EP0440275A1 - Process for making monotectic alloys - Google Patents

Process for making monotectic alloys Download PDF

Info

Publication number
EP0440275A1
EP0440275A1 EP91200062A EP91200062A EP0440275A1 EP 0440275 A1 EP0440275 A1 EP 0440275A1 EP 91200062 A EP91200062 A EP 91200062A EP 91200062 A EP91200062 A EP 91200062A EP 0440275 A1 EP0440275 A1 EP 0440275A1
Authority
EP
European Patent Office
Prior art keywords
weight
melt
alloys
lead
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91200062A
Other languages
German (de)
French (fr)
Other versions
EP0440275B1 (en
Inventor
Bruno Dr. Prinz
Alberto Romero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0440275A1 publication Critical patent/EP0440275A1/en
Application granted granted Critical
Publication of EP0440275B1 publication Critical patent/EP0440275B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to a process for producing monotectic alloys with a comparatively large mixture gap in the liquid state and, after solidification, a minority phase present in droplet form and having a greater density than the matrix itself, by continuous casting of a melt heated to a temperature above the separation temperature high pouring and cooling speed.
  • a sufficiently uniform dispersion of the droplets in the matrix can therefore only be obtained with relatively low contents of the dispersed phase and / or by extremely rapid cooling.
  • Z. Russ. Met. 1979 (1), pp. 88-93 (in English) provided aluminum alloys with up to 33% lead or up to 10% bismuth at 200 to 250 ° C above the solidus isotherms and 150 to 200 ° C above the Heat segregation isotherms and the droplets of atomized under the action of centrifugal force Spray the melt in less than 0.1 s in water, whereby a cooling rate of 103 to 104 K / s is achieved.
  • the minority phase is finely dispersed in the droplets.
  • GB-A-2 182 876 describes a strip casting process for the production of binary alloys, for example aluminum lead alloys, copper lead alloys and copper indium alloys, in which the alloy which is completely dissolved in the molten state has a cooling rate of 105 to 106 K / s is poured. In this way, a uniform dispersion of the fine-grained lead or indium particles in the aluminum or copper matrix is achieved. With this method, only very thin cast strips with a thickness of ⁇ 1.0 mm can be produced, which are, however, not suitable for further processing, for example by plating on steel.
  • US-A-4 198 232 is concerned with the manufacture of a monotectic alloy by doping molten aluminum or zinc alloys containing bismuth and lead with a transition metal, preferably iron, to destroy and inject the liquid-solid intermediate layer of the system Form cell structure with directional solidification at given temperature gradients and low solidification speed.
  • a transition metal preferably iron
  • a molten aluminum bearing alloy with 4% by weight of lead which may possibly contain up to a total of 10% of other components, is applied to the water-cooled surface in a layer thickness of 1 to 5 mm of the steel strip of a rotary belt casting machine, so that the melt, which is at a temperature of more than 900 ° C., is cooled to a solidification temperature of approximately 650 ° C. in less than 0.1 s.
  • lead particles with a size of 50 ⁇ m should be evenly distributed in the aluminum matrix. Due to technical difficulties, especially with the Cooling the cast belt, this method has not found its way into practice. With strip thicknesses of> 1 mm, sedimentation and coagulation of the minority phase cannot be sufficiently avoided.
  • the melt is cast vertically into a strip or wire of 5 to 20 mm in thickness or diameter.
  • the withdrawal direction of the strand thus coincides with the direction of gravity sedimentation of the heavier minority phase. If the cooling and solidification speed is sufficiently high, a very steep temperature gradient is maintained in front of the solid / liquid phase boundary, so that the distance between the separation and solidus isotherms within the system and thus the sedimentation distance is as short as possible.
  • the temperature or path interval for the sedimentation of the droplets of the minority phase is given by the isotherms of the segregation temperature and the temperature of the monotectic reaction at which the matrix phase solidifies and thereby includes the second still liquid phase in the distribution then present.
  • the dispersed droplets in the minority phase are subject to Marangoni convection, that of Stokes sedimentation counteracts. Since the Marangoni convection takes place in the direction of the temperature gradient and the cooling only acts from the surface of the belt, the Marangoni convection is partly directed inwards in the areas of the belt near the surface, so that in the areas near the surface there is a depletion of the minority phase. which advantageously increases the stability of the edge shell and facilitates subsequent processing steps such as forming, plating or heat treatment.
  • the alloy melt is cast at a constant speed of 10 to 30 mm / s, preferably 15 to 25 mm / s, the cooling rate being 300 to 1500 K / s, preferably 500 to, according to a further feature of the invention 1000 K / s.
  • the method according to the invention is particularly suitable for the production of slide bearing materials made of aluminum alloys, which contain one or more of the components 1 to 50% by weight, preferably 5 to 30% by weight of lead, 3 to 50% by weight, preferably 5 to 30% by weight.
  • suitable zinc alloys with one or both of the components 1 to 30% by weight, preferably 5 to 20% by weight bismuth and 1 to 30% by weight lead, and additionally containing one or both of the components can be used as slide bearing materials Produce 0.001 to 50 wt .-%, preferably 0.001 to 0.2 wt .-% or 6 to 50 wt .-% aluminum and 0.1 to 5 wt .-% copper.
  • the method according to the invention can also be used to produce copper alloys with 1 to 60% by weight, preferably 12 to 50% by weight, lead.
  • the method according to the invention is also suitable for producing alloys which can be used as materials for special electrical conductors and for electrical contacts.
  • a device in which the melt template is directly supplied with a strongly cooled, vertically arranged mold via a pouring nozzle made of ceramic material with a reduced cross section compared to the casting format, which, following a short metallic cooling surface, acts on the casting strand is provided by water.
  • a casting device constructed in this way ensures a uniform melt flow within the entire casting strand.
  • the thermal separation between the hot feed system and the short mold followed by secondary water cooling allows the strand to be strongly cooled, resulting in a very large temperature gradient in front of the solidification front and one rapid growth of the solidified strand shell directly behind the pouring nozzle.
  • An aluminum alloy melt with 5% bismuth and 5% silicon and a temperature of> 1000 ° C is cast at a speed of 800 mm / min. Due to the arrangement of the melt supply (1), the pouring nozzle (2) and the mold (3) with the cooling water supply (4) for the mold cooling before the start of casting and the cooling water supply (5) to the cooling grooves (6) for the direct cooling of the strip ( 7) a temperature gradient before the solidification front of 500 K / cm and a cooling rate of a certain melt volume of about 700 K / s are achieved.
  • the structure of the 10 mm thick cast strip is sufficiently uniform over the entire strip length, as shown in FIG. 2. The marginal areas depleted as a result of the Marangoni convection on the minority phase are clearly recognizable.

Abstract

In a process for making monotectic alloys with a relatively large miscibility gap in the molten condition and a minority phase embedded in the matrix after solidification, having a higher density than the matrix itself and being present in droplet form, the melt, which is heated to a temperature above the segregation temperature, is continuously cast at a high casting and cooling rate. In order to obtain sufficient dispersion of the minority phase, the melt is cast vertically. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Herstellung monotektischer Legierungen mit im flüssigen Zustand vergleichsweise großer Mischungslücke und nach Erstarrung in der Matrix eingelagerter, eine größere Dichte als die Matrix selbst aufweisender, in Tröpfchenform vorliegender Minoritätsphase, durch Stranggießen einer auf eine Temperatur oberhalb der Entmischungstemperatur erhitzten Schmelze mit großer Gieß- und Abkühlgeschwindigkeit.The invention relates to a process for producing monotectic alloys with a comparatively large mixture gap in the liquid state and, after solidification, a minority phase present in droplet form and having a greater density than the matrix itself, by continuous casting of a melt heated to a temperature above the separation temperature high pouring and cooling speed.

Bei auf Temperaturen oberhalb der Entmischungstemperatur erhitzten Schmelzen monotektischer Legierungen mit großen Dichteunterschieden der entmischten flüssigen Phasen und großen Entmischungs-Temperaturintervallen kommt es bei Temperaturen im Bereich der Mischungslücke infolge der Schwerkraft zur Sedimentation und Koagulation der vergleichsweise schwereren, Tröpfchenform besitzenden Minoritätsphase. Die Sedimentationsgeschwindigkeit ist entsprechend dem Stokes'schen Gesetz proportional dem Quadrat der Tröpfchendurchmesser. Unterschiedliche Tröpfchendurchmesser fördern daher die Häufigkeit von Tröpfchenkollisionen und Tröpfchenverschmelzungen und beschleunigen dadurch zusätzlich die Sedimentation. Unter Schwerkraftbedingungen kann eine Sedimentation der Tröpfchen bisher in der Praxis grundsätzlich nicht verhindert werden.In the case of melts of monotectic alloys heated to temperatures above the segregation temperature with large differences in density of the segregated liquid phases and large segregation temperature intervals, temperatures in the region of the mixture gap due to gravity lead to sedimentation and coagulation of the comparatively heavier, droplet-shaped minor phase. According to Stokes law, the sedimentation rate is proportional to the square of the droplet diameter. Different droplet diameters therefore promote the frequency of droplet collisions and droplet mergers and thereby additionally accelerate sedimentation. In principle, sedimentation of the droplets has so far not been prevented under gravity conditions.

Eine hinreichend gleichmäßige Dispersion der Tröpfchen in der Matrix kann daher nur bei relativ geringen Gehalten an dispergierter Phase und/oder durch extrem rasche Abkühlung erhalten werden. Zu diesem Zweck ist aus Z. Russ. Met. 1979 (1), S. 88-93 (in English) vorgesehen, Aluminiumlegierungen mit bis zu 33 % Blei oder bis zu 10 % Wismut auf 200 bis 250°C über der Solidus-Isothermen und 150 bis 200°C über der Entmischungs-Isothermen zu erhitzen und die Tröpfchen der unter der Einwirkung der Zentrifugalkraft zerstäubten Schmelze in weniger als 0,1 s in Wasser einzusprühen, wobei eine Abkühlgeschwindigkeit von 10³ bis 10⁴ K/s erzielt wird. In den Tröpfchen ist die Minoritätsphase fein dispergiert. In der GB-A-2 182 876 ist ein Bandgießverfahren zur Herstellung binärer Legierungen, beispielsweise Aluminium-Bleilegierungen, Kupfer-Bleilegierungen und Kupfer-Indiumlegierungen, beschrieben, bei dem die im geschmolzenen Zustand vollkommen gelöste Legierung mit einer Abkühlgeschwindigkeit von 10⁵ bis 10⁶ K/s gegossen wird. Auf diese Weise wird eine gleichmäßige Dispersion der feinkörnigen Blei- bzw. Indiumpartikel in der Aluminium- bzw. Kupfermatrix erreicht. Mit diesem Verfahren lassen sich nur sehr dünne Gußbänder mit Dicken von < 1,0 mm erzeugen, die jedoch zur Weiterverarbeitung, z.B. durch Plattieren auf Stahl, nicht geeignet sind. Die US-A-4 198 232 befaßt sich mit der Herstellung einer monotektischen Legierung, indem geschmolzene, Wismut und Blei enthaltende Aluminium- oder Zinklegierungen mit einem Übergangsmetall, vorzugsweise Eisen, dotiert werden, um die flüssig-feste Zwischenschicht des Systems zu zerstören und ein Zellgefüge mit gerichteter Erstarrung bei vorgegebenen Temperaturgradienten und geringer Erstarrungsgeschwindigkeit auszubilden. Bei diesem Verfahren sollen die sphärisch geformten Partikel der Minoritätsphase in der Matrix gleichmäßig dispergiert sein. Dieses Verfahren hat keine praktische Bedeutung erlangt. Bei dem Gießverfahren nach der WO-A-87/04377 wird eine geschmolzene Aluminiumlagerlegierung mit 4 Gew.-% Blei, die ggf. noch bis zu insgesamt 10 % anderer Komponenten enthalten kann, in einer Schichtdicke von 1 bis 5 mm auf die wassergekühlte Oberfläche des Stahlbandes einer Rotary-Bandgießmaschine aufgegossen, so daß in weniger als 0,1 s die auf einer Temperatur von mehr als 900°C befindliche Schmelze auf eine Erstarrungstemperatur von etwa 650°C abgekühlt wird. Auf diese Weise sollen sich Bleipartikel mit einer Größe von 50 µm gleichmäßig in der Aluminiummatrix verteilen lassen. Bedingt durch anlagentechnische Schwierigkeiten, insbesondere bei der Kühlung des Gußbandes, hat dieses Verfahren keinen Eingang in die Praxis gefunden. Bei Banddicken von > 1 mm können Sedimentation und Koagulation der Minoritätsphase nicht ausreichend vermieden werden.A sufficiently uniform dispersion of the droplets in the matrix can therefore only be obtained with relatively low contents of the dispersed phase and / or by extremely rapid cooling. For this purpose Z. Russ. Met. 1979 (1), pp. 88-93 (in English) provided aluminum alloys with up to 33% lead or up to 10% bismuth at 200 to 250 ° C above the solidus isotherms and 150 to 200 ° C above the Heat segregation isotherms and the droplets of atomized under the action of centrifugal force Spray the melt in less than 0.1 s in water, whereby a cooling rate of 10³ to 10⁴ K / s is achieved. The minority phase is finely dispersed in the droplets. GB-A-2 182 876 describes a strip casting process for the production of binary alloys, for example aluminum lead alloys, copper lead alloys and copper indium alloys, in which the alloy which is completely dissolved in the molten state has a cooling rate of 10⁵ to 10⁶ K / s is poured. In this way, a uniform dispersion of the fine-grained lead or indium particles in the aluminum or copper matrix is achieved. With this method, only very thin cast strips with a thickness of <1.0 mm can be produced, which are, however, not suitable for further processing, for example by plating on steel. US-A-4 198 232 is concerned with the manufacture of a monotectic alloy by doping molten aluminum or zinc alloys containing bismuth and lead with a transition metal, preferably iron, to destroy and inject the liquid-solid intermediate layer of the system Form cell structure with directional solidification at given temperature gradients and low solidification speed. In this method, the spherically shaped particles of the minority phase should be uniformly dispersed in the matrix. This method has no practical importance. In the casting process according to WO-A-87/04377, a molten aluminum bearing alloy with 4% by weight of lead, which may possibly contain up to a total of 10% of other components, is applied to the water-cooled surface in a layer thickness of 1 to 5 mm of the steel strip of a rotary belt casting machine, so that the melt, which is at a temperature of more than 900 ° C., is cooled to a solidification temperature of approximately 650 ° C. in less than 0.1 s. In this way, lead particles with a size of 50 µm should be evenly distributed in the aluminum matrix. Due to technical difficulties, especially with the Cooling the cast belt, this method has not found its way into practice. With strip thicknesses of> 1 mm, sedimentation and coagulation of the minority phase cannot be sufficiently avoided.

Die vorstehend beschriebenen Verfahren haben jedoch bisher keine praktische Bedeutung erlangt, da die bei der Entmischung und Erstarrung der Legierungsschmelze ablaufenden komplexen Vorgänge nicht in ausreichendem Maße beherrschbar sind.However, the processes described above have not gained any practical importance so far, since the complex processes involved in the segregation and solidification of the alloy melt cannot be adequately controlled.

Es ist die Aufgabe vorliegender Erfindung, das eingangs beschriebene Stranggießverfahren so zu gestalten, daß die in der Matrix dispergierten Tröpfchen der Minoritätsphase eine möglichst kleine Größe und kugelige Form besitzen und hinreichend gleichmäßig in der Matrix verteilt sind.It is the object of the present invention to design the continuous casting process described in the introduction in such a way that the droplets of the minority phase dispersed in the matrix have the smallest possible size and spherical shape and are distributed sufficiently uniformly in the matrix.

Die Lösung dieser Aufgabe erfolgt dadurch, daß die Schmelze vertikal zu einem Band oder Draht von 5 bis 20 mm Dicke bzw. Durchmesser gegossen wird. Damit stimmt die Abzugsrichtung des Strangs mit der Richtung der Schwerkraft-Sedimentation der schwereren Minoritätsphase überein. Bei ausreichend großer Abkühl- und Erstarrungsgeschwindigkeit wird vor der Phasengrenze fest/flüssig ein sehr steiler Temperaturgradient aufrechterhalten, so daß der Abstand zwischen der Entmischungs- und der Solidus-Isothermen innerhalb des Systems und damit die Sedimentationsstrecke möglichst kurz ist. Das Temperatur- bzw. Wegintervall für die Sedimentation der Tröpfchen der Minoritätsphase ist gegeben durch die Isothermen der Entmischungstemperatur und die Temperatur der monotektischen Reaktion, bei welcher die Matrixphase erstarrt und dabei die zweite noch flüssige Phase in der dann vorliegenden Verteilung einschließt.This object is achieved in that the melt is cast vertically into a strip or wire of 5 to 20 mm in thickness or diameter. The withdrawal direction of the strand thus coincides with the direction of gravity sedimentation of the heavier minority phase. If the cooling and solidification speed is sufficiently high, a very steep temperature gradient is maintained in front of the solid / liquid phase boundary, so that the distance between the separation and solidus isotherms within the system and thus the sedimentation distance is as short as possible. The temperature or path interval for the sedimentation of the droplets of the minority phase is given by the isotherms of the segregation temperature and the temperature of the monotectic reaction at which the matrix phase solidifies and thereby includes the second still liquid phase in the distribution then present.

Infolge der großen Temperaturgradienten unterliegen dabei die dispergierten Tröpfchen der Minoritätsphase einer Marangoni-Konvektion, die der Stokes'schen Sedimentation entgegenwirkt. Da die Marangoni-Konvektion in Richtung des Temperaturgradienten erfolgt und die Kühlung nur von der Oberfläche des Bandes her wirkt, ist in den oberflächennahen Bereichen des Bandes die Marangoni-Kovektion teilweise nach innen gerichtet, so daß in den oberflächennahen Bereichen eine Verarmung an Minoritätsphase erfolgt, wodurch in vorteilhafter Weise die Stabilität der Randschale erhöht sowie anschließende Verarbeitungsschritte, wie Umformen, Plattieren oder Wärmebehandlung, erleichtert werden.As a result of the large temperature gradients, the dispersed droplets in the minority phase are subject to Marangoni convection, that of Stokes sedimentation counteracts. Since the Marangoni convection takes place in the direction of the temperature gradient and the cooling only acts from the surface of the belt, the Marangoni convection is partly directed inwards in the areas of the belt near the surface, so that in the areas near the surface there is a depletion of the minority phase. which advantageously increases the stability of the edge shell and facilitates subsequent processing steps such as forming, plating or heat treatment.

Im Rahmen der vorzugsweisen Ausbildung des erfindungsgemäßen Verfahrens wird die Legierungsschmelze mit einer konstanten Geschwindigkeit von 10 bis 30 mm/s, vorzugsweise 15 bis 25 mm/s, gegossen, wobei nach einem weiteren Erfindungsmerkmal die Abkühlgeschwindigkeit 300 bis 1500 K/s, vorzugsweise 500 bis 1000 K/s, beträgt.As part of the preferred embodiment of the method according to the invention, the alloy melt is cast at a constant speed of 10 to 30 mm / s, preferably 15 to 25 mm / s, the cooling rate being 300 to 1500 K / s, preferably 500 to, according to a further feature of the invention 1000 K / s.

Diese Verfahrensmaßnahmen erlauben es, bezüglich der Erstarrung und des dabei entstehenden Gefüges einen stationären Zustand einzustellen und über einen langen Zeitraum aufrechtzuerhalten.These procedural measures make it possible to set a steady state with regard to the solidification and the resulting structure and to maintain it over a long period of time.

Im Gegensatz zu den binären monotektischen Legierungen tritt bei ternären Systemen die Behinderung der Sedimentations- und Koagulationsvorgänge mit dem Einsetzen der dendritischen Primärkristallisation ein, da hierbei bereits durch eine vergleichsweise kleine Kristallfraktion das Schmelzevolumen schwammartig in eine Vielzahl Mikrovolumina aufgeteilt wird, zwischen denen ein Transport der Phasen behindert wird.In contrast to binary monotectic alloys, in the case of ternary systems the sedimentation and coagulation processes are impeded by the onset of dendritic primary crystallization, since a comparatively small crystal fraction divides the melt volume into a large number of microvolumes, between which the phases are transported is hindered.

Das erfindungsgemäße Verfahren ist insbesondere zur Herstellung von Gleitlagerwerkstoffen aus Aluminiumlegierungen, die eine oder mehrere der Komponenten 1 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Blei, 3 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Wismut und 15 bis 50 Gew.-% Indium sowie zusätzlich eine oder mehrere der Komponenten 0,1 bis 20 Gew.-% Silizium, 0,1 bis 20 Gew.-% Zinn, 0,1 bis 10 Gew.-% Zink, 0,1 bis 5 Gew.-% Magnesium, 0,1 bis 5 Gew.-% Kupfer, 0,05 bis 3 Gew.-% Eisen, 0,05 bis 3 Gew.-% Mangan, 0,05 bis 3 Gew.-% Nickel und 0,001 bis 0,30 Gew.-% Titan enthalten, geeignet.The method according to the invention is particularly suitable for the production of slide bearing materials made of aluminum alloys, which contain one or more of the components 1 to 50% by weight, preferably 5 to 30% by weight of lead, 3 to 50% by weight, preferably 5 to 30% by weight. % Bismuth and 15 to 50% by weight indium and additionally one or more of the components 0.1 to 20% by weight silicon, 0.1 to 20% by weight Tin, 0.1 to 10 wt% zinc, 0.1 to 5 wt% magnesium, 0.1 to 5 wt% copper, 0.05 to 3 wt% iron, 0.05 to Contain 3% by weight of manganese, 0.05 to 3% by weight of nickel and 0.001 to 0.30% by weight of titanium.

Ebenso lassen sich durch das Verfahren als Gleitlagerwerkstoffe geeignete Zinklegierungen mit einer oder beiden der Komponenten 1 bis 30 Gew.-%, vorzugsweise 5 bis 20 Gew.-% Wismut und 1 bis 30 Gew.-% Blei sowie zusätzlich enthaltend eine oder beide der Komponenten 0,001 bis 50 Gew.-%, vorzugsweise 0,001 bis 0,2 Gew.-% oder 6 bis 50 Gew.-% Aluminium und 0,1 bis 5 Gew.-% Kupfer herstellen.Likewise, suitable zinc alloys with one or both of the components 1 to 30% by weight, preferably 5 to 20% by weight bismuth and 1 to 30% by weight lead, and additionally containing one or both of the components, can be used as slide bearing materials Produce 0.001 to 50 wt .-%, preferably 0.001 to 0.2 wt .-% or 6 to 50 wt .-% aluminum and 0.1 to 5 wt .-% copper.

Mit dem erfindungsgemäßen Verfahren lassen sich auch Kupferlegierungen mit 1 bis 60 Gew.-%, vorzugsweise 12 bis 50 Gew.-% Blei erzeugen.The method according to the invention can also be used to produce copper alloys with 1 to 60% by weight, preferably 12 to 50% by weight, lead.

Das erfindungsgemäße Verfahren ist auch zur Herstellung von solchen Legierungen geeignet, die als Werkstoffe für besondere elektrische Leiter und für elektrische Kontakte einsetzbar sind.The method according to the invention is also suitable for producing alloys which can be used as materials for special electrical conductors and for electrical contacts.

Zur Durchführung des erfindungsgemäßen Stranggießverfahrens wird eine Vorrichtung benutzt, bei der die Schmelzevorlage über eine aus keramischem Werkstoff bestehende Gießdüse mit gegenüber dem Gußformat verringertem Querschnitt unmittelbar mit einer stark gekühlten, senkrecht angeordneten Kokille, die im Anschluß an eine kurze metallische Kühlfläche mit einer Beaufschlagung des Gußstrangs durch Wasser versehen ist, verbunden ist. Eine derartig aufgebaute Gießvorrichtung sichert einen gleichmäßigen Schmelzezufluß innerhalb des gesamten Gußstrangs. Die thermische Trennung zwischen dem heißen Zulaufsystem und der kurzen Kokille mit anschließender Wassersekundärkühlung gestattet eine starke Kühlung des Strangs mit der Folge eines sehr großen Temperaturgradienten vor der Erstarrungsfront und eines raschen Wachstums der erstarrten Strangschale direkt hinter der Gießdüse.To carry out the continuous casting process according to the invention, a device is used in which the melt template is directly supplied with a strongly cooled, vertically arranged mold via a pouring nozzle made of ceramic material with a reduced cross section compared to the casting format, which, following a short metallic cooling surface, acts on the casting strand is provided by water. A casting device constructed in this way ensures a uniform melt flow within the entire casting strand. The thermal separation between the hot feed system and the short mold followed by secondary water cooling allows the strand to be strongly cooled, resulting in a very large temperature gradient in front of the solidification front and one rapid growth of the solidified strand shell directly behind the pouring nozzle.

Die Erfindung ist im folgenden anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:

Fig. 1
einen Schnitt durch die Stranggießvorrichtung und
Fig. 2
eine photographische Aufnahme eines gegossenen Bandes einer ternären monotektischen Aluminiumlegierung in einer Vergrößerung von 1 zu 10.
The invention is explained in more detail below using an exemplary embodiment. Show it:
Fig. 1
a section through the continuous caster and
Fig. 2
a photograph of a cast tape of a ternary monotectic aluminum alloy in a magnification of 1 to 10.

Eine Aluminiumlegierungsschmelze mit 5 % Wismut und 5 % Silizium und einer Temperatur von > 1000°C wird mit einer Geschwindigkeit von 800 mm/min vergossen. Aufgrund der Anordnung der Schmelzevorlage (1), der Gießdüse (2) und der Kokille (3) mit der Kühlwasserzuführung (4) für die Kokillenkühlung vor Gießbeginn und der Kühlwasserzuführung (5) zu den Kühlnuten (6) für die direkte Kühlung des Bandes (7) werden ein Temperaturgradient vor der Erstarrungsfront von 500 K/cm und eine Abkühlgeschwindigkeit eines bestimmten Schmelzevolumens von etwa 700 K/s erreicht. Das Gefüge des 10 mm dicken Gußbandes ist über die gesamte Bandlänge ausreichend gleichmäßig, wie Fig. 2 zeigt. Deutlich erkennbar sind die infolge der Marangoni-Konvektion an Minoritätsphase verarmten Randbereiche erkennbar.An aluminum alloy melt with 5% bismuth and 5% silicon and a temperature of> 1000 ° C is cast at a speed of 800 mm / min. Due to the arrangement of the melt supply (1), the pouring nozzle (2) and the mold (3) with the cooling water supply (4) for the mold cooling before the start of casting and the cooling water supply (5) to the cooling grooves (6) for the direct cooling of the strip ( 7) a temperature gradient before the solidification front of 500 K / cm and a cooling rate of a certain melt volume of about 700 K / s are achieved. The structure of the 10 mm thick cast strip is sufficiently uniform over the entire strip length, as shown in FIG. 2. The marginal areas depleted as a result of the Marangoni convection on the minority phase are clearly recognizable.

Claims (7)

Verfahren zur Herstellung monotektischer Legierungen mit im flüssigen Zustand vergleichsweise großer Mischungslücke und nach Erstarrung in der Matrix eingelagerter, eine größere Dichte als die Matrix selbst aufweisender, in Tröpfchenform vorliegender Minoritätsphase, durch Stranggießen einer auf eine Temperatur oberhalb der Entmischungstemperatur erhitzten Schmelze mit großer Gieß- und Abkühlgeschwindigkeit, dadurch gekennzeichnet, daß die Schmelze vertikal zu einem Band oder Draht von 5 bis 20 mm Dicke bzw. Durchmesser gegossen wird.Process for the production of monotectic alloys with a comparatively large miscibility gap in the liquid state and, after solidification, a minority phase present in droplet form and having a greater density than the matrix itself, by continuous casting of a melt heated to a temperature above the segregation temperature with a large casting and Cooling rate, characterized in that the melt is cast vertically into a strip or wire of 5 to 20 mm in thickness or diameter. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schmelze mit einer konstanten Geschwindigkeit von 10 bis 30 mm/s, vorzugsweise 15 bis 25 mm/s, gegossen wird.A method according to claim 1, characterized in that the melt is poured at a constant speed of 10 to 30 mm / s, preferably 15 to 25 mm / s. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Schmelze mit einer Abkühlgeschwindigkeit von 300 bis 1500 K/s, vorzugsweise 500 bis 1000 K/s, gegossen wird.Process according to claims 1 and 2, characterized in that the melt is poured at a cooling rate of 300 to 1500 K / s, preferably 500 to 1000 K / s. Anwendung des Verfahrens nach den Ansprüchen 1 bis 3 auf Aluminiumlegierungen, die eine oder mehrere der Komponenten 1 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Blei, 3 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Wismut und 15 bis 50 Gew.-% Indium sowie zusätzlich eine oder mehrere der Komponenten 0,1 bis 20 Gew.-% Silizium, 0,1 bis 20 Gew.-% Zinn, 0,1 bis 10 Gew.-% Zink, 0,1 bis 5 Gew.-% Magnesium, 0,1 bis 5 Gew.-% Kupfer, 0,05 bis 3 Gew.-% Eisen, 0,05 bis 3 Gew.-% Mangan, 0,05 bis 3 Gew.-% Nickel und 0,001 bis 0,30 Gew.-% Titan enthalten, zur Herstellung von Gleitlagerwerkstoffen.Application of the process according to Claims 1 to 3 to aluminum alloys which contain one or more of the components 1 to 50% by weight, preferably 5 to 30% by weight of lead, 3 to 50% by weight, preferably 5 to 30% by weight. % Bismuth and 15 to 50% by weight indium and additionally one or more of the components 0.1 to 20% by weight silicon, 0.1 to 20% by weight tin, 0.1 to 10% by weight Zinc, 0.1 to 5 wt% magnesium, 0.1 to 5 wt% copper, 0.05 to 3 wt% iron, 0.05 to 3 wt% manganese, 0.05 to Contain 3% by weight of nickel and 0.001 to 0.30% by weight of titanium for the production of plain bearing materials. Anwendung des Verfahrens nach den Ansprüchen 1 bis 3 auf Zinklegierungen, die eine oder beide der Komponenten 1 bis 30 Gew.-%, vorzugsweise 5 bis 20 Gew.-% Wismut und 1 bis 30 Gew.-% Blei sowie zusätzlich eine oder beide der Komponenten 0,001 bis 50 Gew.-%, vorzugsweise 0,001 bis 0,2 Gew.-% oder 6 bis 50 Gew.-% Aluminium und 0,1 bis 5 Gew.-% Kupfer enthalten, zur Herstellung von Gleitlagerwerkstoffen.Application of the process according to claims 1 to 3 to zinc alloys which contain one or both of the components 1 to 30% by weight, preferably 5 to 20% by weight bismuth and 1 to 30% by weight lead, and additionally one or both of the Contain components 0.001 to 50 wt .-%, preferably 0.001 to 0.2 wt .-% or 6 to 50 wt .-% aluminum and 0.1 to 5 wt .-% copper, for the production of plain bearing materials. Anwendung des Verfahrens nach den Ansprüchen 1 bis 3 auf Kupferlegierungen mit 1 bis 60 Gew.-%, vorzugsweise 12 bis 50 Gew.-% Blei.Application of the method according to claims 1 to 3 to copper alloys with 1 to 60 wt .-%, preferably 12 to 50 wt .-% lead. Stranggießvorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 3, gekennzeichnet durch eine Schmelzevorlage (1), die über eine aus keramischem Werkstoff bestehende Gießdüse (2) mit gegenüber dem Strang (7) verringertem Querschnitt mit einer stark gekühlten, senkrecht angeordneten Kokille (3) verbunden ist, wobei die Kokille im Anschluß an eine kurze metallische Kühlfläche mit Mitteln (6) zur direkten Beaufschlagung des Strangs mit Kühlwasser versehen ist.Continuous casting apparatus for carrying out the method according to claims 1 to 3, characterized by a melt feed (1) which has a strongly cooled, vertically arranged mold (3) via a pouring nozzle (2) made of ceramic material with a cross section reduced compared to the strand (7) ) is connected, the mold being provided with means (6) for direct application of cooling water to the strand following a short metallic cooling surface.
EP91200062A 1990-02-02 1991-01-15 Process for making monotectic alloys Expired - Lifetime EP0440275B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4003018 1990-02-02
DE4003018A DE4003018A1 (en) 1990-02-02 1990-02-02 METHOD FOR PRODUCING MONOTECTIC ALLOYS

Publications (2)

Publication Number Publication Date
EP0440275A1 true EP0440275A1 (en) 1991-08-07
EP0440275B1 EP0440275B1 (en) 1995-06-28

Family

ID=6399239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91200062A Expired - Lifetime EP0440275B1 (en) 1990-02-02 1991-01-15 Process for making monotectic alloys

Country Status (9)

Country Link
US (1) US5400851A (en)
EP (1) EP0440275B1 (en)
JP (1) JPH06292942A (en)
KR (1) KR910021271A (en)
AT (1) ATE124304T1 (en)
BR (1) BR9100437A (en)
CA (1) CA2035361A1 (en)
DE (2) DE4003018A1 (en)
ES (1) ES2075321T3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035296A1 (en) * 1998-01-08 1999-07-15 Ks Gleitlager Gmbh Aluminium sliding bearing alloy
EP0947260A1 (en) * 1998-02-04 1999-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sliding bearing made of monotectic alloys
CN1049168C (en) * 1994-10-26 2000-02-09 中国科学院金属研究所 Controllable casting technology for monotectic alloy antifriction bearing material
WO2005038278A1 (en) * 2003-09-20 2005-04-28 Ks Gleitlager Gmbh Plain bearing composite material
WO2008128055A1 (en) * 2007-04-11 2008-10-23 Alcoa Inc. Strip casting of immiscible metals
WO2009010112A2 (en) 2007-07-19 2009-01-22 Ks Gleitlager Gmbh Composite material for slide bearings
WO2010023494A1 (en) * 2008-08-27 2010-03-04 Bay Zoltán Alkalmazott Kutatási Közalapítvány Nanotechnológiai Kutatóintézete Method to produce monotectic dispersed metallic alloys
CN110724841A (en) * 2019-11-07 2020-01-24 中南大学 Preparation method of immiscible alloy and continuous casting equipment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001537B3 (en) * 2005-01-13 2006-05-18 Ks Gleitlager Gmbh Friction bearing material for automobile internal combustion engines, comprises steel carrier layer coated with lead-free aluminum alloy comprising zinc supersaturated aluminum mixed crystals in which zinc particles are finely distributed
DE102006021772B4 (en) * 2006-05-10 2009-02-05 Siemens Ag Method of making copper-chrome contacts for vacuum switches and associated switch contacts
CN100509217C (en) * 2006-09-20 2009-07-08 中国科学院金属研究所 Equipment for preparing monotectic alloy shell type composite tissue powder and use method thereof
US7816250B2 (en) 2006-09-29 2010-10-19 Intel Corporation Composite solder TIM for electronic package
US7846554B2 (en) 2007-04-11 2010-12-07 Alcoa Inc. Functionally graded metal matrix composite sheet
US8956472B2 (en) 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
DE102012213505A1 (en) * 2012-07-31 2014-02-06 Tyco Electronics Amp Gmbh Layer for an electrical contact element, layer system and method for producing a layer
DE102015112550B3 (en) 2015-07-30 2016-12-08 Zollern Bhw Gleitlager Gmbh & Co. Kg Process for the preparation of a monotectic alloy
EP3516684B1 (en) * 2016-09-20 2021-01-20 ACM Research (Shanghai) Inc. Method and apparatus for cleaning substrates
MX2019006204A (en) 2016-11-28 2019-09-19 Univ Mcmaster Aluminium alloys for structural and non-structural near net casting, and methods for producing same.
DE102017113216A1 (en) 2017-06-15 2018-12-20 Zollern Bhw Gleitlager Gmbh & Co. Kg Monotectic aluminum plain bearing alloy and process for its production and thus manufactured sliding bearing
CN113646116A (en) * 2019-02-07 2021-11-12 埃奎斯费雷斯公司 Alloys having low precipitate density for applications including remelting processes and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432293A (en) * 1966-01-06 1969-03-11 Glacier Metal Co Ltd Bearing materials and method of making same
US3827882A (en) * 1968-03-15 1974-08-06 Glacier Metal Co Ltd High lead aluminium alloy
US4071072A (en) * 1973-11-06 1978-01-31 Alcan Research And Development Limited Method of direct chill casting of aluminum alloys
US4214624A (en) * 1978-10-26 1980-07-29 Kaiser Aluminum & Chemical Corporation Method of and mold for DC casting
GB2082950A (en) * 1980-09-02 1982-03-17 British Aluminium Co Ltd Apparatus for direct chill casting of aluminium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778786A (en) * 1972-06-28 1973-12-11 Nasa Data storage, image tube type
US4198232A (en) * 1978-12-29 1980-04-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preparation of monotectic alloys having a controlled microstructure by directional solidification under dopant-induced interface breakdown
US4202404A (en) * 1979-01-02 1980-05-13 Allied Chemical Corporation Chill roll casting of amorphous metal strip
US4708194A (en) * 1981-07-27 1987-11-24 Allied Corporation Method and apparatus for rapidly solidifying metal employing a metallic conditioning brush
GB2182876A (en) * 1985-11-14 1987-05-28 Atomic Energy Authority Uk Alloy strip production
US4996025A (en) * 1986-01-23 1991-02-26 Federal-Mogul Corporation Engine bearing alloy composition and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432293A (en) * 1966-01-06 1969-03-11 Glacier Metal Co Ltd Bearing materials and method of making same
US3827882A (en) * 1968-03-15 1974-08-06 Glacier Metal Co Ltd High lead aluminium alloy
US4071072A (en) * 1973-11-06 1978-01-31 Alcan Research And Development Limited Method of direct chill casting of aluminum alloys
US4214624A (en) * 1978-10-26 1980-07-29 Kaiser Aluminum & Chemical Corporation Method of and mold for DC casting
GB2082950A (en) * 1980-09-02 1982-03-17 British Aluminium Co Ltd Apparatus for direct chill casting of aluminium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049168C (en) * 1994-10-26 2000-02-09 中国科学院金属研究所 Controllable casting technology for monotectic alloy antifriction bearing material
WO1999035296A1 (en) * 1998-01-08 1999-07-15 Ks Gleitlager Gmbh Aluminium sliding bearing alloy
DE19800433A1 (en) * 1998-01-08 1999-07-22 Ks Gleitlager Gmbh Aluminum plain bearing alloy
US6328823B1 (en) 1998-01-08 2001-12-11 Ks Gleitlager Gmbh Aluminum sliding bearing alloy
DE19800433C2 (en) * 1998-01-08 2002-03-21 Ks Gleitlager Gmbh Continuous casting process for casting an aluminum plain bearing alloy
EP0947260A1 (en) * 1998-02-04 1999-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sliding bearing made of monotectic alloys
WO2005038278A1 (en) * 2003-09-20 2005-04-28 Ks Gleitlager Gmbh Plain bearing composite material
US7601434B2 (en) 2003-09-20 2009-10-13 Ks Gleitlager Gmbh Plain bearing composite material
WO2008128055A1 (en) * 2007-04-11 2008-10-23 Alcoa Inc. Strip casting of immiscible metals
WO2009010112A2 (en) 2007-07-19 2009-01-22 Ks Gleitlager Gmbh Composite material for slide bearings
WO2010023494A1 (en) * 2008-08-27 2010-03-04 Bay Zoltán Alkalmazott Kutatási Közalapítvány Nanotechnológiai Kutatóintézete Method to produce monotectic dispersed metallic alloys
CN110724841A (en) * 2019-11-07 2020-01-24 中南大学 Preparation method of immiscible alloy and continuous casting equipment
CN110724841B (en) * 2019-11-07 2021-09-07 中南大学 Preparation method of immiscible alloy and continuous casting equipment

Also Published As

Publication number Publication date
KR910021271A (en) 1991-12-20
ES2075321T3 (en) 1995-10-01
BR9100437A (en) 1991-10-22
US5400851A (en) 1995-03-28
ATE124304T1 (en) 1995-07-15
DE59105810D1 (en) 1995-08-03
CA2035361A1 (en) 1991-08-03
JPH06292942A (en) 1994-10-21
EP0440275B1 (en) 1995-06-28
DE4003018A1 (en) 1991-08-08

Similar Documents

Publication Publication Date Title
EP0440275B1 (en) Process for making monotectic alloys
DE3638901C2 (en)
DE4106605C2 (en) Process for the one-piece production of a solid, solidified amorphous alloy material and device for carrying out the process
DE2704376C3 (en) Process for the melt-metallurgical production of graphite-containing copper alloys
DE1758569A1 (en) Process for producing a dispersion of a material in a metallic bedding compound
DE602004010459T2 (en) Process for the preparation of nanoparticle-reinforced materials and shaped articles produced
DE3434110A1 (en) METHOD AND DEVICE FOR PRODUCING A METAL OBJECT
DE4110145C2 (en)
EP0571703B1 (en) Process for the production of castings by investment casting
EP3328574B1 (en) Method for producing a monotectic alloy
DE3517386C2 (en)
DE1558249B1 (en) Method of casting a strip of a lead-containing aluminum-based alloy intended for the manufacture of bearing linings
WO1995005490A1 (en) Molten mass treating agent, its production and use
DE3938234A1 (en) METHOD AND DEVICE FOR PRODUCING A LAYERING MATERIAL FOR SLIDING ELEMENTS
DE2217897A1 (en) Master alloys for aluminum alloys and processes for their manufacture
DE3803194A1 (en) METHOD FOR CONTINUOUSLY PRODUCING A THIN-WALLED PANEL-LIKE STRAND FROM PHOSPHORON BRONZE
DE19800433C2 (en) Continuous casting process for casting an aluminum plain bearing alloy
DE3440235C2 (en) Method and device for continuous strip casting of metals, in particular steel
DE2426979A1 (en) CONTINUOUS CASTING PROCESS FOR CASTING BLOCKS OR STRIPS MADE OF METAL
DE1508856A1 (en) Continuous casting process
DE2406252C3 (en) Method and device for continuous casting and further processing of the cast strand
DE4014430A1 (en) METHOD FOR PRODUCING CONTINUOUS TAPES AND WIRE
DE3226931A1 (en) Process and equipment for producing large-area band-shaped silicon bodies for use in the manufacture of solar cells
DE1793818C2 (en) Device for the continuous crystallization of trioxane with band formation
DE2532875C3 (en) Method and device for crucible-free granulation of metals and metal alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910904

17Q First examination report despatched

Effective date: 19930505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 124304

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59105810

Country of ref document: DE

Date of ref document: 19950803

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075321

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981211

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19981228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000115

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000115

EUG Se: european patent has lapsed

Ref document number: 91200062.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050115