EP0438492A1 - A lanthanum containing catalyst for treating automotive exhaust gas. - Google Patents
A lanthanum containing catalyst for treating automotive exhaust gas.Info
- Publication number
- EP0438492A1 EP0438492A1 EP89911943A EP89911943A EP0438492A1 EP 0438492 A1 EP0438492 A1 EP 0438492A1 EP 89911943 A EP89911943 A EP 89911943A EP 89911943 A EP89911943 A EP 89911943A EP 0438492 A1 EP0438492 A1 EP 0438492A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support
- catalytic composite
- oxide
- alumina
- overlayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052746 lanthanum Inorganic materials 0.000 title abstract description 11
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title abstract description 11
- 239000003054 catalyst Substances 0.000 title description 77
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 91
- 230000003197 catalytic effect Effects 0.000 claims abstract description 50
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 47
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000002131 composite material Substances 0.000 claims abstract description 42
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000001301 oxygen Substances 0.000 claims abstract description 34
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 34
- 239000010948 rhodium Substances 0.000 claims abstract description 33
- 238000003860 storage Methods 0.000 claims abstract description 33
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 24
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 23
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 8
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 7
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 3
- 239000010941 cobalt Substances 0.000 claims abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 41
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 19
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical group [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 10
- 238000012360 testing method Methods 0.000 abstract description 10
- 238000011282 treatment Methods 0.000 abstract description 3
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical group 0.000 abstract description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 abstract description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 21
- 239000000446 fuel Substances 0.000 description 19
- 239000002002 slurry Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000007598 dipping method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000011369 resultant mixture Substances 0.000 description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- -1 praesodymium Chemical compound 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 150000002604 lanthanum compounds Chemical class 0.000 description 2
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 2
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- MBULCFMSBDQQQT-UHFFFAOYSA-N (3-carboxy-2-hydroxypropyl)-trimethylazanium;2,4-dioxo-1h-pyrimidine-6-carboxylate Chemical compound C[N+](C)(C)CC(O)CC(O)=O.[O-]C(=O)C1=CC(=O)NC(=O)N1 MBULCFMSBDQQQT-UHFFFAOYSA-N 0.000 description 1
- WQXKGOOORHDGFP-UHFFFAOYSA-N 1,2,4,5-tetrafluoro-3,6-dimethoxybenzene Chemical compound COC1=C(F)C(F)=C(OC)C(F)=C1F WQXKGOOORHDGFP-UHFFFAOYSA-N 0.000 description 1
- MAYVZUQEFSJDHA-UHFFFAOYSA-N 1,5-bis(methylsulfanyl)naphthalene Chemical compound C1=CC=C2C(SC)=CC=CC2=C1SC MAYVZUQEFSJDHA-UHFFFAOYSA-N 0.000 description 1
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- BYDYILQCRDXHLB-UHFFFAOYSA-N 3,5-dimethylpyridine-2-carbaldehyde Chemical compound CC1=CN=C(C=O)C(C)=C1 BYDYILQCRDXHLB-UHFFFAOYSA-N 0.000 description 1
- VBWYZPGRKYRKNV-UHFFFAOYSA-N 3-propanoyl-1,3-benzoxazol-2-one Chemical compound C1=CC=C2OC(=O)N(C(=O)CC)C2=C1 VBWYZPGRKYRKNV-UHFFFAOYSA-N 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- QXPQVUQBEBHHQP-UHFFFAOYSA-N 5,6,7,8-tetrahydro-[1]benzothiolo[2,3-d]pyrimidin-4-amine Chemical compound C1CCCC2=C1SC1=C2C(N)=NC=N1 QXPQVUQBEBHHQP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- YVDLTVYVLJZLLS-UHFFFAOYSA-J O.Cl[Pt](Cl)(Cl)Cl Chemical compound O.Cl[Pt](Cl)(Cl)Cl YVDLTVYVLJZLLS-UHFFFAOYSA-J 0.000 description 1
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- CIMPUKITDIGFOL-UHFFFAOYSA-L [Pt+2].S(=O)(OO)OS(=O)[O-].OOS(=O)OS(=O)[O-] Chemical compound [Pt+2].S(=O)(OO)OS(=O)[O-].OOS(=O)OS(=O)[O-] CIMPUKITDIGFOL-UHFFFAOYSA-L 0.000 description 1
- GOKIPOOTKLLKDI-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O.CC(O)=O GOKIPOOTKLLKDI-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- AQBOUNVXZQRXNP-UHFFFAOYSA-L azane;dichloropalladium Chemical compound N.N.N.N.Cl[Pd]Cl AQBOUNVXZQRXNP-UHFFFAOYSA-L 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- ADGFUTSPEKVFKD-UHFFFAOYSA-N carbonyl dichloride;rhodium Chemical compound [Rh].ClC(Cl)=O ADGFUTSPEKVFKD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229960001759 cerium oxalate Drugs 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- ZMZNLKYXLARXFY-UHFFFAOYSA-H cerium(3+);oxalate Chemical compound [Ce+3].[Ce+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZMZNLKYXLARXFY-UHFFFAOYSA-H 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- MULYSYXKGICWJF-UHFFFAOYSA-L cobalt(2+);oxalate Chemical compound [Co+2].[O-]C(=O)C([O-])=O MULYSYXKGICWJF-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- PVDYMOCCGHXJAK-UHFFFAOYSA-H europium(3+);oxalate Chemical compound [Eu+3].[Eu+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O PVDYMOCCGHXJAK-UHFFFAOYSA-H 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- LNYNHRRKSYMFHF-UHFFFAOYSA-K europium(3+);triacetate Chemical compound [Eu+3].CC([O-])=O.CC([O-])=O.CC([O-])=O LNYNHRRKSYMFHF-UHFFFAOYSA-K 0.000 description 1
- GAGGCOKRLXYWIV-UHFFFAOYSA-N europium(3+);trinitrate Chemical compound [Eu+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GAGGCOKRLXYWIV-UHFFFAOYSA-N 0.000 description 1
- NNMXSTWQJRPBJZ-UHFFFAOYSA-K europium(iii) chloride Chemical compound Cl[Eu](Cl)Cl NNMXSTWQJRPBJZ-UHFFFAOYSA-K 0.000 description 1
- WLYAEQLCCOGBPV-UHFFFAOYSA-N europium;sulfuric acid Chemical compound [Eu].OS(O)(=O)=O WLYAEQLCCOGBPV-UHFFFAOYSA-N 0.000 description 1
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 description 1
- DYYFBWLZDJSPGO-UHFFFAOYSA-H holmium(3+);oxalate Chemical compound [Ho+3].[Ho+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O DYYFBWLZDJSPGO-UHFFFAOYSA-H 0.000 description 1
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 description 1
- WDVGLADRSBQDDY-UHFFFAOYSA-N holmium(3+);trinitrate Chemical compound [Ho+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WDVGLADRSBQDDY-UHFFFAOYSA-N 0.000 description 1
- MKPJADFELTTXAV-UHFFFAOYSA-H holmium(3+);trisulfate Chemical compound [Ho+3].[Ho+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MKPJADFELTTXAV-UHFFFAOYSA-H 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- OXHNIMPTBAKYRS-UHFFFAOYSA-H lanthanum(3+);oxalate Chemical compound [La+3].[La+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O OXHNIMPTBAKYRS-UHFFFAOYSA-H 0.000 description 1
- VQEHIYWBGOJJDM-UHFFFAOYSA-H lanthanum(3+);trisulfate Chemical compound [La+3].[La+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VQEHIYWBGOJJDM-UHFFFAOYSA-H 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- BONORRGKLJBGRV-UHFFFAOYSA-N methapyrilene hydrochloride Chemical compound Cl.C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 BONORRGKLJBGRV-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NFSAPTWLWWYADB-UHFFFAOYSA-N n,n-dimethyl-1-phenylethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=CC=C1 NFSAPTWLWWYADB-UHFFFAOYSA-N 0.000 description 1
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 description 1
- RHVPCSSKNPYQDU-UHFFFAOYSA-H neodymium(3+);trisulfate;hydrate Chemical compound O.[Nd+3].[Nd+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RHVPCSSKNPYQDU-UHFFFAOYSA-H 0.000 description 1
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- IBSDADOZMZEYKD-UHFFFAOYSA-H oxalate;yttrium(3+) Chemical compound [Y+3].[Y+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O IBSDADOZMZEYKD-UHFFFAOYSA-H 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- AIDFGYMTQWWVES-UHFFFAOYSA-K triazanium;iridium(3+);hexachloride Chemical compound [NH4+].[NH4+].[NH4+].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Ir+3] AIDFGYMTQWWVES-UHFFFAOYSA-K 0.000 description 1
- PYOOBRULIYNHJR-UHFFFAOYSA-K trichloroholmium Chemical compound Cl[Ho](Cl)Cl PYOOBRULIYNHJR-UHFFFAOYSA-K 0.000 description 1
- CTDPVEAZJVZJKG-UHFFFAOYSA-K trichloroplatinum Chemical compound Cl[Pt](Cl)Cl CTDPVEAZJVZJKG-UHFFFAOYSA-K 0.000 description 1
- HSSMNYDDDSNUKH-UHFFFAOYSA-K trichlororhodium;hydrate Chemical compound O.Cl[Rh](Cl)Cl HSSMNYDDDSNUKH-UHFFFAOYSA-K 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- a LANTHANUM CONTAINING CATALYST FOR TREATING AUTOMOTIVE EXHAUST Catalysts which can be used for treating automotive exhaust are well known in the art. More specifically, these catalysts typically contain platinum and/or palladium and rhodium and are known as three-way catalysts (TWC) or three component control catalysts. Stabilizers and promoters have also been used to improve the activity of these catalysts. For example, U.S. Patent 4,528,279 describes the use of cerium/lanthanum promoters in conjunction with noble metals such as platinum and rhodium as the active phase of the catalyst.
- U.S. Patent 4,591,580 teaches the use of a catalytic composite containing lanthanum oxide, cerium oxide and an alkali metal oxide.
- lanthanum oxide is a good promoter
- Applicant has found a- way to deposit lanthanum oxide onto a catalyst which takes advantage of the promoter property of lanthanum oxide but which minimizes the deterioration of the catalyst.
- the deterioration occurs because of a chemical interaction between the lanthanum oxide and the noble metals.
- Applicant has found that by applying the lanthanum oxide as an overlayer, the amount of contact between the noble metals and the lanthanum oxide is minimized, yet the lanthanum promotes the activity of the catalysts and reduces the deterioration of the catalyst.
- the instant catalytic composite also has the advantage of minimizing the formation of hydrogen sulfide.
- the lanthanum oxide overlayer appears to trap the sulfur species so that they do not interact with the noble metals, thereby minimizing the formation of hydrogen sulfide.
- U.S. Patent No. 3,873,469 discloses a multilayer support on which is deposited a noble metal.
- U.S. Patent No. 3,873,469 discloses a multilayer support on which is deposited a noble metal.
- Patent Nos. 4,702,897 and 4,650,782 disclose a catalyst consisting of a support having deposited thereon a catalytic component and having dispersed thereon a protective coating of titania or zirconia. Additionally, Japanese Public Disclosures 71537/87 and 71538/87 disclose a catalytic composite consisting of a ceramic carrier having dispersed thereon a catalytic layer containing one or more of Pd, Pt and Rh and an alumina layer containing one or more oxides of Ce, Ni, Mo and Fe. However, the stated advantage of the 71537 invention is that the oxides, which are oxygen storage components, renew the catalytic surface. This is accomplished by having the oxygen storage component in contact with the catalytic surface.
- the instant invention differs significantly from the above prior art.
- the instant invention In contrast to the catalyst of U.S. Patent No. 3,873,469 which has two layers of support materials on which is deposited a catalytic material, the instant invention consists of a support material which has deposited thereon a noble metal and which has dispersed thereon a lanthanum oxide overlayer.
- U.S. Patent Nos. 4,702,897 and 4,650,782 disclose the use of a titania or zirconia overlayer to protect the catalytic element from poisons.
- the instant invention employs an overlayer of lanthanum oxide which is a promoter and an oxygen storage component. Neither zirconia nor titania are known as oxygen storage components or activity promoters for automotive catalysts.
- Disclosures 71537 and 71538 contain a layer of alumina plus one or more oxides of Ce, Ni, Mo and Fe. The purpose of this layer is to contact the oxygen storage component with the catalytic surface. In contrast to these disclosures, the purpose of the layer of the instant catalyst is to separate the lanthanum oxide from the catalytic surface.
- the catalytic composite comprises a first support having dispersed thereon an oxygen storage component and at least one noble metal component selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium and having dispersed immediately thereon an overlayer comprising lanthanum oxide and optionally a second support, said first and second support both being a refractory inorganic oxide selected from the group consisting of alumina, silica, titania, zirconia, aluminosilicates and mixtures thereof.
- one specific embodiment of the invention comprises a ceramic monolithic honeycomb carrier having dispersed thereon an alumina support, the alumina having dispersed thereon palladium, rhodium and ceria and having dispersed immediately thereon an overlayer comprising lanthanum oxide and alumina.
- It is another embodiment of this invention to provide a process for treating an automotive exhaust gas while minimizing • the formation of hydrogen sulfide comprising contacting said automotive exhaust with a catalytic composite comprising a first support having dispersed thereon at least one oxygen storage component and at least one noble metal component selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium and having dispersed immediately thereon an overlayer comprising lanthanum oxide and optionally a second support, said first and second support both being a refractory inorganic oxide selected from the group consisting of alumina, silica, titania, zirconia, aluminosilicates and mixtures thereof.
- the present invention relates to a catalytic composite and a process for treating an automotive exhaust using said catalytic composite.
- a first support which is a refractory inorganic oxide selected from the group consisting of alumina, silica, titania, zirconia, aluminosilicates, and mixtures thereof with alumina being preferred.
- alumina is the desired first support, any alumina which is well known in the art, such as described in U.S. Patent 4,492,769, may be used.
- the first support of the instant invention can be used in any configuration, shape, or size which exposes the noble metal component dispersed thereon to the gas to be treated.
- the choice of configuration, shape and size of the support depends on the particular circumstances of use of the catalytic composite of this invention.
- One convenient shape which can be employed is particulate form.
- the first support can be formed into shapes such as pills, pellets, granules, rings, spheres, etc.
- the particulate form is especially desirable where large volumes of catalytic composites are needed, and for use in circumstances in which periodic replacement of the catalytic composite may be desired. In circumstances in which less mass is desirable a monolithic structure is preferred.
- a specific example of the present invention is alumina spheres which may be continuously manufactured by the well known oil drop method which comprises: forming an alumina hydrosol by any of the techniques taught in the art and preferably by reacting aluminum metal with hydrochloric acid; combining the resulting hydrosol with a suitable gelling agent; and dropping the resultant mixture into an oil bath maintained at elevated temperatures.
- the droplets of the mixture remain in the oil bath until they set and form hydrogel spheres.
- the spheres are then continuously withdrawn from the oil bath and typically subjected to specific aging and drying treatments in oil and an ammoniacal solution to further improve their physical characteristics.
- the resulting aged and gelled particles are then washed and dried at a relatively low temperature of about 149-205°C and subjected to a calcination procedure at a temperature of about 455-705°C for a period of about 1 to about 20 hours.
- This treatment effects conversion of the alumina hydrogel to the corresponding crystalline gamma-alumina. See the teachings of U.S. Patent 2,620,314 for additional details.
- the first support is a thin film or coating deposited on an inert carrier material, which provides the structural support for said first support.
- the inert carrier material can be any refractory material such as a ceramic or metallic material. It is preferred that the carrier material be unreactlve with the first support and not be degraded by the gas to which it is exposed.
- suitable ceramic materials include sillimanite, petalite, cordierite, mullite, zircon, zircon mullite, spodumene, alumina-titanate, etc. Additionally, metallie.materials may be used.
- Metallic materials which are within the scope of this invention include metals and alloys as disclosed in U.S. Patent No. 3,920,583 which are oxidation resistant and are otherwise capable of withstanding high temperatures.
- the carrier material can best be utilized in any rigid unitary configuration which provides a plurality of pores or channels extending in the direction of gas flow, e.g., ceramic foams, honeycomb structures. It is preferred that the configuration be a honeycomb configuration.
- the honeycomb structure can be used advantageously in either unitary form, or as an arrangement of multiple modules.
- the honeycomb structure is usually oriented such that gas flow is generally in the same direction as the cells or channels of the honeycomb structure.
- the first support may be deposited on said solid monolithic carrier by any conventional means known in the art.
- One convenient method is by dipping the solid carrier into a slurry of said first support.
- the preparation of a slurry from alumina is well known in the art and consists of adding the alumina to an aqueous solution of an acid such as nitric, hydrochloric, sulfuric, etc.
- the concentration of acid in said aqueous solution is not critical but 1s conveniently chosen to be about 1 to about 4 weight percent.
- Enough alumina should be added to said aqueous acid solution such that the specific gravity of the final slurry is in the range of about 1.1 to about 1.9.
- the resultant mixture is ball milled for about 2 to 24 hours to form a usable slurry which can be used to deposit a thin film or coating onto the monolithic carrier.
- the actual coating procedure involves dipping the monolithic carrier into said first support slurry, blowing out the excess slurry, drying and calcining in air at a temperature of about 350° to about 800°C for about 1 to about 2 hours. This procedure can be repeated until the desired amount of first support on said monolithic carrier is achieved. It is preferred that the first support, such as alumina, be present on the monolithic carrier in amounts in the range from about 28 g of support per liter of carrier volume to about 355 g of support per liter of carrier volume, where the volume is measured by the exterior dimensions of the monolithic carrier structure.
- a second feature of the catalytic composite of this invention is that said support has dispersed thereon an oxygen storage component which ' is an oxide of a metal selected from the group consisting of iron, nickel, cobalt, the rare earths and mixtures thereof.
- a metal selected from the group consisting of iron, nickel, cobalt, the rare earths and mixtures thereof.
- the rare earths contemplated as within the scope of this invention are cerium, lanthanum, neodymium, europium, holmium, ytterbium, praesodymium, dysprosium, and mixtures thereof.
- Preferred rare earths include cerium, lanthanum and mixtures thereof.
- the oxygen storage component is present as the oxide of the metals enumerated above and may be dispersed thereon by methods well known in the art.
- one method of dispersing an oxygen storage component onto said first support is to impregnate the first support with an aqueous solution of a decomposable compound of said oxygen storage component, drying and calcining in air the resultant mixture to give a first support which contains an oxide of said oxygen storage component.
- water soluble decomposable oxygen storage components which can be used include but are not limited to cerium acetate, lanthanum acetate, neodymium acetate, europium acetate, holmium acetate, yttrium acetate, praesodymium acetate, dysprosium acetate, iron acetate, cobalt acetate, nickel acetate, cerium nitrate, lanthanum nitrate, neodymium nitrate, europium nitrate, holmium nitrate, yttrium nitrate, praesodymium nitrate, dysprosium nitrate, iron nitrate, cobalt nitrate, nickel nitrate, cerium chloride, lanthanum chloride, neodymium chloride, europium chloride, holmium chloride, yttrium chloride, praesodymium chloride, dyspros
- the oxygen storage component be present in an amount ranging from about 0.5 to about 60 weight percent of the first support and more preferably from about 5 to about 50 weight percent. 5 Accordingly, in one specific example an appropriate amount of alumina is added to an aqueous solution of cerium acetate. This mixture is then dried and calcined in air at a temperature of about 400° to about 700°C for a time of about one to three hours. This results in the formation of cerium oxide 0 which is well dispersed throughout the alumina.
- the oxygen storage component may be deposited onto the support as described above and the support then deposited onto the monolithic carrier.
- the refractory oxide support may be deposited onto 5 the monolithic carrier and then the oxygen storage component deposited thereon.
- a monolithic carrier may be dipped into a solution of a compound of the desired oxygen storage component, dried and calcined, thereby forming the oxide of the desired oxygen storage component on the refractory oxide support.
- a solid form of said oxygen storage component may be mixed with the appropriate amount of said first support. After mixing, a homogeneous mixture of the two solids is obtained.
- the criteria required of the solid form of said oxygen storage component are that l)it be insoluble in water and in the 5 mineral acid/water solution used to prepare a slurry as described above, , and 2)if the solid is not the metal oxide that said solid decompose to the oxide upon calcination in air.
- these insoluble solids include cerium sulfate, lanthanum sulfate, neodymium sulfate, europium sulfate, holmium sulfate, yttrium 30.
- a specific example consists of adding cerium oxide to an alumina powder.
- the refractory inorganic oxide has dispersed thereon at least one noble metal component selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium.
- the noble metal component may be dispersed on said first support by several methods well known in the art including coprecipitation, cogellation, ion exchange or impregnation. Of these methods one convenient method of dispersing said noble metal component on said first support is impregnation of said first support with an aqueous solution of a decomposable compound of said noble metal, drying and calcining in air to give a fine dispersion of said noble metal on said first support.
- Illustrative of the decomposable compounds of said noble metals are chloroplatinic acid, ammonium chloroplatinate, hydroxy disulfite platinum (II) acid, bromoplatinic acid, platinum trichloride, platinum tetrachloride hydrate, platinum dichlorocarbonyl dlchloride, dinitrodia ino platinum, sodium tetranitroplatinate, rhodium trichloride, hexaaminerhodium chloride, rhodium carbonylchloride, rhodium trichloride hydrate, rhodium nitrate, sodium hexachlororhodate, sodium hexanitrorhodate, chloropalladic acid, palladium chloride, palladium nitrate, diaminepalladium hydroxide, tetraaminepalladium chloride, hexachloroiridate (IV) acid, hexachloroiridate (III) acid, dl
- the metal compounds can be impregnated using a common aqueous solution or separate aqueous solutions. When separate aqueous solutions are used, impregnation of the first support with the noble metal solutions can be performed sequentially in any order. Finally, hydrochloric acid, nitric acid or other suitable materials may be added to said solutions in order to further facilitate the uniform distribution of the noble metal components throughout said first support.
- said first support When said first support is to be deposited on a solid monolithic carrier, said first support may be impregnated with said aqueous noble metal solution either before or after the first support is deposited on said solid monolithic carrier. Of the two procedures, it is more convenient to impregnate the noble metal onto the first support after it has been deposited on said solid monolithic carrier.
- the noble metal be present on said first support in a concentration ranging from about 0.01 to about 4 weight percent of said first support. Specifically, in the case of platinum and palladium the range is from about 0.1 to about 4 weight percent. In the case of rhodium, ruthenium and iridium, the range is about 0.01 to about 2 weight percent. If both platinum and rhodium are present, the ratio of the platinum to rhodium content is from about 2:1 to about 20:1 pl tinum:rhod1um. The same is true if palladium and rhodium are present.
- the catalytic composite For three component control operation, it is desirable that the catalytic composite contain a combination of rhodium and platinum, palladium or mixtures thereof. Specific combinations include platinum and rhodium, palladium, platinum and rhodium, and palladium and rhodium. However, under certain circumstances, e.g. when control of nitric oxide is not necessary, it is undesirable (from an economic consideration) for the catalytic composite to contain rhodium. In that case it is desirable for the catalytic composite to contain platinum, palladium and mixtures thereof. It is important to point out that a catalyst containing only palladium as the catalytic metal (plus a lanthana overlayer) has been found to have sufficient nitric oxide conversion activity that it can be used as a three way catalyst.
- a third feature of the catalytic composite of this invention is an overlayer comprising lanthanum oxide and optionally a second support which is a refractory inorganic oxide.
- This overlayer is dispersed immediately thereover said first support containing at least one noble metal component and an oxygen storage component.
- a second support is present in the overlayer, said second support may be selected from the group consisting of alumina, silica, titania, zirconia, aluminosilicates, and mixtures thereof, with alumina being preferred.
- the overlayer of lanthanum oxide may be applied to said first support by means known in the art such as using a colloidal dispersion of lanthanum oxide, impregnating with a lanthanum compound that does not penetrate into the micropores of the first support, etc.
- the overlayer also contains a second support, the lanthanum oxide may be dispersed onto the second support in the same manner (described above) used to disperse the oxygen storage component onto the first support.
- one method of applying said overlayer is to prepare a slurry of the lanthanum oxide or lanthanum oxide dispersed on a second support and apply said slurry immediately over the first support containing at least one noble metal and at least one oxygen storage component which has been deposited on said monolithic support; said overlayer may be applied in the same manner as described above for the first support.
- the concentration of lanthanum oxide is from about 1 to about 100 weight percent of said first support and preferably from about 10 to about 100 weight percent.
- said second support is present in a concentration of about 5 to about 80 weight percent of said overlayer. More preferably, the concentration of said second support is about 30 to about 70 weight percent of said overlayer.
- said lanthanum oxide may be separated from the noble metals by controlling the penetration depth of the noble metals into the interior of the particulates.
- the noble metals can be made to penetrate into the interior of the spheres or other particulate form by means well known in the art such as the adding of chloride ions or a carboxylic acid to the impregnating solution.
- the lanthanum oxide may be placed on or near the surface of the spheres or particulates by means as described above, i.e., using a colloidal dispersion of the lanthanum oxide or using lanthanum compounds which do not penetrate into the micropores of the spheres (such as the s-diketone complexes of lanthanum).
- the resultant catalytic composite is characterized by the noble metal component being separated from the lanthanum oxide.
- this configuration.of the noble metal and lanthanum oxide is contrary to the prior art which teaches that an intimate mixture of the noble metal and lanthanum oxide is necessary in order for the catalytic composite to effectively treat an automotive exhaust gas.
- Another embodiment of the instant invention is a process for treating automotive exhaust while minimizing hydrogen sulfide formation.
- the process comprises contacting the automotive exhaust with the above-described catalytic composite.
- This process 1s usually accomplished by placing the catalytic composite in a container, known in the art as a converter, which is then placed in the exhaust system of the automobile.
- the catalytic composite can oxidize hydrocarbons and carbon monoxide present in the exhaust to carbon dioxide and water and reduce nitric oxide to nitrogen.
- the oxidation and reduction reactions can proceed simultaneously if the composition of the exhaust gas is maintained at or near the stoichiometric air-to- fuel (A:F) ratio.
- EXAMPLE I A conventional catalytic composite was prepared by the following method. In a beaker 7,000 grams of pseudo-boehmite alumina and 33,500 grams of a solution of cerium acetate were mixed, which solution contained 7 weight percent cerium. The resultant mixture was stirred for 30 minutes, transferred to a shallow tray, dried for 4 hours at 150 C C and finally calcined at 540°C for 1 hour. The calcined alumina/cerium oxide powder was next stirred into a container which contained 5.33 liters of water and 48 mL of concentrated nitric acid (HNO3). This mixture was ball milled for 6 hours.
- HNO3 concentrated nitric acid
- a catalytic composite of the present invention was prepared as follows. In a beaker 7,000 grams of pseudo-boehmite alumina and 33,500 grams of a solution of cerium acetate were mixed, which solution contained 7 weight percent cerium. The resultant mixture was stirred for 30 minutes, transferred to a shallow tray, dried for 4 hours at 150°C and finally calcined at 540 ⁇ C for 1 hour. The calcined alumina/cerium oxide powder was next stirred into a container which contained 5.33 liters of water and 48 mL of concentrated nitric acid (HNO3). This mixture was ball milled for 6 hours.
- HNO3 concentrated nitric acid
- the above-described monolith was dipped into an aqueous solution containing 1.1 mg of palladium (as chloropalladic acid) per gram of solution and 0.3 mg of rhodium (as rhodium chloride) per gram of solution and 5 weight percent sugar. After dipping, the impregnated monolith was dried and calcined for about one hour at 540°C.
- An overcoat containing lanthanum oxide was prepared as follows. In a container there were mixed 10,000 g of alpha alumina (from the Alcan Co.) and 20,800 g of lanthanum nitrate. The resultant mixture was mixed thoroughly, dried for about 4 hours at 150 ⁇ C and then calcined at 540°C for 1 hour.
- the engine which was a Ford 5.0 L V8 engine equipped with dual throttle body fuel injectors was operated according to the following cycle.
- the durability cycle consisted of a 60 second cruise mode and a 5 second fuel cut mode.
- the cruise mode the engine operated at stoichiometry while during the fuel cut mode, the engine operated at a fuel lean condition that included a temperature and an oxygen spike.
- the fuel cut mode is achieved by breaking the circuit between one of the fuel injectors and the Electronic Engine Control.
- the engine speed and load on the engine was adjusted to give an inlet exhaust gas temperature of 760 ⁇ C during the cruise mode and 704°C during the fuel cut mode.
- Catalysts A and B were durability tested, they were evaluated as follows.
- the evaluation test was performed using an engine dynamometer which measures the performance of the catalyst (hydrocarbon, carbon monoxide, and nitric oxide) as a function of a1r/fuel (A/F).
- the test involved evaluating the catalyst at seven different A/F ratio points (14.80, 14.65, 14.55, 14.45, 14.35, 14.20 and 14.10) at an inlet temperature of 450°C.
- the air/fuel was oscillated plus or minus 0.1A/F at one Hertz frequency. Conversions of hydrocarbon, carbon monoxide and nitric oxides were calculated at each A/F and then an integral performance conversion was obtained by averaging the conversions between an A/F at 14.41 to 14.71.
- Table 1 The results of this evaluation are presented in Table 1.
- a catalyst was prepared according to Example I except that the noble metals were Pt and Rh.
- the Pt was impregnated using a chloroplatinic acid solution (1.05 mg Pt/g of solution).
- This catalyst was designated Catalyst C and had a calculated composition of Pt, Rh and Ce of 0.59; 0.12 and 36.4 g/1 respectively.
- a catalyst was prepared according to Example II except that the noble metals were Pt and Rh.
- the Pt was impregnated using a chloroplatinic acid solution (1.05 mg Pt/g of solution.
- This catalyst was designated Catalyst D and was calculated to contain 0.59g/l of Pt; 0.12g/l of Rh, 36.4g/l of Ce and 14.1g/l of La.
- a sample was prepared according to Example IV except that the alumina was also impregnated with lanthanum acetate and barium acetate in order to disperse lanthanum oxide and barium oxide on the alumina.
- This catalyst was designated catalyst E and had a calculated composition of 0.59 g/1 Pt; 0.12 g/1 Rh; 36.4 g/1 Ce; 14.1 g/1 La and 6.4 g/1 Ba.
- Catalysts C, D, and E were tested for H 2 S release according to the following test. Each catalyst was placed in a reactor and preconditioned at 566°C for fifteen minutes with the precondition gas stream of Table 2.
- a fuel lean gas stream (identified as storage in Table 2) was flowed over the catalyst for 30 minutes and at 513 ⁇ C.
- the gas stream exiting from the catalyst was bubbled through a container containing 100 mL of zinc acetate.
- the feed gas was changed from lean to rich (release gas in Table 2) allowing the catalyst to release H2S.
- the rich feed gas was flowed over the catalyst for 80 seconds and then the zinc chloride solution was tested for H 2 S content using a modified version of a colorimetric method established by the Environmental Protection Agency (EPA) which is available from the EPA as interim report EPA-600/2-80- 068. The results from these tests are presented in Table 3.
- EPA Environmental Protection Agency
- the hydrocarbon was a 2:1 mixture of propylene and propane. Table 3. H 2 S Released by Catalysts
- the presence of a La U3 overlayer significantly reduces the amount of H S which a catalyst releases versus lanthanum oxide present in the first support in close proximity with the noble metals.
- the lanthanum oxide overlayer catalyst also releases less H 2 S than a catalyst without any lanthanum oxide.
- a La 2 0 3 overlayer improve conversion efficiency, but it also reduces H S formation and/or release.
- EXAMPLE VII A catalyst was prepared according to Example I except that the noble metal was palladium and was calculated to be present in an amount of 7.8 g/1. This catalyst was designated catalyst F.
- a catalyst was prepared according to Example II except that the noble metal was pal adium and was calculated to be present in an amount of 7.8 g/1. This catalyst was designated catalyst G.
- Catalysts F and G were durability tested and evaluated according to Example III. The results of the evaluation are presented in Table 4. Table 4. Effect of Lanthanum Oxide Overlayer on Catalyst Performance after 100 Hours of Durability Testing
- the catalyst containing a lanthana overlayer is much more effective at converting nitric oxide than a catalyst without an overlayer. This trend is also observed for integral conversion although not as pronounced. Additionally, in another test designed to measure conversion as a function of temperature, (Ught-off performance) the catalyst with the overlayer (catalyst G) reached 50 conversion for all three components at a lower temperature (at least 60°C lower) than the catalyst without an overlayer (catalyst F).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
L'invention concerne un composite catalytique amélioré pour le traitement de gaz d'échappement, comprenant un premier support qui est un oxyde inorganique réfractaire, sur lequel sont dispersés au moins un composant de stockage d'oxygène et au moins un composant de métal noble, et sur lesquels est immédiatement dispersée une couche de couverture comprenant de l'oxyde de lanthane, et facultativement un second support qui est un oxyde inorganique réfractaire. On peut choisir les premier et second supports dans le groupe composé d'oxyde d'aluminium, silice, dioxyde de titane, zircone, et aluminosilicates, l'oxyde d'aluminium étant préféré. De plus, on peut choisir le composant de métal noble dans le groupe composé de platine, palladium, rhodium, ruthénium, et iridium. Le composant d'oxygène est un oxyde d'un métal comprenant le cérium, fer, nickel, lanthane ou cobalt, néodymium, praesodymium, etc, et des mélanges de ceux-ci. L'invention concerne également un procédé de traitement des gaz d'échappement d'automobiles consistant à mettre en contact le gaz d'échappement avec le composite catalytique précité. Le composite catalytique présente une activité améliorée, notamment pour éliminer le NOx, après des tests de durabilité approfondis et réduit au minimum la formation de H2S.The invention relates to an improved catalytic composite for the treatment of exhaust gases, comprising a first support which is a refractory inorganic oxide, on which are dispersed at least one oxygen storage component and at least one noble metal component, and on which is immediately dispersed a covering layer comprising lanthanum oxide, and optionally a second support which is a refractory inorganic oxide. The first and second supports can be chosen from the group composed of aluminum oxide, silica, titanium dioxide, zirconia, and aluminosilicates, aluminum oxide being preferred. In addition, the noble metal component can be selected from the group consisting of platinum, palladium, rhodium, ruthenium, and iridium. The oxygen component is a metal oxide comprising cerium, iron, nickel, lanthanum or cobalt, neodymium, praesodymium, etc., and mixtures thereof. The invention also relates to a method for treating automobile exhaust gases consisting in bringing the exhaust gas into contact with the abovementioned catalytic composite. The catalytic composite exhibits improved activity, in particular for eliminating NOx, after in-depth durability tests and minimizes the formation of H2S.
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89911943T ATE85241T1 (en) | 1988-10-11 | 1989-09-27 | LANTHANIUM-CONTAINING CATALYST FOR THE TREATMENT OF AUTOMOTIVE EXHAUST. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/255,245 US4923842A (en) | 1988-10-11 | 1988-10-11 | Lanthanum containing catalyst for treating automotive exhaust |
US255245 | 1988-10-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0438492A1 true EP0438492A1 (en) | 1991-07-31 |
EP0438492B1 EP0438492B1 (en) | 1993-02-03 |
Family
ID=22967475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89911943A Expired - Lifetime EP0438492B1 (en) | 1988-10-11 | 1989-09-27 | A lanthanum containing catalyst for treating automotive exhaust gas |
Country Status (6)
Country | Link |
---|---|
US (1) | US4923842A (en) |
EP (1) | EP0438492B1 (en) |
JP (1) | JPH04501084A (en) |
CA (1) | CA1335890C (en) |
MX (1) | MX165907B (en) |
WO (1) | WO1990003843A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660897B1 (en) * | 1999-04-29 | 2003-12-09 | Institut Francais Du Petrole | Catalyst based on a noble metal with low dispersion, and its use in converting hydrocarbon feeds |
CN116020473A (en) * | 2023-01-06 | 2023-04-28 | 广东工业大学 | Catalyst for degrading atrazine by activating peroxymonosulfate, and preparation method and application thereof |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196390A (en) * | 1987-11-03 | 1993-03-23 | Engelhard Corporation | Hydrogen sulfide-suppressing catalyst system |
JP2730750B2 (en) * | 1989-02-16 | 1998-03-25 | マツダ株式会社 | Exhaust gas purification catalyst and method for producing the same |
US5192515A (en) * | 1990-09-20 | 1993-03-09 | Molecular Technology Corporation | Reduction of nitrogen oxide and carbon monoxide in effluent gases |
US5234670A (en) * | 1990-09-20 | 1993-08-10 | Molecular Technology Corporation | Reduction of nitrogen oxide in effluent gases using NCO radicals |
US5116800A (en) * | 1990-12-11 | 1992-05-26 | Allied-Signal Inc. | High durability and exhuast catalyst with low hydrogen sulfide emissions |
US5266548A (en) * | 1992-08-31 | 1993-11-30 | Norton Chemical Process Products Corp. | Catalyst carrier |
WO1994006546A1 (en) * | 1992-09-21 | 1994-03-31 | Allied-Signal Inc. | Layered automotive catalyst with improved performance |
CA2165054A1 (en) * | 1993-06-25 | 1995-01-05 | Zhicheng Hu | Layered catalyst composite |
US5925590A (en) * | 1994-05-25 | 1999-07-20 | Eltron Research, Inc. | Catalysts utilizing oxygen-deficient metal oxide compound for removal of exhaust gas constituents |
US6044644A (en) | 1994-12-06 | 2000-04-04 | Engelhard Corporation | Close coupled catalyst |
US6129834A (en) * | 1995-05-05 | 2000-10-10 | W. R. Grace & Co. -Conn. | NOx reduction compositions for use in FCC processes |
US6165933A (en) | 1995-05-05 | 2000-12-26 | W. R. Grace & Co.-Conn. | Reduced NOx combustion promoter for use in FCC processes |
US20040086441A1 (en) | 1995-12-06 | 2004-05-06 | Masao Hori | Process for purifying exhaust gas from gasoline engines |
US6087298A (en) * | 1996-05-14 | 2000-07-11 | Engelhard Corporation | Exhaust gas treatment system |
EP1402946B1 (en) * | 1996-08-13 | 2005-07-06 | Toyota Jidosha Kabushiki Kaisha | An exhaust purification catalyst for a compression ignition engine |
US5981427A (en) * | 1996-09-04 | 1999-11-09 | Engelhard Corporation | Catalyst composition |
US5948377A (en) * | 1996-09-04 | 1999-09-07 | Engelhard Corporation | Catalyst composition |
US5948723A (en) * | 1996-09-04 | 1999-09-07 | Engelhard Corporation | Layered catalyst composite |
JP3956437B2 (en) * | 1996-09-26 | 2007-08-08 | マツダ株式会社 | Exhaust gas purification catalyst |
US5898014A (en) * | 1996-09-27 | 1999-04-27 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
US6248688B1 (en) | 1996-09-27 | 2001-06-19 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
TW442324B (en) | 1996-12-06 | 2001-06-23 | Engelhard Corp | Catalytic metal plate |
US6921738B2 (en) | 1996-12-06 | 2005-07-26 | Engelhard Corporation | Catalytic metal plate |
DE19732601C2 (en) * | 1997-07-29 | 1999-11-04 | Heraeus Electro Nite Int | Catalytic layer system |
US5947063A (en) * | 1997-11-18 | 1999-09-07 | Southwest Research Institute | Stoichiometric synthesis, exhaust, and natural-gas combustion engine |
JPH11169711A (en) * | 1997-12-09 | 1999-06-29 | Honda Motor Co Ltd | Composite catalyst for purification of exhaust gas |
US6110862A (en) * | 1998-05-07 | 2000-08-29 | Engelhard Corporation | Catalytic material having improved conversion performance |
AU4801199A (en) * | 1998-07-29 | 2000-02-21 | Ishihara Sangyo Kaisha Ltd. | Road provided with air cleaning function and method of cleaning polluted air on road |
JP4648566B2 (en) * | 2001-05-11 | 2011-03-09 | Jx日鉱日石エネルギー株式会社 | Autothermal reforming catalyst and method for producing fuel gas for fuel cell |
JP4648567B2 (en) * | 2001-05-11 | 2011-03-09 | Jx日鉱日石エネルギー株式会社 | Autothermal reforming catalyst and method for producing fuel gas for fuel cell |
US7022644B2 (en) | 2002-02-20 | 2006-04-04 | Engelhard Corporation | Hydrogen sulfide-suppressing catalyst compositions |
US6660683B1 (en) * | 2002-10-21 | 2003-12-09 | W.R. Grace & Co.-Conn. | NOx reduction compositions for use in FCC processes |
US7030055B2 (en) * | 2003-08-18 | 2006-04-18 | W.R. Grace & Co.-Conn. | NOx reduction compositions for use in FCC processes |
US20050054526A1 (en) * | 2003-09-08 | 2005-03-10 | Engelhard Corporation | Coated substrate and process of preparation thereof |
JP4217576B2 (en) * | 2003-09-30 | 2009-02-04 | 東京濾器株式会社 | Exhaust gas purification catalyst |
US20050096215A1 (en) * | 2003-10-31 | 2005-05-05 | Conocophillips Company | Process for producing synthesis gas using stabilized composite catalyst |
US20050100494A1 (en) * | 2003-11-06 | 2005-05-12 | George Yaluris | Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking |
JP3812567B2 (en) * | 2003-12-01 | 2006-08-23 | マツダ株式会社 | Exhaust gas purification catalyst material and method for producing the same |
US20050153836A1 (en) * | 2004-01-13 | 2005-07-14 | Yuichi Matsuo | Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas |
JP4204487B2 (en) * | 2004-01-21 | 2009-01-07 | 本田技研工業株式会社 | Exhaust gas purification catalyst, production method thereof, and exhaust gas purification catalyst device for vehicle |
US20050164879A1 (en) * | 2004-01-28 | 2005-07-28 | Engelhard Corporation | Layered SOx tolerant NOx trap catalysts and methods of making and using the same |
US7795172B2 (en) * | 2004-06-22 | 2010-09-14 | Basf Corporation | Layered exhaust treatment catalyst |
JP4794834B2 (en) * | 2004-07-22 | 2011-10-19 | 株式会社豊田中央研究所 | Exhaust gas purification catalyst |
DE102004043421A1 (en) * | 2004-09-06 | 2006-03-23 | W.C. Heraeus Gmbh | Catalyst for 2-stroke engines or small engines |
WO2006099716A1 (en) * | 2005-03-24 | 2006-09-28 | University Of Regina | Catalysts for hydrogen production |
CN101166574B (en) | 2005-04-27 | 2011-09-21 | 格雷斯公司 | Compositions and processes for reducing NOx emissions during fluid catalytic cracking |
DE102005029200A1 (en) * | 2005-06-22 | 2006-12-28 | Basf Ag | Shell catalyst, useful e.g. for hydrogenating organic compound, comprises ruthenium alone or in combination with a transition metal, applied to a carrier containing silicon dioxide |
US7678347B2 (en) * | 2005-07-15 | 2010-03-16 | Basf Catalysts Llc | High phosphorous poisoning resistant catalysts for treating automobile exhaust |
US7811536B2 (en) * | 2005-07-21 | 2010-10-12 | University Of Delaware | Nitrogen oxides storage catalysts containing cobalt |
US7749472B2 (en) * | 2006-08-14 | 2010-07-06 | Basf Corporation | Phosgard, a new way to improve poison resistance in three-way catalyst applications |
AU2008206334A1 (en) * | 2007-01-16 | 2008-07-24 | Dow Global Technologies Inc. | Stretch fabrics and garments of olefin block polymers |
US7754171B2 (en) | 2007-02-02 | 2010-07-13 | Basf Corporation | Multilayered catalyst compositions |
US7802420B2 (en) * | 2007-07-26 | 2010-09-28 | Eaton Corporation | Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream |
US8038951B2 (en) | 2007-08-09 | 2011-10-18 | Basf Corporation | Catalyst compositions |
US7922988B2 (en) * | 2007-08-09 | 2011-04-12 | Michel Deeba | Multilayered catalyst compositions |
US20090175773A1 (en) * | 2008-01-08 | 2009-07-09 | Chen Shau-Lin F | Multilayered Catalyst Compositions |
GB0817109D0 (en) * | 2008-09-18 | 2008-10-29 | Johnson Matthey Plc | Catalyst and process |
BRPI1014604A2 (en) | 2009-05-04 | 2016-04-05 | Basf Corp | catalyst composition, and method for treating a discharge gas stream |
US8833064B2 (en) * | 2009-11-06 | 2014-09-16 | Basf Corporation | Small engine layered catalyst article and method of making |
US8784759B2 (en) * | 2010-06-10 | 2014-07-22 | Basf Se | NOx storage catalyst with reduced Rh loading |
JP2014522725A (en) * | 2011-08-10 | 2014-09-08 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | Palladium solid solution catalyst and production method |
CN103433057B (en) * | 2013-08-16 | 2015-06-03 | 南京工业大学 | Three-way catalyst for purifying automobile exhaust and preparation method thereof |
US9604175B2 (en) | 2014-06-06 | 2017-03-28 | Clean Diesel Technologies, Inc. | Three-way catalyst systems including Nb—Zr—Al-mixed oxide supports, Ba—Pd, and Rh—Fe material compositions |
KR102569570B1 (en) * | 2021-10-25 | 2023-08-25 | 주식회사 에코앤드림 | Oxidation catalyst including oxygen storage composition and manufacturing method thereof |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3785998A (en) * | 1971-06-30 | 1974-01-15 | Universal Oil Prod Co | Method of catalyst manufacture by impregnating honeycomb-type support |
US3767453A (en) * | 1971-06-30 | 1973-10-23 | Universal Oil Prod Co | Method of depositing a high surface area alumina film on a relatively low surface area support |
US3873469A (en) * | 1972-04-12 | 1975-03-25 | Corning Glass Works | Support coatings for catalysts |
US3993572A (en) * | 1972-08-04 | 1976-11-23 | Engelhard Minerals & Chemicals Corporation | Rare earth containing catalyst composition |
GB1471138A (en) * | 1974-05-06 | 1977-04-21 | Atomic Energy Authority Uk | Supports for catalyst materials |
GB2027358B (en) * | 1978-07-12 | 1983-04-27 | Nippon Catalytic Chem Ind | Exhaust gas purification catalysts |
DE2907106C2 (en) * | 1979-02-23 | 1985-12-19 | Degussa Ag, 6000 Frankfurt | Catalytic converter and its use for cleaning exhaust gases from internal combustion engines |
JPS5610333A (en) * | 1979-07-06 | 1981-02-02 | Toyota Motor Corp | Catalyst for cleaning up exhaust gas and manufacture of said catalyst |
JPS56124442A (en) * | 1980-03-06 | 1981-09-30 | Toyota Central Res & Dev Lab Inc | Catalyst for cleaning of exhaust gas |
JPS5787839A (en) * | 1980-11-20 | 1982-06-01 | Toyota Motor Corp | Catalyst of monolithic construction type for purification of waste gas |
US4438219A (en) * | 1981-10-28 | 1984-03-20 | Texaco Inc. | Alumina catalyst stable at high temperatures |
FR2530489B1 (en) * | 1982-07-26 | 1987-02-27 | Pro Catalyse | PROCESS FOR THE MANUFACTURE OF CATALYSTS FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES |
US4591580A (en) * | 1983-01-26 | 1986-05-27 | W. R. Grace & Co. | Stabilized and doubly promoted platinum group metal catalysts for emission control and method of making same |
US4702897A (en) * | 1983-09-27 | 1987-10-27 | Signal Applied Technologies, Inc. | Lead-tolerant catalyst system and method for treating exhaust gas containing lead compounds |
JPS60110334A (en) * | 1983-11-21 | 1985-06-15 | Nissan Motor Co Ltd | Preparation of catalyst for purifying exhaust gas |
US4650782A (en) * | 1984-11-21 | 1987-03-17 | Allied Corporation | Lead-tolerant catalyst for treating exhaust gas in the presence of SO2 |
JPS6271538A (en) * | 1985-09-24 | 1987-04-02 | Mazda Motor Corp | Catalyst for cleaning up exhaust gas of engine |
US4727052A (en) * | 1986-06-27 | 1988-02-23 | Engelhard Corporation | Catalyst compositions and methods of making the same |
JPH0675676B2 (en) * | 1986-12-24 | 1994-09-28 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
US4760044A (en) * | 1987-06-15 | 1988-07-26 | Allied-Signal Inc. | Catalyst for minimizing the H2 S emissions from automotive exhaust and method of its manufacture |
US4791091A (en) * | 1987-09-30 | 1988-12-13 | Allied-Signal Inc. | Catalyst for treatment of exhaust gases from internal combustion engines and method of manufacturing the catalyst |
-
1988
- 1988-10-11 US US07/255,245 patent/US4923842A/en not_active Expired - Fee Related
-
1989
- 1989-09-27 WO PCT/US1989/004229 patent/WO1990003843A1/en active IP Right Grant
- 1989-09-27 JP JP1511038A patent/JPH04501084A/en active Pending
- 1989-09-27 CA CA000613545A patent/CA1335890C/en not_active Expired - Fee Related
- 1989-09-27 EP EP89911943A patent/EP0438492B1/en not_active Expired - Lifetime
- 1989-10-09 MX MX017893A patent/MX165907B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9003843A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660897B1 (en) * | 1999-04-29 | 2003-12-09 | Institut Francais Du Petrole | Catalyst based on a noble metal with low dispersion, and its use in converting hydrocarbon feeds |
CN116020473A (en) * | 2023-01-06 | 2023-04-28 | 广东工业大学 | Catalyst for degrading atrazine by activating peroxymonosulfate, and preparation method and application thereof |
CN116020473B (en) * | 2023-01-06 | 2024-05-17 | 广东工业大学 | Catalyst for degrading atrazine by activating peroxymonosulfate, and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
US4923842A (en) | 1990-05-08 |
WO1990003843A1 (en) | 1990-04-19 |
CA1335890C (en) | 1995-06-13 |
MX165907B (en) | 1992-12-09 |
JPH04501084A (en) | 1992-02-27 |
EP0438492B1 (en) | 1993-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0438492B1 (en) | A lanthanum containing catalyst for treating automotive exhaust gas | |
EP0418305B1 (en) | A layered automotive catalytic composite | |
EP0310398B1 (en) | Improved catalyst for treatment of exhaust gases from internal combustion engines | |
US4760044A (en) | Catalyst for minimizing the H2 S emissions from automotive exhaust and method of its manufacture | |
US5147842A (en) | Exhaust gas-purifying catalyst and process for preparation thereof | |
US4868149A (en) | Palladium-containing catalyst for treatment of automotive exhaust and method of manufacturing the catalyst | |
US5041407A (en) | High-temperature three-way catalyst for treating automotive exhaust gases | |
US5116800A (en) | High durability and exhuast catalyst with low hydrogen sulfide emissions | |
JP2755937B2 (en) | Method for producing catalyst composition | |
US4919902A (en) | Catalyst for treatment of exhaust gases from internal combustion engines | |
US4650782A (en) | Lead-tolerant catalyst for treating exhaust gas in the presence of SO2 | |
JPH09500570A (en) | Layered catalyst composite | |
JPS637841A (en) | Production of catalyst composition | |
US5051392A (en) | Multifunctional catalyst for treating exhaust fumes from internal combustion engines, containing uranium, at least one uranium promotor and at least one precious metal, and its preparation | |
JPH0626672B2 (en) | Exhaust purification catalyst and method of manufacturing the same | |
US5008090A (en) | Catalytic process for minimizing the H2 S emissions from automotive exhaust | |
US4572904A (en) | Lead-tolerant catalyst system for treating exhaust gas containing lead compounds | |
US4702897A (en) | Lead-tolerant catalyst system and method for treating exhaust gas containing lead compounds | |
EP0589393B1 (en) | Method for purifying oxygen rich exhaust gas | |
US5024824A (en) | Layered automotive catalytic composite | |
AU622867B2 (en) | Thermally stabilized catalysts containing alumina and methods of making the same | |
US4960574A (en) | Palladium containing catalyst for treatment of automotive exhaust | |
EP0139240B1 (en) | Catalyst and method for treating exhaust gases | |
WO1994006546A1 (en) | Layered automotive catalyst with improved performance | |
EP0425488B1 (en) | Pollution control catalyst for minimizing h2s emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910326 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR GB IT LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19911015 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930203 |
|
REF | Corresponds to: |
Ref document number: 85241 Country of ref document: AT Date of ref document: 19930215 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 68904778 Country of ref document: DE Date of ref document: 19930318 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EPTA | Lu: last paid annual fee | ||
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950707 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19950801 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950807 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19950823 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950908 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950928 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19951002 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960927 Ref country code: GB Effective date: 19960927 Ref country code: AT Effective date: 19960927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960930 Ref country code: BE Effective date: 19960930 |
|
BERE | Be: lapsed |
Owner name: ALLIED-SIGNAL INC. Effective date: 19960930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960927 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050927 |