres 20 des organes d'obturation 14 pénètrent à l'intérieur de la partie 7b (seulement représentée par un contour en trait mixte) du dispositif de pilotage en force 7, destinée à la commande desdits organes d'obturation 14. Sur les figures 4 à 8, on a représenté schématiquement des modes de réalisation de cette partie de commande 7b.
  • Sur la figure 4, on a représenté une paire de tuyères 8 opposées, portant respectivement les références 8.1 et 8.2 et associées à des obturateurs respectifs 14.1 et 14.2. De même, les dispositifs respectivement associés auxdites tuyères 8.1 et 8.2 portent les mêmes références affectés des indices 1 ou 2 respectivement.
  • On peut voir, sur cette figure 4, qu'à chaque organe d'obturation 14.1 ou 14.2 est associé un vérin 30.1 ou 30.2, dont le piston 31 est relié audit organe 14.1 ou 14.2 par exemple par une biellette 34, respectivement articulée en 35 et 36 sur ledit organe d'obturation 14.1 ou 14.2 et sur la tige 37 dudit piston 31.
  • Le piston 31 de chaque vérin 30.1 ou 30.2 partage l'intérieur du cylindre 38 correspondant en deux chambres 38a et 38b de sections différentes. Dans la chambre 38a, de plus petite section, débouche un conduit 39, par exemple relié à un conduit 10, introduisant la pression du générateur 9 et tendant à repousser le piston 31 vers la chambre 38a de plus grande section, éventuellement jusqu'à une position telle que l'organe d'obturation 14.1 ou 14.2 obture alors le col 11 de la tuyère 8.1 ou 8.2 correspondante. Dans ce cas, le piston 31 peut venir en appui contre une butée 40, prévue dans la chambre de plus grande section 38a et délimitant le volume minimal que celle-ci peut occuper.
  • Dans ce volume minimal de la chambre de plus grande section 38a d'un vérin 30.1 ou 30.2 débouchent un conduit d'admission 41 de section calibrée et un conduit d'échappement 42 de section modulable. Le conduit d'admission 41 reçoit, comme le conduit 39, une partie, par exemple de l'ordre de 1%, du flux gazeux engendré par le générateur 9 en étant par exemple relié à un conduit 10. Le conduit d'échappement 42 est mis à l'air, en étant par exemple relié à l'extérieur du missile 1, de sorte qu'une légère pression po règne dans la chambre de plus grande section 38a. Pour pouvoir moduler de façon précise et rapide la section des conduits d'échappement 42, l'extrémité libre de ceux-ci est prolongée par une partie 43 évasée en entonnoir et une bille réfractaire 44 est prévue pour pouvoir se déplacer à l'intérieur de ladite partie évasée 43, dans l'axe de celle-ci. Un moteur 45.1 ou 45.2, par exemple un moteur électrique linéaire, est prévu pour un tel déplacement de ladite bille 44. On voit qu'avec un tel dispositif, la bille 44 est automatiquement centrée par rapport au conduit 42 en position d'oburation.
  • Lorsqu'un moteur 45.1 ou 45.2 est commandé pour rétracter la bille 44 et libérer complètement le conduit d'échappement 42 correspondant (voir la figure 4), c'est-à-dire pour dégager entre ladite bille 44 et la paroi en regard de l'entonnoir 43 une section de passage au moins égale à la section du conduit d'échappement 42, le courant gazeux entrant par le conduit d'admission 41 s'échappe librement à travers ledit conduit d'échappement 42, de sorte que ce courant gazeux n'exerce que la légère pression po sur le piston 31, qui est repoussé en direction de la butée 40 par l'action du flux gazeux amené par le conduit 39 correspondant, de sorte que la biellette 34 associée tend à déplacer l'organe d'oturation correspondant 14.1 ou 14.2 vers la position pour laquelle il obture complètement le col de tuyère 11 .
  • En revanche, si un moteur 45.1 ou 45.2 est commandé pour rapprocher la bille 44 du conduit d'échappement 42, ladite bille délimite avec la paroi en regard de l'entonnoir 43 une section de passage qui va en diminuant. Dès que cette section de passage devient inférieure à la section du conduit d'échappement 42, il y a obstacle à l'écoulement du courant gazeux entrant par le conduit d'admission 41, de sorte que la pression gazeuse augmente à l'intérieur de la chambre de plus grande section 38a, au-delà de la valeur po. Dès que cette pression est suffisamment grande pour vaincre l'action du courant gazeux amené par le conduit 39, le piston 31 tend à se déplacer dans le sens pour lequel la biellette 34 fait tourner l'organe d'obturation correspondant 14.1 ou 14.2 dans le sens du dégagement du col de tuyère 11.
  • Si le rapprochement de la bille 44 du conduit d'échappement 42 continue, sous l'action du moteur 45.1 ou 45.2), la section de passage du courant gazeux entrant par le conduit d'admission 41 diminue encore et la pression à l'intérieur de la chambre 38a de plus grande section devient plus grande et l'organe d'obturation correspondant 14.1 ou 14.2 tend à prendre une position pour laquelle il dégage complètement le col 11 de la tuyère 8.1 ou 8.2 associée.
  • Si maintenant le moteur 45.1 ou 45.2 est commandé pour rétracter la bille 44, une section de passage de gaz est de nouveau disponible entre ladite bille 44 et la paroi en regard de l'entonnoir 43, de sorte que la pression diminue dans la chambre 38a de plus grande section et que la pression engendrée par le flux gazeux amené par le conduit 39 peut repousser le piston 31 pour que l'organe d'obturation 14.1 ou 14.2 tourne dans le sens de l'obturation du col 11.
  • Il résulte de ce qui vient d'être décrit que, par contrôle des moteurs 45.1 et 45.2, on peut commander la rotation relative des organes d'obturation 14.1 et 14.2 par rapport aux cols 11 des tuyères 8.1 et 8.2 respectives et donc piloter en force ledit missile, la position d'un organe d'obturation 14.1 ou 14.2 par rapport au col de tuyère 11 correspondant dépendant de l'équilibre des pressions fluides dans les chambres 38a et 38b.
  • Toutefois, les positions des organes d'obturation 14.1 ou 14.2 ne dépendent pas uniquement des pressions régnant dans les chambres 38a et 38b des vérins 30.1 et 30.2, car lesdits organes d'obturation sont mécaniquement couplés l'un à l'autre en rotation par une liaison mécanique 50, qui est montrée schématiquement sur la figure 4, mais dont un exemple de réalisation est illustré par les figures 5 et 6.
  • Comme on peut le voir, dans ce mode de réalisation, ladite liaison mécanique 50 comporte une bielle 51, solidaire en rotation de l'arbre 20 de l'organe d'obturation 14.1, et une bielle 52, solidaire en rotation de l'arbre 20 de l'organe d'obturation 14.2, lesdites bielles 51 et 52 étant dirigées l'une vers l'autre et articulées l'une à l'autre. A cet effet, par exemple, la bielle 52 comporte une chape 53 dans laquelle est engagée une extrémité 54 de la bielle 51. Cette extrémité 54 est percée d'une ouverture oblongue 55, dans laquelle peut rouler un galet 56, monté rotatif autour d'un axe 57, solidaire de la bielle 52 et traversant la chape 53, ledit axe 57 étant parallèle aux axes 1-1 des arbres 20.
  • A leurs extrémités libres 58 et 59, respectivement opposées à l'ouverture oblongue 55 et à la chape 53, les bielles 51 et 52 sont articulées respectivement sur les bielles 34 associées aux vérins 30.1 et 30.2 par des articulations 35, représentées sous la forme d'articulation à rotule.
  • On voit que l'ouverture oblongue 55 et le galet 56 forment, entre les bielles 51 et 52, une articulation dont l'axe 57 est susceptible de se déplacer longitudinalement par rapport à la bielle 51, lorsque lesdites bielles tournent avec les arbres 20 associés.
  • Lorsque, comme cela est représenté sur la figure 4, les deux moteurs 45.1 et 45.2 sont dans leur position neutre pour laquelle leurs billes 44 respectives sont écartées de l'entonnoir 43 avec lesquels elles coopèrent et à égale distance de ceux-ci, les sections d'échappement des deux conduits 42 sont identiques, de sorte que dans les chambres 38a de grande section des vérins 30.1 et 30.2 règne la même pression, égale à la valeur po définie ci-dessus. Par ailleurs, les chambres 38b de petite section des vérins 30.1 et 30.2 reçoivent la même pression de gaz provenant du générateur 9, de sorte que, dans ces chambres également, règne la même pression, égale à celle du courant gazeux dérivé des conduits 10. Par suite, les pistons 31 des deux vérins 30.1 et 30.2 occupent des positions relatives identiques et chacune des tuyères 8.1 et 8.2 est à moitié ouverte. Dans cette position neutre représentée sur la figure 4, il est avantageux que la liaison mécanique 50 soit elle-même dans une position neutre pour laquelle les deux articulations 35 et l'axe 57 sont alignés, comme cela est représenté sur les figures 5 et 6.
  • Si, à partir de la position neutre représentée sur la figure 4, l'un des deux moteurs 45.1 ou 45.2 est commandé (sur la figure 7, on a illustré la commande du moteur 45.2) la bille 44 correspondante est rapprochée de l'entonnoir associé, de sorte que la pression croît dans la chambre 38b correspondante et que le piston 31 est repoussé vers la chambre 38a. Par suite, l'organe d'obturation 14.2 tourne dans le sens pour lequel il dégage de plus en plus la tuyère 8.2 associée. Toutefois, à cause de la liaison mécanique 50 qui prend une position cassée, l'organe d'obturation 14.1 est lui-même obligé de tourner, mais dans le sens inverse. Ainsi, au fur et à mesure que l'organe d'obturation 14.2 ouvre la tuyère 8.2, l'organe d'obturation 14.1 ferme la tuyère 8.1. Une telle commande peut se poursuivre jusqu'à ce que l'un des obturateurs 14.2 soit complètement ouvert, alors que l'autre est complètement fermé. Cette dernière situation est représentée sur la figure 7, où l'organe d'obturation 14.2 est ouvert et l'organe d'obturation 14.1 est en position de fermeture.
  • Sur la figure 8, on a représenté schématiquement l'application du système des figures 4 et 7, au pilotage d'un missile 1 pourvu de quatre tuyères, deux à deux diamétralement opposées et réparties à 90° autour de l'axe L-L dudit missile. Sur cette figure, on retrouve les deux tuyères opposées 8.1 et 8.2 décrites ci-dessus, auxquelles ont été ajoutées deux tuyères identiques 8.3 et 8.4, croisées avec lesdites tuyères 8.1 et 8.2. Aux tuyères 8.3 et 8.4 sont respectivement associés des organes d'obturation 14.3 et 14.4 et des vérins 30.3 et 30.4. Les organes d'obturation 14.1 et 14.2 sont couplés par la liaison mécanique 50.12, tandis que les organes d'obturation 14.3 et 14.4 sont liés par la liaison mécanique 50.34. Bien entendu les liaisons mécaniques 50.12 et 50.34 sont semblables à la liaison 50, décrite ci-dessus. Elles se croisent au voisinage de leur articulation, et c'est pour cela qu'elles comportent un évidement central 60 (voir la figure 6).
  • Par ailleurs, à chaque couple d'organe d'obturation 14.1-14.2 et 14.3-14.4 est associé un organe de mesure de position d'un desdits organes d'obturation, portant respectivement les références 61.12 et 61.34. Ces organes de mesure de position peuvent être du type potentiomètre et ils sont destinés à communiquer, à la commande des organes d'obturation (non représentée), la position ex acte atteinte par lesdits organes d'obturation. On remarquera que, à cause des liaisons mécaniques 50.12 et 50.34. chaque organe de mesure de position 61.12 et 61.34 délivre des signaux représentatifs, à la fois, des positions des deux organes d'obturation associés.
  • De plus, au lieu de prévoir un moteur 45 par tuyère comme cela est représenté sur les figures 4 et 7, dans ce mode de réalisation on associe un seul moteur 45 pour deux tuyères diamétralement opposées : c'est ainsi que le moteur 45.12 commande les organes d'obturation 14.1 et 14.2, respectivement associés aux tuyères 8.1 et 8.2, tandis que le moteur 45.34 commande les organes d'obturation 14.3 et 14.4, respectivement associés aux tuyères 8.3 et 8.4. Chacun de ces moteurs 45.12 et 45.34 est par exemple un moteur linéaire du type décrit dans le brevet FR-A-2 622 066, comportant un noyau allongé 62 mobile en translation parallèlement à lui-même. Une bille 44 est portée par chaque extrémité du noyau 62, pour pouvoir coopérer avec les entonnoirs 43 associés aux conduits d'échappement 42 des vérins 30.1 et 30.2, ou 30.3 et 30.4, correspondants, de façon que lorsqu'une bille 44 se rapproche de son entonnoir associé, l'autre bille 44 s'éloigne du sien et vice-versa.
  • On voit donc que, par la commande des moteurs 45.12 et 45.34, on neut obtenir toute poussée transversale désirée pour le pilotage en force du missile 1.
  • On remarquera que, pour la position neutre représentée sur la figure 4, la position des billes 44 peut être telle que l'effort fourni par un piston 31 est égal au couple qui tend à fermer chaque organe d'obturation 14. Ainsi, les liaisons mécaniques 50, qui garantissent la sécurité de fonctionnement, sont peu sollicitées. Par ailleurs, ces liaisons mécaniques 50, disposées dans la partie 7b du système, sont en dehors des flux gazeux (passant par la partie 7a), de sorte qu'elles sont soumises à des températures modérées. Les galets 56 peuvent présenter la forme d'un tonneau, de sorte que les liaisons mécaniques 50 tolèrent des flexions inverses.
  • L'asservissement en poussée transversale de pilotage peut se faire, de façon connue, par une boucle de retour (non représentée) assurant la mesure de la position de chaque couple d'organes d'obturation, à l'aide des organes 61.12 et 61.34. Le fonctionnement peut être stabilisé grâce à une régulation de vitesse des moteurs 45, muni à cet effet de génératrices tachymétriques (non représentées), sur l'écart entre positions demandée et réalisée.
  • Si, comme cela est illustré sur la figure 9, on prévoit une chambre de tranquillisation des gaz 63 entre les col de tuyères 11 et lesdites tuyères 8, ces chambres de tranquillisation 63 étant elles-mêmes reliées aux tuyères 8 par un étranglement 64 de section connue, on peut faire en sorte que l'écoulement gazeux dans lesdites tuyères soit subsonique. En mesurant, grâce à des dispositifs 65, la pression dans chaque chambre 63, on peut déterminer aisément la poussée de chaque tuyère 8 et la valeur résultante par couple de tuyères.

Claims (14)

1 - Système pour le pilotage d'un missile (1) au moyen de jets gazeux, comportant un générateur de gaz (9) susceptible d'être relié à au moins une paire de tuyères latérales (8) par l'intermédiaire de moyens d'obturation rotatifs (14), mobiles sous l'action de moyens moteurs (30) et commandant le passage des gaz à travers lesdites tuyères,
caractérisé en ce que :
- à chaque tuyère (8) est associé un obturateur rotatif individuel (14) ;
- chaque obturateur (14) est commandé en rotation par un piston (31) partageant un vérin (30) en deux chambres (38a,38b) de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz (9) et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre (38a) de plus grande section, le contrôle desdits débits à travers les chambres de plus grande section des deux vérins d'une paire de tuyères latérales étant tel que, à un instant donné, un seul desdits débits est susceptible d'être restreint, éventuellement jusqu'à l'obturation totale ; et
- les deux obturateurs (14) sont liés l'un à l'autre par une liaison mécanique (50) telle que, lorsqu'un obturateur tourne en ayant tendance à obturer la tuyère associée, l'autre obturateur tourne, de la même amplitude angulaire, en ayant tendance à dégager la tuyère associée.
2 - Système selon la revendication 1,
caractérisé en ce que, au moins au niveau de son col (11) coopérant avec un obturateur (14), chaque tuyère (8) présente une section oblongue.
3 - Système selon la revendication 2,
caractérisé en ce que chaque obturateur comporte un arbre (20) solidaire d'une palette radiale (22) en saillie, dont la face longitudinale d'extrémité (22a) coopère avec le col (11) de la tuyère (8) correspondante.
4 - Système selon la revendication 3,
caractérisé en ce que la face latérale (22b) de la palette radiale (22), en regard du col (11) de la tuyère (8) en position d'ouverture dudit obturateur (14), est concave et courbe.
5 - Système selon l'une quelconque des revendications 1 à 4,
caractérisé en ce que lesdits obturateurs sont montés dans un bloc rigide (15) solidaire de la structure dudit missile (1).
6 - Système selon la revendication 5, dans lequel lesdites tuyères (8) sont ménagées dans des ailes (3) dudit missile solidaires de la peau (2a) de celui-ci,
caractérisé en ce que les pieds (8a) desdites tuyères (8) sont emboîtés à frottement glissant dans ledit bloc rigide (15).
7 - Système selon l'une des revendications 1 à 6,
caractérisé en ce que le contrôle du débit de gaz à travers un vérin est obtenu à l'aide d'un moteur linéaire (45) déplaçant une bille (44) dans un évasement (43) prévu sur le circuit dudit débit de gaz.
8 - Système selon la revendication 7,
caractérisé en ce que les obturateurs des deux tuyères sont commandés par le même moteur (45.12 ou 45.34).
9 - Système selon l'une quelconque des revendications 1 à 8,
caractérisé en ce que ladite liaison mécanique (50) comporte deux bielles (51,52), respectivement solidaires en rotation d'un obturateur (14), lesdites bielles étant reliées l'une à l'autre par leurs extrémités libres en regard par l'intermédiaire d'une articulation (55,56,57), dont l'axe est susceptible de se déplacer longitudinalement par rapport à l'une desdites bielles.
10 - Système selon la revendication 9,
caractérisé en ce que ladite liaison mécanique (50) est disposée à l'écart des flux gazeux émis par ledit générateur de gaz (9).
11 - Système selon l'une des revendications 9 ou 10,
caractérisé en ce que chaque bielle est solidaire en rotation de l'arbre (20) de l'obturateur (14) correspondant et en ce que, à son extrémité opposée à ladite articulation avec l'autre bielle, chaque bielle est articulée au piston (31) du vérin (30) correspondant.
12 - Système selon la revendication 11, pour un couple de tuyères diamétralement opposées,
caractérisé en ce que, en position neutre, les deux articulations (35) des bielles auxdits vérins et l'articulation entre lesdites bielles sont alignées et en ce que les deux obturateurs (14) obturent à demi les tuyères correspondantes.
13 - Système selon l'une des revendications 1 à 12,
caractérisé en ce que, en aval de son col (11) coopérant avec l'obturateur rotatif (14) correspondant, chaque tuyère (8) comporte une chambre de tranquillisation des gaz (63), reliée à ladite tuyère, du côté opposé audit col (11), par un étranglement (64) tel que l' écoulement gazeux à l'intérieur de ladite tuyère est subsonique.
14 - Système selon la revendication 13,
caractérisé en ce qu'un dispositif de mesure (65) est prévu pour la mesure de pression dans chaque chambre de tranquillisation (63).
EP91400520A 1990-03-14 1991-02-26 Système pour le pilotage d'un missile au moyen de tuyères latérales Expired - Lifetime EP0447283B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR909003252A FR2659733B1 (fr) 1990-03-14 1990-03-14 Systeme pour le pilotage d'un missile au moyen de tuyeres laterales.
FR9003252 1990-03-14

Publications (2)

Publication Number Publication Date
EP0447283A1 true EP0447283A1 (fr) 1991-09-18
EP0447283B1 EP0447283B1 (fr) 1993-10-06

Family

ID=9394722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400520A Expired - Lifetime EP0447283B1 (fr) 1990-03-14 1991-02-26 Système pour le pilotage d'un missile au moyen de tuyères latérales

Country Status (8)

Country Link
US (1) US5074492A (fr)
EP (1) EP0447283B1 (fr)
JP (1) JP3181930B2 (fr)
AU (1) AU631969B2 (fr)
CA (1) CA2038091C (fr)
DE (1) DE69100454T2 (fr)
ES (1) ES2046862T3 (fr)
FR (1) FR2659733B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485342C1 (ru) * 2012-02-20 2013-06-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Силовой блок двигательной установки ракеты-носителя
KR102134354B1 (ko) * 2020-04-16 2020-07-15 국방과학연구소 화염 차단 장치 및 이를 포함하는 유도 무기

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659734B1 (fr) * 1990-03-14 1992-07-03 Aerospatiale Systeme pour le pilotage d'un missile au moyen de jets gazeux lateraux.
WO1994010527A1 (fr) * 1992-10-23 1994-05-11 Arkhangelsky Ivan I Procede de guidage d'un missile et son dispositif de mise en ×uvre
FR2699610B1 (fr) * 1992-12-22 1995-02-10 Aerospatiale Dispositif d'actionnement d'un organe mécanique, notamment pour le pilotage en force d'un missile, et missile équipé dudit dispositif.
US6254031B1 (en) * 1994-08-24 2001-07-03 Lockhead Martin Corporation Precision guidance system for aircraft launched bombs
US5631830A (en) 1995-02-03 1997-05-20 Loral Vought Systems Corporation Dual-control scheme for improved missle maneuverability
US6308911B1 (en) 1998-10-30 2001-10-30 Lockheed Martin Corp. Method and apparatus for rapidly turning a vehicle in a fluid medium
US7287725B2 (en) * 2005-04-25 2007-10-30 Raytheon Company Missile control system and method
US7856806B1 (en) * 2006-11-06 2010-12-28 Raytheon Company Propulsion system with canted multinozzle grid
US7872215B2 (en) * 2008-02-29 2011-01-18 Raytheon Company Methods and apparatus for guiding a projectile
US8269156B2 (en) 2008-03-04 2012-09-18 The Charles Stark Draper Laboratory, Inc. Guidance control system for projectiles
US8117847B2 (en) 2008-03-07 2012-02-21 Raytheon Company Hybrid missile propulsion system with reconfigurable multinozzle grid
US8338768B2 (en) 2008-10-15 2012-12-25 Honeywell International Inc. Actuation assembly
US8362408B2 (en) * 2009-10-22 2013-01-29 Honeywell International Inc. Steerable projectile charging system
FR2980265B1 (fr) * 2011-09-21 2017-02-24 Mbda France Systeme pour le pilotage d'un engin volant a l'aide de paires de tuyeres laterales
US9068808B2 (en) * 2013-01-17 2015-06-30 Raytheon Company Air vehicle with bilateral steering thrusters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743371A1 (de) * 1976-10-04 1978-04-13 Ford Aerospace & Communication Kombiniertes heissgas-servosteuersystem fuer ruder und rueckstoss bei flugkoerpern
EP0064433A1 (fr) * 1981-04-21 1982-11-10 Thomson-Brandt Armements Projectile guidé
US4531693A (en) * 1982-11-29 1985-07-30 Societe Nationale Industrielle Et Aerospatiale System for piloting a missile by means of lateral gaseous jets and missile comprising such a system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136250A (en) * 1962-05-04 1964-06-09 Samuel A Humphrey Integrated auxiliary power unit
FR2538098B1 (fr) * 1982-12-17 1987-11-20 Thomson Brandt Dispositif de pilotage par jets de gaz lateraux
FR2620812B1 (fr) * 1987-09-18 1992-04-17 Thomson Brandt Armements Dispositif de commutation de jets de gaz lateraux destine au pilotage d'engins
FR2622066B1 (fr) * 1987-10-16 1995-08-25 Rossi Rinaldo Machine electrique a entrefers radiaux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743371A1 (de) * 1976-10-04 1978-04-13 Ford Aerospace & Communication Kombiniertes heissgas-servosteuersystem fuer ruder und rueckstoss bei flugkoerpern
EP0064433A1 (fr) * 1981-04-21 1982-11-10 Thomson-Brandt Armements Projectile guidé
US4531693A (en) * 1982-11-29 1985-07-30 Societe Nationale Industrielle Et Aerospatiale System for piloting a missile by means of lateral gaseous jets and missile comprising such a system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2485342C1 (ru) * 2012-02-20 2013-06-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Силовой блок двигательной установки ракеты-носителя
KR102134354B1 (ko) * 2020-04-16 2020-07-15 국방과학연구소 화염 차단 장치 및 이를 포함하는 유도 무기

Also Published As

Publication number Publication date
US5074492A (en) 1991-12-24
JP3181930B2 (ja) 2001-07-03
DE69100454D1 (de) 1993-11-11
EP0447283B1 (fr) 1993-10-06
ES2046862T3 (es) 1994-02-01
AU7136991A (en) 1991-09-19
DE69100454T2 (de) 1994-03-03
FR2659733A1 (fr) 1991-09-20
CA2038091C (fr) 2000-08-29
FR2659733B1 (fr) 1994-07-01
JPH04222399A (ja) 1992-08-12
CA2038091A1 (fr) 1991-09-15
AU631969B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
EP0447283B1 (fr) Système pour le pilotage d&#39;un missile au moyen de tuyères latérales
EP0447284B1 (fr) Système pour le pilotage d&#39;un missile au moyen de jets gazeux latéraux
CA1329487C (fr) Inverseur de poussee de turboreacteur, a portes pivotantes equilibrees
EP0646525B1 (fr) Entrée d&#39;air supersonique et hypersonique bidimensionnelle, à trois rampes mobiles, pour l&#39;air de combustion d&#39;un moteur d&#39;aéronef
EP0063979A1 (fr) Dispositif de pilotage par jets de gaz, et projectile comprenant un tel dispositif
FR2483523A1 (fr) Tuyere d&#39;ejection pour moteur a turbine a gaz
FR2645594A1 (fr) Dispositif de vectorisation de poussee de tuyere convergente divergente comportant un tel dispositif
WO2008155480A1 (fr) Actionneur lineaire a action multiple
FR2651020A1 (fr) Tuyere d&#39;echappement a transition integrale et section convergente
FR2676779A1 (fr) Tuyere a section variable.
FR2638784A1 (fr) Inverseur de poussee de turboreacteur muni de portes a mini-tuyere de deviation du flux inverse
FR2641330A1 (fr) Reacteur a turbine a gaz
EP1921325B1 (fr) Turbopropulseur comportant un ensemble de pales à orientation reglable
EP1035316B1 (fr) Tuyère d&#39;éjection de turboréacteur axisymétrique et à orientation globale
EP0064433B1 (fr) Projectile guidé
EP0110774A1 (fr) Système pour le pilotage d&#39;un missile au moyen de jets gazeux latéraux
EP0870105B1 (fr) Tuyere divergent deployable de propulseur
EP3390800B1 (fr) Nacelle pour turboréacteur d&#39;aéronef munie d&#39;un actionneur roto-linéaire hydraulique d&#39;inverseur de poussée et de tuyère à section variable
FR2658248A1 (fr) Ensemble moteur a turbine a gaz-statoreacteur comportant une entree d&#39;air variable.
EP1717432B1 (fr) Tuyère d&#39;éjection orientable d&#39;un moteur d&#39;aéronef
FR2538098A1 (fr) Dispositif de pilotage par jets de gaz lateraux
EP2573504B1 (fr) Système pour le pilotage d&#39;un engin volant à l&#39;aide de paires de tuyères latérales
FR2525689A1 (fr) Tuyere de turbomachine a inverseur de poussee
EP2479386B1 (fr) Dispositif pour commander le passage d&#39;un jet gazeux dans une tuyère d&#39;engin volant, et engin volant comportant de tels dispositifs
EP3368420B1 (fr) Systéme de pilotage en force et de contrôle d&#39;attitude a compacité augmentée et engin comportant un tel système

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19911017

17Q First examination report despatched

Effective date: 19920403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 69100454

Country of ref document: DE

Date of ref document: 19931111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931021

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046862

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 91400520.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960201

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970226

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: JOHN P. MUNZINGER C/O CRONIN INTELLECTUAL PROPERTY;CHEMIN DE PRECOSSY 31;1260 NYON (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081231

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090224

Year of fee payment: 19

Ref country code: DE

Payment date: 20090129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090213

Year of fee payment: 19

Ref country code: IT

Payment date: 20090225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090224

Year of fee payment: 19

BERE Be: lapsed

Owner name: *AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100226

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100227