EP0442873B1 - A process and device for lambda control - Google Patents

A process and device for lambda control Download PDF

Info

Publication number
EP0442873B1
EP0442873B1 EP89903086A EP89903086A EP0442873B1 EP 0442873 B1 EP0442873 B1 EP 0442873B1 EP 89903086 A EP89903086 A EP 89903086A EP 89903086 A EP89903086 A EP 89903086A EP 0442873 B1 EP0442873 B1 EP 0442873B1
Authority
EP
European Patent Office
Prior art keywords
lambda
value
control
integration
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89903086A
Other languages
German (de)
French (fr)
Other versions
EP0442873A1 (en
Inventor
Eberhard Schnaibel
Lothar Raff
Günther PLAPP
Cornelius Peter
Michael Westerdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3837984A external-priority patent/DE3837984A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0442873A1 publication Critical patent/EP0442873A1/en
Application granted granted Critical
Publication of EP0442873B1 publication Critical patent/EP0442873B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the invention relates to a method and a device for regulating the air / fuel mixture to be supplied to an internal combustion engine with the aid of the actual lambda value measured by a lambda probe arranged in front of a catalytic converter.
  • the invention also relates to an apparatus for performing such a method (compare claims 1.6, first part, see US-A-3 939 654).
  • the rear lambda actual value fluctuates less than the front lambda actual value and that it provides more precise information about the actual lambda value. This is because the lambda value measured by a lambda probe depends not only on the oxygen content of the measured mixture, but also on the content of unburned hydrocarbons. Residual combustion and compensation of fluctuations take place in the catalytic converter, as a result of which the rear lambda probe can determine the actual lambda value of the air / fuel mixture supplied to the internal combustion engine very precisely.
  • the invention is based on the object of specifying a method for lambda control which operates stably and allows a desired lambda setpoint to be set as precisely as possible.
  • the invention is also based on the object of specifying a device for performing such a method.
  • the invention is for the method by the features of claim 1 and for the device by the features of claim 5 given.
  • Advantageous further developments and refinements of the method are the subject of subclaims 2-4.
  • the method according to the invention is characterized in that a control lambda setpoint, to which the means for lambda control regulates, is formed with the aid of the rear lambda actual value and a default lambda setpoint to which control is ultimately to be used.
  • the setpoint / actual value comparison therefore takes place against the reliable actual lambda value, which enables the lambda value to be set exactly to the actually desired target lambda setpoint.
  • the fact that the difference between the rear lambda actual value and the specified lambda setpoint is not used as a control deviation for a means for lambda control, but rather that the common control deviation between the control lambda setpoint and the front lambda actual value is influenced by an integration value formed with the aid of the difference value a fast, yet stable control behavior.
  • a device for performing such a method has a means for lambda control, a means for forming the difference between a specified lambda setpoint and the rear lambda actual value, a means for integrating the difference and a means for forming the control lambda setpoint using the integration value .
  • the device is preferably designed as a correspondingly programmed microcomputer.
  • the device for lambda control explained below with reference to FIG. 1 is arranged on an internal combustion engine 11 with a catalytic converter 12, a front lambda probe 13.v in front of the catalytic converter and a rear lambda probe 13.h behind the catalytic converter. As functional groups, it has a front subtraction means 14.v, a rear subtraction means 14.h, an integration means 15 and a means for lambda control 16.
  • the control value of the means for lambda control 16 is passed to a multiplication means 17, where it is multiplicatively linked to a preliminary injection time tiv to form an injection time signal ti.
  • the injection time signal is fed to an injection arrangement 18.
  • a rear lambda actual value ⁇ actual-h is measured from the rear lambda probe 13.h, which is subtracted in the rear subtraction means 14.h from the actually desired lambda value, the specified lambda target value ⁇ target-v .
  • the difference is integrated in the integration means 15 and serves as the control lambda setpoint ⁇ setpoint R for the control in the means 16 for Lambda control.
  • the actual lambda actual value ⁇ actual-v is subtracted from the control lambda setpoint in the front subtraction means 14.v, as measured by the front lambda probe 13.v.
  • the control deviation formed in this way is converted by means 16 for lambda control into the control value already mentioned, a control factor FR. This procedure leads to the following control behavior.
  • the default lambda target value is 1 and that at a point in time at which the observation begins, an air / fuel mixture is currently being provided by the injection arrangement 18, which leads to the desired target lambda target value of 1.
  • the internal combustion engine 11 operates at an operating point in which a relatively high percentage of hydrocarbons are generated. These hydrocarbons in the exhaust gas cause the front lambda sensor 13.v to display a richer mixture than is actually present.
  • the measured actual lambda value is z. B. 0.99.
  • the actual lambda value, ie the actual lambda value is exactly 1.
  • the integration means 15 is at the value 1.
  • the difference between the specified lambda target value and the actual lambda value is zero, which is why the integration means 15 does not change the set integration value.
  • the control lambda setpoint value delivered to the front subtraction means 14.v is therefore 1.
  • the lower front lambda actual value is subtracted from this. Because of this control deviation, the means 16 for lambda control ensures that the mixture becomes leaner.
  • the actual lambda actual value increases in direction 1 and the actual lambda actual value rises above 1.
  • the difference value formed by the rear subtraction means 14.h thereby becomes negative, as a result of which the integration value, that is to say the control lambda setpoint, is lowered by the integration means 15. If there has been a decrease down to 0.99, the following conditions exist.
  • the injection arrangement 18 again ensures an air / fuel mixture with the lambda value 1
  • Front lambda probe 13.v measures the actual lambda value in front 0.99. This corresponds exactly to the control lambda setpoint, which is why the lambda control 16 leaves the control value unchanged, so that the injection arrangement continues to ensure a mixture with the specified lambda value 1.
  • the rear lambda probe 13.h measures the lambda value 1. Since this corresponds to the specified lambda target value, the integration value from the integration means 15 remains unchanged at 0.99.
  • the aforementioned coupling of signals ensures that the means for the lambda control 16 exactly reaches the desired target lambda setpoint, although the actual lambda value used for the control incorrectly measures the actual lambda value.
  • regulation to the correct value takes place at a relatively slow speed. This is because, due to the dead time already mentioned, the speed at which the integration means 15 integrates must not be very high. You will z. B. selected so that the oscillation of the actual lambda value around an average is approximately 1/5 to 1/10 of the control oscillation in the control circuit with the means 16 for lambda control.
  • a means 21 for integration release is shown, which acts on the integration means 15. It is used to block the integration process when special conditions exist in which there is no regulation to a desired lambda value, e.g. B. in overrun cut-off mode or in full load operation.
  • the same lambda value is not continuously regulated, but different lambda values are desired for different operating states.
  • the oil is enriched with increasing load in order to counteract an increase in nitrogen oxides in the exhaust gas. Accordingly, one does not become a single one when practicing the invention
  • the arrangement according to FIG. 2 has a default lambda setpoint map 19 which can be addressed via values of the speed n and a load-dependent variable L.
  • the default lambda target value ⁇ target V read in each case is in turn given to the rear subtraction means 14.h.
  • the rest of the arrangement essentially corresponds to that of FIG. 1. Only the means for enabling integration 21 are missing. The reason for this is explained further below.
  • addition means 20 The purpose of the addition means 20 will be explained using an example. It is initially assumed that this addition means is missing, that is to say the structure according to FIG. 1 is present, but gives the default lambda target values to the rear subtraction means 14.h with a default lambda target value map. First of all, let the output value be 1. The state explained with reference to FIG. 1 then exists, in which the actual lambda actual value is 0.99. Now the operating point changes, which results in a new default lambda setpoint of 0.98. The actual lambda actual value measured at this lambda value is 0.97. The integration means 15 must then integrate in the embodiment according to FIG. 1 from 0.99 to 0.97, which takes up a lot of time. In the embodiment according to FIG.
  • the integration means 15 integrates to - 0.001 if the specified lambda setpoint 1 and the lambda actual value front is 0.99.
  • the default lambda setpoint jumps from 1 to 0.98 with an associated actual lambda value of 0.97, the new value of 0.98 is given directly to the addition means 20.
  • the integration value remains at 0.01.
  • a change in the default lambda setpoint thus directly affects the means for lambda control 16 without the integration means 15 having to be active. It only has to take action if there is a different difference between the actual lambda value rear and the actual lambda value for the new operating point than for the operating point that previously existed.
  • the integration value corresponds to the difference between the actual lambda value rear and the actual lambda value for the relevant operating point. If there is a change from one operating point to another, the new default lambda setpoint from the default lambda setpoint map 19 and the associated integration value from the associated map point of the adder 15 arrive at the addition means 20. There are no map points for different values of the addressing variables. No integration value is output for these points, which corresponds to the blocking of integration by the means for integration release 21 in the embodiment according to FIG. 1.
  • the embodiment according to FIG. 3 differs from that according to FIG. 2 in that it is not the default lambda target value from the default lambda target value map 19 that is given to the addition means 20 as the lambda target value, but a pre-probe lambda target value from a pre-probe lambda target value. Map 22.
  • the content of this pre-probe lambda setpoint map 22 is identical to the content of a conventional lambda setpoint map.
  • One of these has already taken into account that the lambda probe arranged in front of the catalytic converter increasingly measures incorrectly with increasing hydrocarbon content in the exhaust gas. Is before a certain operating point, for.
  • the value 0.96 is stored for the operating point in question in the conventional map and thus also in the pre-probe lambda setpoint map.
  • the lambda value 0.98 is actually set with this setpoint.
  • the pre-probe lambda setpoints and the default lambda setpoints are recorded for all operating points using a measurement setup.
  • the values are stored in the maps. If an engine used in practice exactly matches the engine with which the measurement was made and if this also applies to the lambda probes used, the integration means 15 never need to be integrated, since for each operating point the predefined lambda setpoint value is accurate for each operating point the associated default lambda setpoint results. Soak the characteristics of the engine or probes, however, on the properties of the parts that were used when recording the characteristic maps, be it due to manufacturing-related scattering or be it due to aging, the integration means 15 compensates for the deviation.
  • the compensating integration value is the same for all operating points.
  • the integration means 15 can accordingly be set to a very slow integration speed. Rapidly changing differences from operating point to operating point in the difference between the actual lambda value front and the actual lambda value rear are compensated for by the different lambda setpoints from the two maps. Long-term changes or differences in scatter are eliminated by the initial value of the integration means 15. If it is to be taken into account that changes in aging or differences in variation can be dependent on the operating point, this can be done by adaptively changing the values in the pre-probe lambda setpoint map 22. This is indicated in Fig. 3 by the fact that the output signal from the integrator 15 acts on the mentioned map. Structural adaptation takes place by changing the map values. A part of the integration value from the integration means 15 can be used for global adaptation. With regard to applicable adaptation methods, reference is again made to the above-mentioned patent application.
  • the lambda value-voltage characteristic of a lambda probe is non-linear in all its areas. However, it can be linearized in various areas with fairly good accuracy, e.g. B. in a range of about +/- 3% around the lambda value 1. With the help of the linearized characteristic, a relatively simple control procedure can be carried out. However, due to the small differences between the actual characteristic curve and the linearized characteristic curve, there are slight deviations between the actual lambda value and the measured value. It is then slightly incorrectly regulated. The integration means 15 is also able to correct this error, as described above with reference to the hydrocarbon error.
  • the linearization error just described has a particularly negative effect if the lambda sensor is operated temporarily at a temperature that is relatively far from the temperature for which the actual characteristic curve was determined, from which the linearization was then carried out.
  • the characteristic curve changes depending on the temperature.
  • the rate of change of the probe temperature is lower than the rate of integration of the integration means 15. If the actual lambda value is incorrectly measured on the front lambda probe 13.v due to the shift in the characteristic curve, this error is also eliminated with the aid of the rear lambda probe 13. h and the integration means 15 balanced. This is possible because the temperature behind the catalyst 12 fluctuates significantly less than in front of it.
  • the integration means 15 changes the control lambda setpoint for the means 16 for lambda control the faster the further the actual lambda value deviates from the lambda setpoint. This ensures that the desired lambda setpoint is reached as quickly as possible.
  • the speed of integration must not be too high, since, due to the dead time mentioned at the beginning, a control oscillation could otherwise be built up. It is therefore advisable to limit the integration speed upwards.
  • a method in which the speed of integration remains constant regardless of the value of the difference mentioned is simpler to carry out. This integration speed is chosen to be as high as possible, but only so high that even in the worst case there are no control oscillations with an impermissibly high amplitude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A device for lambda control operates on an internal combustion engine (11) with a catalyst (12) and lambda probes, one (13.v) arranged in front and the other (13.h) behind it. Using integration means (15), the device integrates the difference between the actual value of lambda measured by the rearward probe and the nominal one on which adjustment is to be made. The integration figure is used as a regulating rating for a means (16) of lambda control. This device and the relevant process make it possible to regulate to the actually desired lambda figure even when the forward lambda probe is making false measurements, e.g. owing to hydrocarbons in the exhaust gases in front of the catalyst or, on constant control, the faulty linearisation of the probe characteristic.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Regeln des einer Brennkraftmaschine zuzuführenden Luft/Kraftstoffgemisches mit Hilfe des von einer vor einem Katalysator angeordneten Lambdasonde gemessenen Lambdaistwertes. Die Erfindung betrifft außerdem eine Vorrichtung zum Durchführen eines solchen Verfahrens (vergleiche Ansprüch 1,6, erster Teil, siehe US-A-3 939 654).The invention relates to a method and a device for regulating the air / fuel mixture to be supplied to an internal combustion engine with the aid of the actual lambda value measured by a lambda probe arranged in front of a catalytic converter. The invention also relates to an apparatus for performing such a method (compare claims 1.6, first part, see US-A-3 939 654).

Stand der TechnikState of the art

Von Brennkraftmaschinen mit Katalysator ist es bekannt, je eine Lambdasonde vor und hinter dem Katalysator anzuordnen. Die vordere mißt einen Lambdaistwert-Vorne und die hintere einen Lambdaistwert-Hinten. Der Lambdaistwert-Vorne wird vom Regel-Lambdasollwert abgezogen, auf den geregelt werden soll. Die derartig gebildete Regelabweichung wird von einem Mittel zur Lambdaregelung in einen Stellwert umgerechnet, der so bemessen ist, daß durch ihn die Regelabweichung beseitigt werden soll. Der Lambdaistwert-Hinten dient dazu, die Katalysatoraktivität zu überwachen.It is known from internal combustion engines with catalytic converters to arrange a lambda probe in front of and behind the catalytic converter. The front measures an actual lambda value and the rear measures an actual lambda value. The front lambda actual value is subtracted from the control lambda setpoint to which control is to take place. The control deviation formed in this way is converted by a means for lambda control into a manipulated value which is dimensioned such that the control deviation is to be eliminated by it. The rear lambda actual value serves to monitor the catalyst activity.

Es ist bekannt, daß der Lambdaistwert-Hinten weniger schwankt als der Lambdaistwert-Vorne und daß er Genaueres über den tatsächlichen Lambdawert aussagt. Dies, weil der von einer Lambdasonde gemessene Lambdawert nicht nur vom Sauerstoffgehalt des gemessenen Gemisches, sondern auch vom Gehalt an unverbrannten Kohlenwasserstoffen abhängt. Im Katalysator findet eine Restverbrennung und ein Ausgleich von Schwankungen statt, wodurch die hintere Lambdasonde den tatsächlichen Lambdawert des der Brennkraftmaschine Zugeführten Luft/Kraftstoff-Gemisches sehr genau bestimmen kann.It is known that the rear lambda actual value fluctuates less than the front lambda actual value and that it provides more precise information about the actual lambda value. This is because the lambda value measured by a lambda probe depends not only on the oxygen content of the measured mixture, but also on the content of unburned hydrocarbons. Residual combustion and compensation of fluctuations take place in the catalytic converter, as a result of which the rear lambda probe can determine the actual lambda value of the air / fuel mixture supplied to the internal combustion engine very precisely.

Aufgrund der hohen Genauigkeit des Lambdaistwertes-Hinten ist es wünschenswert, mit Hilfe dieses Istwertes die Regelabweichung zu bilden. Dies kann jedoch nicht zu praktikablen Ergebnissen führen, da zwischen dem Bereitstellen eines Luft/Kraftstoff-Volumens und dem Zeitpunkt, zu dem dieses Volumen, nun als verbranntes Gemisch, am hinteren Katalysator anlangt, eine sehr große Totzeit vergeht. Diese macht eine sinnvolle Regelung unmöglich. Es wäre allerdings möglich, einen mit Hilfe des Lambdaistwertes-Hinten durch ein Mittel zur Lambdaregelung gebildeten Stellwert mit einem Stellwert zu korrigieren, der mit Hilfe des Lambdaistwertes-Vorne durch ein zweites, schnelleres Mittel zur Lambdaregelung gebildet ist. Bei einer solchen Anordnung würden sich jedoch Stabilitätsprobleme ergeben.Due to the high accuracy of the rear lambda actual value, it is desirable to use this actual value to form the control deviation. However, this cannot lead to practical results since a very long dead time elapses between the provision of an air / fuel volume and the point in time at which this volume, now as a burned mixture, reaches the rear catalytic converter. This makes sensible regulation impossible. However, it would be possible to correct a manipulated value formed with the aid of the rear lambda actual value by means of lambda control with a manipulated value which is formed with the aid of the front lambda actual value by a second, faster means for lambda control. With such an arrangement, however, stability problems would arise.

Aus der US 3 939 654 ist ein Verfahren zur Regelung der Zusammensetzung des Kraftstoff/Luft-Gemisches für eine Brennkraftmaschine bekannt, die mit einer vor und einer hinter einem Katalysator angeordneten Abgassonde ausgerüstet ist. Das Signal Z2 der hinteren Sonde wird mit einem Sollwert verglichen, die Differenz wird integriert und als Sollwert für einen Vergleich mit dem Signal der vorderen Abgasonde verwendet. Das Vergleichsergebnis wird zur Integral-Regelung der Gemischzusammensetzung verwendet.From US 3 939 654 a method for regulating the composition of the fuel / air mixture for an internal combustion engine is known, which is equipped with an exhaust gas probe arranged upstream and downstream of a catalytic converter. The signal Z2 of the rear probe is compared with a target value, the difference is integrated and used as a target value for a comparison with the signal of the front exhaust probe. The comparison result is used for the integral control of the mixture composition.

Diese Schrift beschränkt sich jedoch auf einen einzigen Lambdasollwert, der dem stöchiometrischen Kraftstoff/Luft-Verhältnis entspricht.However, this document is limited to a single lambda setpoint which corresponds to the stoichiometric fuel / air ratio.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Lambdaregelung anzugeben, das stabil arbeitet und es erlaubt, einen gewünschten Lambdasollwert möglichst genau einzustellen. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Vorrichtung zum Durchführen eines solchen Verfahrens anzugeben.The invention is based on the object of specifying a method for lambda control which operates stably and allows a desired lambda setpoint to be set as precisely as possible. The invention is also based on the object of specifying a device for performing such a method.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung ist für das Verfahren durch die Merkmale von Anspruch 1 und für die Vorrichtung durch die Merkmale von Anspruch 5 gegeben. Vorteilhafte Weiterbildungen und Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche 2 - 4.The invention is for the method by the features of claim 1 and for the device by the features of claim 5 given. Advantageous further developments and refinements of the method are the subject of subclaims 2-4.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß mit Hilfe des Lambdaistwertes-Hinten und eines Vorgabe-Lambdasollwertes, auf den letztendlich geregelt werden soll, ein Regel-Lambdasollwert gebildet wird, auf den das Mittel zur Lambdaregelung regelt. Der Soll-/Istwert-Vergleich findet somit gegen den zuverlässigen Lambdaistwert-Hinter statt, was ein genaues Einstellen des Lambdawertes auf den tatsächlich gewünschten Vorgabe-Lambdasollwert ermöglicht. Dadurch, daß der Unterschied zwischen Lambdaistwert-Hinten und Vorgabe-Lambdasollwert nicht als Regelabweichung für ein Mittel zur Lambdaregelung verwendet wird, sondern daß die ütliche Regelabweichung zwischen Regel-Lambdasollwert und Lambdaistwert-Vorne durch einen mit Hilfe des Unterschiedswertes gebildeten Integrationswert beeinflußt wird, ergibt sich ein schnelles und dennoch stabiles Regelverhalten.The method according to the invention is characterized in that a control lambda setpoint, to which the means for lambda control regulates, is formed with the aid of the rear lambda actual value and a default lambda setpoint to which control is ultimately to be used. The setpoint / actual value comparison therefore takes place against the reliable actual lambda value, which enables the lambda value to be set exactly to the actually desired target lambda setpoint. The fact that the difference between the rear lambda actual value and the specified lambda setpoint is not used as a control deviation for a means for lambda control, but rather that the common control deviation between the control lambda setpoint and the front lambda actual value is influenced by an integration value formed with the aid of the difference value a fast, yet stable control behavior.

Eine Vorrichtung zum Durchführen eines solchen Verfahrens weist ein Mittel zur Lambdaregelung, ein Mittel zum Bilden der Differenz zwischen einem Vorgabe-Lambdasollwert und dem Lambdaistwert-Hinten, ein Mittel zum Integrieren der Differenz und ein Mittel zum Bilden des Regel-Lambdasollwertes mit Hilfe des Integrationswertes auf. Die Vorrichtung ist vorzugsweise als entsprechend programmierter Mikrorechner ausgebildet.A device for performing such a method has a means for lambda control, a means for forming the difference between a specified lambda setpoint and the rear lambda actual value, a means for integrating the difference and a means for forming the control lambda setpoint using the integration value . The device is preferably designed as a correspondingly programmed microcomputer.

Zeichnungdrawing

Die Erfindung wird in folgenden anhand durch Figuren veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
ein Funktionsblockschaltbild einer Vorrichtung zur Lambdaregelung auf einen einzigen Vorgabe-Lambdasollwert mit Hilfe zweier Lambdasonden, wie sie prinzipiell aus der US 3 939 654 bekannt ist;
Fig. 2
ein Teil-Funktionsblockschaltbild betreffend einen Zusammenhang von Funktionsgruppen, der abweichend vom entsprechenden Zusammenhang gemäß Fig. 1 ausgebildet ist, um auf von Betriebspunkt zu Betriebspunkt unterschiedliche Vorgabe-Lambdasollwerte einstellen zu können; und
Fig. 3
ein Teil-Funktionsblockschaltbild entsprechend dem von Fig. 2, jedoch mit einem zusätzlichen Vordersonden-Lambdasollwert-Kennfeld.
The invention is explained in more detail in the following exemplary embodiments illustrated by figures. Show it:
Fig. 1
a functional block diagram of a device for lambda control to a single default lambda setpoint using two lambda probes, as is known in principle from US 3,939,654;
Fig. 2
1 shows a partial functional block diagram relating to a relationship between function groups, which is designed differently from the corresponding relationship according to FIG. 1 in order to be able to set different lambda setpoints from operating point to operating point; and
Fig. 3
a partial functional block diagram corresponding to that of FIG. 2, but with an additional predensor lambda setpoint map.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Die im folgenden anhand von Fig. 1 erläuterte Vorrichtung zur Lambdaregelung ist an einer Brennkraftmaschine 11 mit Katalysator 12, einer vorderen Lambdasonde 13.v vor dem Katalysator und einer hinteren Lambdasonde 13.h hinter dem Katalysator angeordnet. Sie weist als Funktionsgruppen ein vorderes Subtraktionsmittel 14.v, ein hinteres Subtraktionsmittel 14.h, ein Integrationsmittel 15 und ein Mittel zur Lambdaregelung 16 auf. der Stellwert des Mittels zur Lambdaregelung 16 ist auf ein Multiplikationsmittel 17 geführt, wo er mit einer vorläufigen Einspritzzeit tiv multiplikativ zum Bilden eines Einspritzzeitsignales ti verknüpft wird. Das Einspritzzeitsignal wird einer Einspritzanordnung 18 zugeführt.The device for lambda control explained below with reference to FIG. 1 is arranged on an internal combustion engine 11 with a catalytic converter 12, a front lambda probe 13.v in front of the catalytic converter and a rear lambda probe 13.h behind the catalytic converter. As functional groups, it has a front subtraction means 14.v, a rear subtraction means 14.h, an integration means 15 and a means for lambda control 16. The control value of the means for lambda control 16 is passed to a multiplication means 17, where it is multiplicatively linked to a preliminary injection time tiv to form an injection time signal ti. The injection time signal is fed to an injection arrangement 18.

Von der hinteren Lambdasonde 13.h wird ein LambdaistwertHinten λIst-h gemessen, der im hinteren Subtraktionsmittel 14.h vom tatsächlich gewünschten Lambdawert, dem Vorgabe-Lambdasollwert λSoll-v abgezogen wird. Die Differenz wird im Integrationsmittel 15 integriert und dient als Regel-Lambdasollwert λSoll-R für die Regelung im Mittel 16 zur Lambdaregelung. Vom Regel-Lambdasollwert wird im vorderen Subtraktionsmittel 14.v der Lambdaistwert-Vorne λIst-v abgezogen, wie er von der vorderen Lambdasonde 13.v gemessen wird. Die so gebildete Regelabweichung wird vom Mittel 16 zur Lambdaregelung in den bereits erwähnten Stellwert, einen Regelfaktor FR, umgerechnet. Dieser Verfahrensablauf führt zum folgenden Regelverhalten.A rear lambda actual value λ actual-h is measured from the rear lambda probe 13.h, which is subtracted in the rear subtraction means 14.h from the actually desired lambda value, the specified lambda target value λ target-v . The difference is integrated in the integration means 15 and serves as the control lambda setpoint λ setpoint R for the control in the means 16 for Lambda control. The actual lambda actual value λ actual-v is subtracted from the control lambda setpoint in the front subtraction means 14.v, as measured by the front lambda probe 13.v. The control deviation formed in this way is converted by means 16 for lambda control into the control value already mentioned, a control factor FR. This procedure leads to the following control behavior.

Es sei angenommen, daß der Vorgabe-Lambdasollwert 1 ist und daß zu einem Zeitpunkt, mit dem die Betrachtung beginnt, von der Einspritzanordnung 18 gerade ein Luft/Kraftstoff-Gemisch bereitgestellt wird, das zum gewünschten Vorgabe-Lambdasollwert von 1 führt. Die Brennkraftmaschine 11 arbeite jedoch in einem Betriebspunkt, in dem ein relativ hoher Prozentsatz an Kohlenwasserstoffen anfallen. Diese Kohlenwasserstoffe im Abgas führen dazu, daß die vordere Lambdasonde 13.v ein fetteres Gemisch anzeigt, als es eigentlich vorhanden ist. Der gemessene Lambdaistwert-Vorne ist z. B. 0,99. Der Lambdaistwert-Hinten, d. h. der tatsächliche Lambdawert, ist dagegen genau 1. Das Integrationsmittel 15 stehe auf dem Wert 1. In diesem Fall ist die Differenz zwischen Vorgabe-Lambdasollwert und Lambdaistwert-Hinten Null, weswegen das Integrationsmittel 15 den eingestellten Integrationswert nicht verändert. Der an das vordere Subtraktionsmittel 14.v gelieferte Regel-Lambdasollwert ist daher 1. Von diesem wird der niedrigere Lambdaistwert-Vorne abgezogen. Aufgrund dieser Regelabweichung sorgt das Mittel 16 zur Lambdaregelung für ein Abmagern des Gemisches. Der Lambdaistwert-Vorne steigt dann in Richtung 1 und der Lambdaistwert-Hinten steigt über 1 an. Der vom hinteren Subtraktionsmittel 14.h gebildete Differenzwert wird dadurch negativ, wodurch der Integrationswert, also der Regel-Lambdasollwert vom Integrationsmittel 15 erniedrigt wird. Hat ein Erniedrigen bis zum Wert 0,99 stattgefunden, liegen folgende Verhältnisse vor. Die Einspritzanordnung 18 sorgt wieder für ein Luft/Kraftstoff-Gemisch mit dem Lambdawert 1. Die vordere Lambdasonde 13.v mißt den Lambdaistwert-Vorne 0,99. Dies entspricht genau dem Regel-Lambdasollwert, weswegen die Lambdaregelung 16 den Stellwert unverändert läßt, so daß die Einspritzanordnung nach wie vor für ein Gemisch mit dem Vorgabe-Lambdawert 1 sorgt. Die hintere Lambdasonde 13.h mißt den Lambdawert 1. Da dieser mit dem Vorgabe-Lambdasollwert übereinstimmt, bleibt der Integrationswert vom Integrationsmittel 15 unverändert auf 0,99 stehen.It is assumed that the default lambda target value is 1 and that at a point in time at which the observation begins, an air / fuel mixture is currently being provided by the injection arrangement 18, which leads to the desired target lambda target value of 1. However, the internal combustion engine 11 operates at an operating point in which a relatively high percentage of hydrocarbons are generated. These hydrocarbons in the exhaust gas cause the front lambda sensor 13.v to display a richer mixture than is actually present. The measured actual lambda value is z. B. 0.99. In contrast, the actual lambda value, ie the actual lambda value, is exactly 1. The integration means 15 is at the value 1. In this case, the difference between the specified lambda target value and the actual lambda value is zero, which is why the integration means 15 does not change the set integration value. The control lambda setpoint value delivered to the front subtraction means 14.v is therefore 1. The lower front lambda actual value is subtracted from this. Because of this control deviation, the means 16 for lambda control ensures that the mixture becomes leaner. The actual lambda actual value increases in direction 1 and the actual lambda actual value rises above 1. The difference value formed by the rear subtraction means 14.h thereby becomes negative, as a result of which the integration value, that is to say the control lambda setpoint, is lowered by the integration means 15. If there has been a decrease down to 0.99, the following conditions exist. The injection arrangement 18 again ensures an air / fuel mixture with the lambda value 1 Front lambda probe 13.v measures the actual lambda value in front 0.99. This corresponds exactly to the control lambda setpoint, which is why the lambda control 16 leaves the control value unchanged, so that the injection arrangement continues to ensure a mixture with the specified lambda value 1. The rear lambda probe 13.h measures the lambda value 1. Since this corresponds to the specified lambda target value, the integration value from the integration means 15 remains unchanged at 0.99.

Auf diese Art und Weise sorgt die genannte Koppelung von Signalen dafür, daß das Mittel zur Lambdaregelung 16 genau den gewünschten Vorgabe-Lambdasollwert erreicht, obwohl der zur Regelung verwendete Lambdaistwert-Vorne den tatsächlichen Lambdawert falsch mißt. Das Regeln auf den richtigen Wert hin erfolgt jedoch mit verhältnismäßig geringer Geschwindigkeit. Dies, weil wegen der bereits oben genannten Totzeit die Geschwindigkeit, mit der das Integrationsmittel 15 integriert, nicht sehr hoch sein darf. Sie wird z. B. so gewählt, daß das Schwingen des Lambdaistwertes-Hinten um einen Mittelwert etwa mit 1/5 bis 1/10 der Regelschwingung im Regelkreis mit dem Mittel 16 zur Lambdaregelung beträgt.In this way, the aforementioned coupling of signals ensures that the means for the lambda control 16 exactly reaches the desired target lambda setpoint, although the actual lambda value used for the control incorrectly measures the actual lambda value. However, regulation to the correct value takes place at a relatively slow speed. This is because, due to the dead time already mentioned, the speed at which the integration means 15 integrates must not be very high. You will z. B. selected so that the oscillation of the actual lambda value around an average is approximately 1/5 to 1/10 of the control oscillation in the control circuit with the means 16 for lambda control.

In Fig. 1 ist noch ein Mittel 21 zur Integrationsfreigabe eingezeichnet, das auf das Integrationsmittel 15 wirkt. Es dient dazu, den Integrationsvorgang zur sperren, wenn Sonderzustände vorliegen, in denen nicht auf einen gewünschten Lambdawert geregelt wird, z. B. im Schubabschaltebetrieb oder im Vollastbetrieb.In Fig. 1, a means 21 for integration release is shown, which acts on the integration means 15. It is used to block the integration process when special conditions exist in which there is no regulation to a desired lambda value, e.g. B. in overrun cut-off mode or in full load operation.

In der Praxis wird nicht dauernd auf denselben Lambdawert geregelt, sondern für unterschiedliche Betriebszustände sind unterschiedliche Lambdawerte gewünscht. Insbesondere wird mit zunehmender Last angefettet, um dadurch einem Erhöhen von Stickoxiden im Abgas entgegenzuwirken. Demgemäß wird man bei praktischer Anwendung der Erfindung nicht einen einzigen Vorgabe-Lambdasollwert verwenden, wie in Fig. 1 zum Erläutern des Grundprinzips angenommen, sondern man wird für unterschiedliche Betriebspunkte unterschiedliche Vorgabe-Lambdasollwerte vorgeben. Es ist zweckmäßig, derartige Sollwerte in einem Kennfeld abzulegen, die mit Hilfe von Werten von Betriebsgrößen als Adreßwerte auswertbar sind. Eine Anordnung mit einem solchen Kennfeld ist in Fig. 2 dargestellt.In practice, the same lambda value is not continuously regulated, but different lambda values are desired for different operating states. In particular, the oil is enriched with increasing load in order to counteract an increase in nitrogen oxides in the exhaust gas. Accordingly, one does not become a single one when practicing the invention Use default lambda setpoint as assumed in FIG. 1 to explain the basic principle, but different default lambda setpoints will be specified for different operating points. It is expedient to store such target values in a map, which can be evaluated as address values with the aid of values of operating variables. An arrangement with such a map is shown in FIG. 2.

Die Anordnung gemäß Fig. 2 weist ein Vorgabe-Lambdasollwert-Kennfeld 19 auf, das über Werte der Drehzahl n und einer lastabhängigen Größe L adressierbar ist. Der jeweils ausgelesene Vorgabe-Lambdasollwert λSoll-V wird wiederum auf das hintere Subtraktionsmittel 14.h gegeben. Gleichzeitig gelangt er auf ein Additionsmittel 20, dem auch der Integrationswert vom Integrationsmittel 15 zugeführt wird. Die übrige Anordnung entspricht im wesentlichen der von Fig. 1. Es fehlt lediglich das Mittel zur Integrationsfreigabe 21. Der Grund hierfür wird weiter unten erläutert.The arrangement according to FIG. 2 has a default lambda setpoint map 19 which can be addressed via values of the speed n and a load-dependent variable L. The default lambda target value λ target V read in each case is in turn given to the rear subtraction means 14.h. At the same time, it arrives at an addition means 20, to which the integration value is also supplied by the integration means 15. The rest of the arrangement essentially corresponds to that of FIG. 1. Only the means for enabling integration 21 are missing. The reason for this is explained further below.

Der Zweck des Additionsmittels 20 sei anhand eines Beispieles erläutert. Es sei zunächst angenommen, daß dieses Additionsmittel fehle, also der Aufbau gemäß Fig. 1 vorliege, jedoch mit einem Vorgabe-Lambdasollwert-Kennfeld` das Vorgabe-Lambdasollwerte auf das hintere Subtraktionsmittel 14.h gibt. Zunächst sei der ausgegebene Wert 1. Es liegt dann der anhand von Fig. 1 erläuterte Zustand vor, bei dem der Lambdaistwert-Vorne 0,99 ist. Nun ändere sich der Betriebspunkt, was einen neuen Vorgabe-Lambdasollwert von 0,98 zur Folge habe. Der bei diesem Lambdawert gemessene Lambdaistwert-Vorne sei 0,97. Das Integrationsmittel 15 muß dann bei der Ausführungsform gemäß Fig. 1 von 0,99 auf 0,97 integrieren, was einiges an Zeit in Anspruch nimmt. Bei der Ausführungsform gemäß Fig. 2 integriert das Integrationsmittel 15 auf - 0,001, wenn der Vorgabe-Lambdasollwert 1 und der Lambdaistwert-Vorne 0,99 ist. Springt der Vorgabe-Lambdasollwert von 1 auf 0,98, mit einem zugehörigen Lambdaistwert-Vorne von 0,97, wird der neue Wert von 0,98 direkt auf das Additionsmittel 20 gegeben. Der Integrationswert bleibt auf 0,01 stehen. Eine Änderung im Vorgabe-Lambdasollwert greift also unmittelbar auf das Mittel zur Lambdaregelung 16 durch, ohne daß das Integrationsmittel 15 tätig zu werden braucht. Es muß nur dann tätig werden, wenn für den neuen Betriebspunkt eine andere Differenz zwischen Lambdaistwert-Hinten und Lambdaistwert-Vorne besteht als beim Betriebspunkt, der zuvor vorlag.The purpose of the addition means 20 will be explained using an example. It is initially assumed that this addition means is missing, that is to say the structure according to FIG. 1 is present, but gives the default lambda target values to the rear subtraction means 14.h with a default lambda target value map. First of all, let the output value be 1. The state explained with reference to FIG. 1 then exists, in which the actual lambda actual value is 0.99. Now the operating point changes, which results in a new default lambda setpoint of 0.98. The actual lambda actual value measured at this lambda value is 0.97. The integration means 15 must then integrate in the embodiment according to FIG. 1 from 0.99 to 0.97, which takes up a lot of time. In the embodiment according to FIG. 2, the integration means 15 integrates to - 0.001 if the specified lambda setpoint 1 and the lambda actual value front is 0.99. The default lambda setpoint jumps from 1 to 0.98 with an associated actual lambda value of 0.97, the new value of 0.98 is given directly to the addition means 20. The integration value remains at 0.01. A change in the default lambda setpoint thus directly affects the means for lambda control 16 without the integration means 15 having to be active. It only has to take action if there is a different difference between the actual lambda value rear and the actual lambda value for the new operating point than for the operating point that previously existed.

Selbst wenn die letztgenannte erschwerende Bedingung vorliegt, daß zu unterschiedlichen Betriebspunkten unterschiedliche Differenzen zwischen Lambdaistwert-Hinten und Lambdaistwert-Vorne gehören, kann vermieden werden, daß das Mittel zur Integration 15 bei jedem Betriebspunktsprung eine solche Differenz durch Integration ausgleichen muß. Dies läßt sich durch strukturelle Adaption erzielen. In bezug auf Verfahren für strukturelle Adaption wird auf die DE 36 03 137 A1 (US-Ser.-Nr. 6696) verwiesen. Die Adaptionsmöglichkeit ist in Fig. 2 dadurch angedeutet, daß dem Integrationsmittel 15 Werte von Betriebsgrößen, nämlich Werte der Drehzahl n und Werte einer lastabhängigen Größe L zugeführt werden. Das Integrationsmittel 15 ist als Kennfeld aufgebaut. In jedem Kennfeldpunkt ist ein Integrationswert gespeichert, der in der Vergangenheit gelernt wurde. Der Integrationswert entspricht der Differenz zwischen dem Lambdaistwert-Hinten und dem Lambdaistwert-Vorne für den betreffenden Betriebspunkt. Findet ein Wechsel von einem Betriebspunkt zum anderen statt, gelangen auf das Additionsmittel 20 der neue Vorgabe-Lambdasollwert aus dem Vorgabe-Lambdasollwert-Kennfeld 19 und der zugehörige Integrationswert aus dem zugehörigen Kennfeldpunkt des Additionsmittels 15. Für verschiedene Werte der Adressiergrößen bestehen keine Kennfeldpunkte. Für diese Punkte wird kein Integrationswert ausgegeben, was dem Sperren von Integration durch das Mittel zur Integrationsfreigabe 21 bei der Ausführungsform gemäß Fig. 1 entspricht.Even if the last-mentioned aggravating condition exists that different differences between the actual lambda value rear and the actual lambda value belong to different operating points, it can be avoided that the means for integration 15 must compensate for such a difference by integration with each operating point jump. This can be achieved through structural adaptation. With regard to methods for structural adaptation, reference is made to DE 36 03 137 A1 (US Ser. No. 6696). The possibility of adaptation is indicated in FIG. 2 in that the integration means 15 are supplied with values of operating variables, namely values of the speed n and values of a load-dependent variable L. The integration means 15 is constructed as a map. An integration value that was learned in the past is stored in each map point. The integration value corresponds to the difference between the actual lambda value rear and the actual lambda value for the relevant operating point. If there is a change from one operating point to another, the new default lambda setpoint from the default lambda setpoint map 19 and the associated integration value from the associated map point of the adder 15 arrive at the addition means 20. There are no map points for different values of the addressing variables. No integration value is output for these points, which corresponds to the blocking of integration by the means for integration release 21 in the embodiment according to FIG. 1.

Anhand von Fig. 3 wird nun eine Ausführungsform erläutert, die auch ohne strukturelle Adaption ein sehr schnelles Einstellen auf einen neuen Lambdawert nach einem Betriebspunktwechsel erlaubt. Adaption ist jedoch zusätzlich möglich, die dann leicht in einen globalen und einen strukturellen Teil untergliedert werden kann.An embodiment will now be explained with reference to FIG. 3, which allows a very quick adjustment to a new lambda value after a change in operating point, even without structural adaptation. However, adaptation is also possible, which can then be easily broken down into a global and a structural part.

Die Ausführungsform gemäß Fig. 3 unterscheidet sich von der gemäß Fig. 2 dadurch, daß auf das Additionsmittel 20 als Lambdasollwert nicht der Vorgabe-Lambdasollwert aus dem Vorgabe-Lambdasollwert-Kennfeld 19 gegeben wird, sondern ein Vordersonden-Lambdasollwert aus einem Vordersonden-Lambdasollwert-Kennfeld 22. Der Inhalt dieses Vordersonden-Lambdasollwert-Kennfeldes 22 ist identisch mit dem Inhalt eines herkömmlichen Lambdasollwert-Kennfeldes. In einem solchen ist bereits berücksichtigt, daß die vor dem Katalysator angeordnete Lambdasonde mit zunehmendem Kohlenwasserstoffgehalt im Abgas zunehmend falsch mißt. Wird vor einem bestimmten Betriebspunkt, z. B. der Lambdawert 0,98 gewünscht, ist aber bekannt, daß die vordere Lambdasonde bei diesem Lambdawert 0,96 mißt, wird für den betreffenden Betriebspunkt im herkömmlichen Kennfeld und damit auch im Vordersonden-Lambdasollwert-Kennfeld der Wert 0,96 abgelegt. Tatsächlich stellt sich mit diesem Sollwert der Lambdawert 0,98 ein.The embodiment according to FIG. 3 differs from that according to FIG. 2 in that it is not the default lambda target value from the default lambda target value map 19 that is given to the addition means 20 as the lambda target value, but a pre-probe lambda target value from a pre-probe lambda target value. Map 22. The content of this pre-probe lambda setpoint map 22 is identical to the content of a conventional lambda setpoint map. One of these has already taken into account that the lambda probe arranged in front of the catalytic converter increasingly measures incorrectly with increasing hydrocarbon content in the exhaust gas. Is before a certain operating point, for. For example, if the lambda value 0.98 is desired, but it is known that the front lambda probe measures 0.96 at this lambda value, the value 0.96 is stored for the operating point in question in the conventional map and thus also in the pre-probe lambda setpoint map. The lambda value 0.98 is actually set with this setpoint.

Die Vordersonden-Lambdasollwerte und die Vorgabe-Lambdasollwerte werden für alle Betriebspunkte mit Hilfe eines Meßaufbaus aufgenommen. Die Werte werden in den Kennfeldern abgelegt. Stimmt ein in der Praxis verwendeter Motor mit demjenigen Motor, mit Hilfe dessen die Messung erfolgte, genau überein und stimmt dies auch für die verwendeten Lambdasonden, braucht das Integrationsmittel 15 nie zu integrieren, da sich für jeden Betriebspunkt mit Hilfe des ausgelesenen Vordersonden-Lambdasollwertes genau der zugehörige Vorgabe-Lambdasollwert ergibt. Weichen die Eigenschaften des Motors oder Sonden jedoch von den Eigenschaften der Teile ab, die beim Aufnehmen der Kennfelder Verwendung fanden, sei dies durch eine fertigungsbedingte Streuung oder sei es durch Alterung, gleicht das Integrationsmittel 15 die Abweichung aus. Für die wichtigsten Fehler, insbesondere für Abweichungen in den Sondeneigenschaften, ist der ausgleichende Integrationswert für alle Betriebspunkte gleich. Das Integrationsmittel 15 kann demgemäß auf eine sehr langsame Integrationsgeschwindigkeit gestellt werden. Schnell wechselnde Unterschiede von Betriebspunkt zu Betriebspunkt in der Differenz zwischen Lambdaistwert-Vorne und Lambdaistwert-Hinten werden durch die unterschiedlichen Lambdasollwerte aus den beiden Kennfeldern ausgeglichen. Langzeitänderungen oder Streuungsunterschiede werden durch den Ausgangswert des Integrationsmittels 15 behoben. Soll berücksichtigt werden, daß Alterungsänderungen oder Streuungsunterschiede betriebspunktabhängig sein können, kann dies dadurch erfolgen, daß die Werte im Vordersonden-Lambdasollwert-Kennfeld 22 adaptiv verändert werden. Dies ist in Fig. 3 dadurch angedeutet, daß das Ausgangssignal vom Integrator 15 auf das genannte Kennfeld einwirkt. Durch Ändern der Kennfeldwerte findet strukturelle Adaption statt. Ein Teil des Integrationswertes vom Integrationsmittel 15 kann zur globalen Adaption dienen. In bezug auf anwendbare Adaptionsverfahren wird nochmals auf die oben genannte Patentanmeldung verwiesen.The pre-probe lambda setpoints and the default lambda setpoints are recorded for all operating points using a measurement setup. The values are stored in the maps. If an engine used in practice exactly matches the engine with which the measurement was made and if this also applies to the lambda probes used, the integration means 15 never need to be integrated, since for each operating point the predefined lambda setpoint value is accurate for each operating point the associated default lambda setpoint results. Soak the characteristics of the engine or probes, however, on the properties of the parts that were used when recording the characteristic maps, be it due to manufacturing-related scattering or be it due to aging, the integration means 15 compensates for the deviation. For the most important errors, especially for deviations in the probe properties, the compensating integration value is the same for all operating points. The integration means 15 can accordingly be set to a very slow integration speed. Rapidly changing differences from operating point to operating point in the difference between the actual lambda value front and the actual lambda value rear are compensated for by the different lambda setpoints from the two maps. Long-term changes or differences in scatter are eliminated by the initial value of the integration means 15. If it is to be taken into account that changes in aging or differences in variation can be dependent on the operating point, this can be done by adaptively changing the values in the pre-probe lambda setpoint map 22. This is indicated in Fig. 3 by the fact that the output signal from the integrator 15 acts on the mentioned map. Structural adaptation takes place by changing the map values. A part of the integration value from the integration means 15 can be used for global adaptation. With regard to applicable adaptation methods, reference is again made to the above-mentioned patent application.

Die bisherigen Ausführungen galten für Mittel 16 zur Lambdaregelung mit Zweipunktverhalten, wie auch für solche mit stetigem Verhalten. Spezifiziert man die Betrachtung auf Mittel zur stetigen Lambdaregelung, ergibt sich noch ein weiterer Vorteil des beschriebenen Verfahrens. Es ist zu beachten, daß die Lambdawert-Spannungs-Kennlinie einer Lambdasonde in allen ihren Bereichen nichtlinear ist. Sie kann jedoch in verschiedenen Bereichen mit recht guter Genauigkeit linearisiert werden, z. B. in einem Bereich von etwa +/- 3 % um den Lambdawert 1. Mit Hilfe der linearisierten Kennlinie kann ein relativ einfaches Regelverfahren ausgeführt werden. Jedoch ergeben sich aufgrund der kleinen Unterschiede zwischen der tatsächlichen Kennlinie und der linearisierten Kennlinie geringe Abweichungen zwischen dem tatsächlichen Lambdawert und dem gemessenen Wert. Es wird dann geringfügig falsch geregelt. Auch diesen Fehler vermag das Integrationsmittel 15,entsprechend wie oben anhand des Kohlenwasserstoffehlers beschrieben, auszuregeln.The previous statements were valid for means 16 for lambda control with two-point behavior, as well as for those with constant behavior. If the consideration is specified for means for continuous lambda control, there is yet another advantage of the described method. It should be noted that the lambda value-voltage characteristic of a lambda probe is non-linear in all its areas. However, it can be linearized in various areas with fairly good accuracy, e.g. B. in a range of about +/- 3% around the lambda value 1. With the help of the linearized characteristic, a relatively simple control procedure can be carried out. However, due to the small differences between the actual characteristic curve and the linearized characteristic curve, there are slight deviations between the actual lambda value and the measured value. It is then slightly incorrectly regulated. The integration means 15 is also able to correct this error, as described above with reference to the hydrocarbon error.

Der eben beschriebene Linearisierungsfehler macht sich dann besonders negativ bemerkbar, wenn die Lambdasonde vorübergehend bei einer Temperatur betrieben wird, die relativ weit von derjenigen Temperatur entfernt liegt, für die die tatsächliche Kennlinie bestimmt wurde, von der ausgehend dann die Linearisierung vorgenommen wurde. Die Kennlinie ändert sich nämlich temperaturabhängig. Nun ist es jedoch so, daß die Änderungsgeschwindigkeit der Sondentemperatur niedriger ist als die Integrationsgeschwindigkeit des Integrationsmittels 15. Kommt es daher wegen der Kennlinienverschiebung zu einer Fehlmessung des Lambdaistwertes an der vorderen Lambdasonde 13.v, wird auch dieser Fehler mit Hilfe der hinteren Lambdasonde 13.h und des Integrationsmittels 15 ausgeglichen. Dies ist möglich, weil die Temperatur hinter dem Katalysator 12 deutlich weniger schwankt als vor ihm.The linearization error just described has a particularly negative effect if the lambda sensor is operated temporarily at a temperature that is relatively far from the temperature for which the actual characteristic curve was determined, from which the linearization was then carried out. The characteristic curve changes depending on the temperature. Now, however, the rate of change of the probe temperature is lower than the rate of integration of the integration means 15. If the actual lambda value is incorrectly measured on the front lambda probe 13.v due to the shift in the characteristic curve, this error is also eliminated with the aid of the rear lambda probe 13. h and the integration means 15 balanced. This is possible because the temperature behind the catalyst 12 fluctuates significantly less than in front of it.

Solange die Integration zugelassen ist, ist es von Vorteil, mit einer Geschwindigkeit zu integrieren, die der Differenz zwischen Lambdaistwert-Hinten und Lambdasollwert proportional ist. Dadurch verändert das Integrationsmittel 15 den Regel-Lambdasollwert für das Mittel 16 zur Lambdaregelung umso schneller, je weiter der Lambdaistwert-Hinten vom Lambdasollwert abweicht. Dadurch ist gewährleistet, daß möglichst schnell der gewünschte Lambdasollwert erreicht wird. Die Integrationsgeschwindigkeit darf jedoch nicht zu hoch werden, da, aufgrund der eingangs genannten Totzeit, ansonsten eine Regelschwingung aufgebaut werden könnte. Es empfiehlt sich also, die Integrationsgeschwindigkeit nach oben hin zu begrenzen. Einfacher ausführbar ist ein Verfahren, bei dem die Integrationsgeschwindigkeit dauernd gleich bleibt, unabhängig vom Wert der genannten Differenz. Diese Integrationsgeschwindigkeit wird möglichst hoch gewählt, jedoch nur so hoch, daß es auch im ungünstigsten Fall nicht zu Regelschwingungen mit unzulässig hoher Amplitude kommt.As long as the integration is permitted, it is advantageous to integrate at a speed that is proportional to the difference between the rear lambda actual value and the lambda setpoint. As a result, the integration means 15 changes the control lambda setpoint for the means 16 for lambda control the faster the further the actual lambda value deviates from the lambda setpoint. This ensures that the desired lambda setpoint is reached as quickly as possible. However, the speed of integration must not be too high, since, due to the dead time mentioned at the beginning, a control oscillation could otherwise be built up. It is therefore advisable to limit the integration speed upwards. A method in which the speed of integration remains constant regardless of the value of the difference mentioned is simpler to carry out. This integration speed is chosen to be as high as possible, but only so high that even in the worst case there are no control oscillations with an impermissibly high amplitude.

Bei allen bisher beschriebenen Ausführungsformen ist davon ausgegangen, daß der Unterschiedswert zwischen dem Lambdaistwert-Hinten und dem Vorgabe-Lambdasollwert dem Differenzwert zwischen diesen beiden Größen entspricht. Es reicht jedoch auch aus, lediglich festzustellen, ob der eine Wert größer ist als der andere oder nicht, und abhängig vom Vergleichsergebnis in der einen oder der anderen Richtung zu integrieren.In all the embodiments described so far, it is assumed that the difference between the actual lambda value rear and the preset lambda setpoint corresponds to the difference between these two variables. However, it is also sufficient to simply determine whether one value is greater than the other or not, and to integrate in one direction or the other, depending on the comparison result.

Claims (6)

  1. Method for lambda control, in which the lambda value of the air/fuel mixture to be fed to an internal combustion engine is controlled to a control set lambda value (λ set-R) with the aid of the front actual lambda value (λ act-v) measured by a lambda probe arranged upstream of a catalytic converter, and in which the rear actual lambda value (λ act-h) is measured by a second lambda probe downstream of the catalytic converter, in which method a differential value between the rear actual lambda value and a prespecified set lambda value (λ set-V) is formed, with which differential value an integration value is formed and the control set lambda value is formed as a function of the integration value and a further prespecified set lambda value (λ set-VS), characterised in that the prespecified set lambda values are varied as a function of the operating characteristic variables, one prespecified set lambda value (λ set-V) being, if appropriate, identical with the further prespecified set lambda value (λ set-VS).
  2. Method according to Claim 1, characterised in that the control set lambda value (λ set-R) is formed by adding the integration value to the prespecified set lambda value (λ set-V) (Fig. 2).
  3. Method according to Claim 1, characterised in that the control set lambda value (λ set-R) is formed by adding the integration value to a front-probe set lambda value (λ set-VS) (Fig. 3).
  4. Method according to one of Claims 1 to 3, characterised in that the integration values are used for adaptation.
  5. Device for lambda control having
    - a means (16, 1f4v) for lambda control to a control set lambda value (λ set-R), which means is fed, as an actual value, to the front actual lambda value (λ act-v) as it is measured by a lambda probe (13.v) to be arranged upstream of a catalytic converter (12),
    - a means (14.h) for forming a differential value between a prespecified set lambda value (λ set-V) and a rear actual lambda value (λ act-h) as it is measured by a lambda probe (13.h) to be arranged downstream of the catalytic converter,
    - a means (15) for integrating the differential value and
    - a means (15, 20) for forming the control set lambda value with the aid of the integration value
    characterised by a prespecified set lambda value characteristic diagram (19).
  6. Device according to Claim 5, characterised by a front-probe set lambda value characteristic diagram (22) and an addition means (20) which forms the control set lambda value from the respective integration value and the respective front-probe set lambda value (λ set-VS).
EP89903086A 1988-11-09 1989-03-17 A process and device for lambda control Expired - Lifetime EP0442873B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837984 1988-11-09
DE3837984A DE3837984A1 (en) 1987-11-10 1988-11-09 Method and device for lambda control

Publications (2)

Publication Number Publication Date
EP0442873A1 EP0442873A1 (en) 1991-08-28
EP0442873B1 true EP0442873B1 (en) 1993-08-18

Family

ID=6366804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903086A Expired - Lifetime EP0442873B1 (en) 1988-11-09 1989-03-17 A process and device for lambda control

Country Status (6)

Country Link
US (1) US5224345A (en)
EP (1) EP0442873B1 (en)
JP (1) JP3040411B2 (en)
KR (1) KR0137138B1 (en)
DE (1) DE58905338D1 (en)
WO (1) WO1990005240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833309A1 (en) * 2001-12-07 2003-06-13 Renault Double loop device for controlling the richness of the air-fuel mixture in an internal combustion engine to reduce oscillation and overshoot and to optimize catalyst efficiency

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001616C2 (en) * 1990-01-20 1998-12-10 Bosch Gmbh Robert Method and device for regulating the amount of fuel for an internal combustion engine with a catalyst
DE4140618A1 (en) * 1991-12-10 1993-06-17 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING THE CONVERSIBILITY OF A CATALYST
US5337555A (en) * 1991-12-13 1994-08-16 Mazda Motor Corporation Failure detection system for air-fuel ratio control system
IT1257100B (en) * 1992-09-14 1996-01-05 Fiat Auto Spa MONITORING SYSTEM OF THE EFFICIENCY OF A CATALYST, PARTICULARLY FOR VEHICLES.
US5363647A (en) * 1992-10-13 1994-11-15 Mitsubishi Denki Kabushiki Kaisha Dual-sensor type air fuel ratio control system for internal combustion engine and catalytic converter diagnosis apparatus for the same
US5255512A (en) * 1992-11-03 1993-10-26 Ford Motor Company Air fuel ratio feedback control
JPH06213042A (en) * 1992-12-21 1994-08-02 Ford Motor Co Exhaust gas sensor system for internal combustion engine and oxygen-level signal supply process
US5357751A (en) * 1993-04-08 1994-10-25 Ford Motor Company Air/fuel control system providing catalytic monitoring
US5359852A (en) * 1993-09-07 1994-11-01 Ford Motor Company Air fuel ratio feedback control
US5381656A (en) * 1993-09-27 1995-01-17 Ford Motor Company Engine air/fuel control system with catalytic converter monitoring
US5386693A (en) * 1993-09-27 1995-02-07 Ford Motor Company Engine air/fuel control system with catalytic converter monitoring
US5404718A (en) * 1993-09-27 1995-04-11 Ford Motor Company Engine control system
US5363646A (en) * 1993-09-27 1994-11-15 Ford Motor Company Engine air/fuel control system with catalytic converter monitoring
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE19606652B4 (en) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter
DE19636226B4 (en) * 1996-09-06 2005-06-02 Robert Bosch Gmbh Lambda probe internal resistance determination
US6438944B1 (en) * 2000-03-17 2002-08-27 Ford Global Technologies, Inc. Method and apparatus for optimizing purge fuel for purging emissions control device
DE10330092A1 (en) * 2003-07-03 2005-01-27 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102004050092B3 (en) 2004-10-14 2006-04-13 Siemens Ag Method for controlling the lambda value of an internal combustion engine
DE102004060125B4 (en) * 2004-12-13 2007-11-08 Audi Ag Method for controlling the loading and unloading of the oxygen storage of an exhaust gas catalytic converter
EP1990525B1 (en) 2007-05-07 2013-07-10 Volvo Car Corporation An engine system and method for adjustment in air/fuel ratio control in an engine system
US7958866B2 (en) * 2008-05-16 2011-06-14 Cummins Intellectual Properties, Inc. Method and system for closed loop lambda control of a gaseous fueled internal combustion engine
DE102012211683B4 (en) * 2012-07-05 2024-03-21 Robert Bosch Gmbh Method and device for correcting a characteristic curve of a two-point lambda sensor
DE102013017754A1 (en) * 2013-10-24 2015-04-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Control means and method for operating an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939654A (en) * 1975-02-11 1976-02-24 General Motors Corporation Engine with dual sensor closed loop fuel control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537562A (en) 1978-09-08 1980-03-15 Nippon Denso Co Ltd Air-fuel ratio control system
US4235204A (en) * 1979-04-02 1980-11-25 General Motors Corporation Fuel control with learning capability for motor vehicle combustion engine
JPS6161944A (en) * 1984-09-03 1986-03-29 Toyota Motor Corp Air-fuel ratio controller
US4729219A (en) * 1985-04-03 1988-03-08 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
DE3603137C2 (en) * 1986-02-01 1994-06-01 Bosch Gmbh Robert Method and device for controlling / regulating operating parameters of an internal combustion engine
JPS62251439A (en) * 1986-04-25 1987-11-02 Mazda Motor Corp Fuel supply controller of engine
JP2570265B2 (en) * 1986-07-26 1997-01-08 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JPS63295831A (en) * 1987-05-25 1988-12-02 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
DE3816558A1 (en) * 1988-05-14 1989-11-16 Bosch Gmbh Robert METHOD AND DEVICE FOR LAMB CONTROL

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939654A (en) * 1975-02-11 1976-02-24 General Motors Corporation Engine with dual sensor closed loop fuel control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833309A1 (en) * 2001-12-07 2003-06-13 Renault Double loop device for controlling the richness of the air-fuel mixture in an internal combustion engine to reduce oscillation and overshoot and to optimize catalyst efficiency

Also Published As

Publication number Publication date
JPH04501447A (en) 1992-03-12
EP0442873A1 (en) 1991-08-28
DE58905338D1 (en) 1993-09-23
US5224345A (en) 1993-07-06
WO1990005240A1 (en) 1990-05-17
KR900702202A (en) 1990-12-06
KR0137138B1 (en) 1998-04-25
JP3040411B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
EP0442873B1 (en) A process and device for lambda control
DE3837984A1 (en) Method and device for lambda control
DE4128718C2 (en) Method and device for regulating the amount of fuel for an internal combustion engine with a catalyst
DE19606652B4 (en) Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter
DE2758319C2 (en) Device for controlling the air/fuel ratio of an internal combustion engine equipped with an exhaust gas sensor
DE3823277C2 (en)
DE2633617A1 (en) METHOD AND DEVICE FOR DETERMINING SETTING SIZES IN A FUEL MACHINE
EP0481975B1 (en) Process and device for lambda value control
DE3500594A1 (en) Metering system for an internal combustion engine for influencing the operating mixture
DE19711295A1 (en) System for determining deterioration in exhaust gas catalytic converter
DE4207541B4 (en) System for controlling an internal combustion engine
DE2648478C2 (en) Method and device for regulating the air / fuel ratio of an internal combustion engine equipped with an exhaust gas sensor
DE4035731A1 (en) FUEL CONCENTRATION MONITORING UNIT
DE4102056A1 (en) CONTROL SYSTEM FOR THE AIR / FUEL RATIO OF THE DOUBLE SENSOR TYPE FOR AN INTERNAL COMBUSTION ENGINE
DE102018251720A1 (en) Method for determining a maximum storage capacity of an exhaust gas component storage device of a catalytic converter
DE4192104C1 (en) Controlling air-fuel ratio in internal combustion engine
DE3704691C2 (en)
DE2941753C2 (en)
DE102005038492B4 (en) Method and device for determining the offset of a calculated or measured lambda value
DE4024212C2 (en) Process for the constant lambda control of an internal combustion engine with a catalyst
DE102006061682A1 (en) Lambda regulation pilot-control method for use during e.g. nitrogen oxide-storage catalyst, involves adjusting pilot controlled injection amount and/or air mass stream-reference value by transfer factor
DE4433464C2 (en) Control system for engine air / fuel operation according to the efficiency window of a catalytic converter
DE3713791A1 (en) METHOD FOR REGULATING THE AIR / FUEL RATIO OF THE FUEL MIXTURE DELIVERED TO AN INTERNAL COMBUSTION ENGINE
EP0414684A1 (en) Control and regulating system for internal combustion engines.
DE4112480C2 (en) Method and device for determining the aging condition of a catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930817

REF Corresponds to:

Ref document number: 58905338

Country of ref document: DE

Date of ref document: 19930923

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030227

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040317

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060322

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080526

Year of fee payment: 20