EP0435732B1 - Spillway for high water for barrages and similar structures - Google Patents

Spillway for high water for barrages and similar structures Download PDF

Info

Publication number
EP0435732B1
EP0435732B1 EP90403593A EP90403593A EP0435732B1 EP 0435732 B1 EP0435732 B1 EP 0435732B1 EP 90403593 A EP90403593 A EP 90403593A EP 90403593 A EP90403593 A EP 90403593A EP 0435732 B1 EP0435732 B1 EP 0435732B1
Authority
EP
European Patent Office
Prior art keywords
level
water level
predetermined
spillway
sill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403593A
Other languages
German (de)
French (fr)
Other versions
EP0435732A1 (en
Inventor
François Lemperiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTM Entrepose SA
Original Assignee
GTM Entrepose SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTM Entrepose SA filed Critical GTM Entrepose SA
Priority to AT90403593T priority Critical patent/ATE98723T1/en
Publication of EP0435732A1 publication Critical patent/EP0435732A1/en
Application granted granted Critical
Publication of EP0435732B1 publication Critical patent/EP0435732B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/16Fixed weirs; Superstructures or flash-boards therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Definitions

  • the present invention relates to a spillway spillway for dams and similar structures, of the type defined in the preamble of claim 1.
  • Patent US-2 118 535 describes a system similar to the previous one, but in which the rise, produced in the form of a single rigid plate of wood, metal or other material, is connected to the threshold of the spillway by an articulation of horizontal axis allowing the plate to pivot down and downstream when the stakes which support it bend.
  • the barrier with free overflow threshold offers compared to a work provided with valves the best safety vis-a-vis the hydrological hazard which remains one of the major risks for the dams.
  • valve systems which close the overflow threshold when the valves are closed.
  • the valves of whatever nature, conventional or inflatable, of automatic or manual operation, are generally of a fairly high investment cost and they require periodic maintenance and maneuvers. They also require continuous human monitoring or a controlled mechanism reacting to the water level of the reservoir, a mechanism which is often expensive and sophisticated and which is never completely immune to failure.
  • the operational safety and reliability of a gated structure is lower than that of a structure with a free overflow threshold (not gated).
  • the storage capacity of the dam is increased by an amount corresponding to the height of the raising element or elements.
  • the raising element (s) can be manufactured at a very moderate cost compared to the valves and, in the case where they are installed on the overflow threshold of an already existing dam, this installation can be done without the need for d '' make major modifications to the overflow threshold of the dam as we will see below.
  • the plate forming each raising element can be engaged in a groove provided in the threshold itself or in a mounting piece rigidly fixed to the threshold.
  • the plate forming each raising element can have, in transverse vertical section, a substantially L-shape and its horizontal branch can be rigidly fixed to the threshold for example by a bolted connection of the embedding type. Sealing at the base of the plate can be ensured by filling the embedding groove with a suitable filling material, or by a suitable seal or by both.
  • seals can also be arranged between the vertical edges of the plates
  • the invention can be applied both to the spillway of an existing dam and to that of a dam under construction.
  • the crest of the overhanging threshold is preferably leveled at a level lower than said first predetermined level and the one or more rising elements are embedded on the leveled threshold.
  • the storage capacity of the dam can be kept equal to that it had before the overflow threshold was lowered, or it can be increased depending on whether the elevating element or elements are given a height such as their sound or their vertex finds at said first predetermined level, or at a level higher than this, but lower than said third predetermined level.
  • each riser or a group of risers can be dimensioned so as to bend for a predetermined water level lower than that at which another element or group of risers rise will fold, the latter itself being dimensioned so as to fold for a lower water level than that to which a third element or group of rise elements will fold, and so on. In this way, a progressive increase in the evacuation capacity is obtained, if necessary, depending on the extent of the flood.
  • Figure 1 is a perspective view showing a structure, such as a dam, and its outlet spillway floods with a free discharge threshold, to which the invention can be applied.
  • Figures 2a and 2b show, in vertical section and on a larger scale, the crest of the free overflow threshold of the dam of Figure 1 for two different water levels.
  • Figure 3 is an elevational view of the weir of Figure 1, seen from the downstream side and equipped with a fusible link implemented in the present invention.
  • FIG. 4 is a plan view of the weir of FIG. 3.
  • Figure 4a is a view similar to that of Figure 4, showing another possible arrangement of the elements of the fuse riser implemented in the invention.
  • FIG. 5 shows, on a larger scale, a horizontal section of a seal that can be used between two adjacent elements of the riser of FIGS. 3 and 4.
  • Figures 6 and 7 show, on a larger scale and in vertical section, two embodiments of the embedding of the rising elements.
  • FIGS. 8a to 8e are views in vertical section making it possible to explain the operation of the fuse riser implemented in the present invention, before, during and after the passage of a flood.
  • Figures 9a and 9b are graphs showing the forces which, in service, can be applied to a riser used in the present invention.
  • FIG. 10 is a graph representing the variations of the moments of the driving and resistant forces as a function of the height of water above the overflow threshold, as well as the variations of the flow of water discharged as a function of the height of the overflow blade.
  • FIG. 11 is a view in vertical section showing a lifting element used in the present invention, with which is associated a folding trigger device.
  • FIGS. 12a to 12c show, on a larger scale, various protective devices which can be provided at the upper end of the trigger device of FIG. 13.
  • Figures 13a to 13c are cross-sectional views for comparing the maximum heights of overflow blades in the case of the present invention for risers having different heights ( Figures 11a and 11b) and in the case of a threshold known free discharge ( Figure 11c).
  • FIGS. 14a to 14d are views in vertical section making it possible to explain the operation of a double fusible riser according to another embodiment of the invention.
  • Figures 15 to 17 show, in vertical section, other embodiments of a lifting element used in the present invention.
  • FIG. 18 is a perspective view showing a detail of the raising element in FIG. 17.
  • the structure 1 shown in FIG. 1 can be an embankment dam or a concrete or masonry dam.
  • the invention is not limited to the type of dam shown in FIG. 1, but that, on the contrary, it can be applied to any type of known dam with a free overflow threshold. .
  • the reference number 2 designates the crest of the dam, the number 3 its downstream facing, the number 4 its upstream facing, the number 5 a spillway spillway, the number 6 the weir threshold 5 and the number 7 an evacuation channel.
  • the spillway 5 can be located in the central part of the dam 1 or at the end of it or even excavated on a bank without this altering the possibility of using the invention.
  • the level RN of the normal reservoir in operation is that of the crest 8 of the overflow threshold 6. This level RN determines the maximum volume of reservoir that can be kept by the reservoir formed by the dam.
  • the vertical distance R, called revenge, between the crest 8 of the weir and the crest 2 of the dam is the sum of two terms, namely, on the one hand, an increase h1 in the water level due to a flood, up to a maximum level RM or highest water level (PHE), allowing the discharge of the maximum flood ( Figure 2b) for which the structure is dimensioned, and, on the other hand, an additional height h2 intended to protect the ridge 2 of the dam against the oscillations of the water level at its maximum level RM (effect of wind, waves, etc.)
  • the reservoir portion located between the normal retention level RN and the maximum level RM is not stored and is therefore lost for operation.
  • One of the aims of the invention is to enable the level of normal exploitation of the reservoir to be raised almost permanently, and therefore to increase its storage capacity, except during the passage of exceptional floods.
  • the invention provides for fixing by embedding on the overhanging threshold 6 a rise 10, constituted by at least one element 11, in the form of a plate, for example five elements 11a-11e as shown in FIGS. 3 and 4 , said rise 10 or the rise elements 11 being able to resist, without breaking, the water load corresponding to a moderate spill (allowing the passage of the most frequent floods) and being rendered fusible by folding around a installation line for a predetermined water load corresponding to a level N at most equal at the maximum level RM and then allowing the passage of the strongest floods.
  • a rise 10 constituted by at least one element 11, in the form of a plate, for example five elements 11a-11e as shown in FIGS. 3 and 4 , said rise 10 or the rise elements 11 being able to resist, without breaking, the water load corresponding to a moderate spill (allowing the passage of the most frequent floods) and being rendered fusible by folding around a installation line for a predetermined water load corresponding to a level N at most equal at the maximum level
  • the number of elevating elements 11 is not limited to five elements as shown in Figures 3 and 4, but may be smaller or larger depending on the length of the weir 5 (measured in the longitudinal direction of the dam) .
  • the number of elevating elements 11 is chosen so as to obtain low unit masses allowing easy installation and replacement of said elevating elements.
  • a conventional seal 13 for example made of rubber, is provided at each of the two ends of the riser 10 between it and the lateral flanks 14 of the weir 5.
  • seals 13 (FIG. 5) are also provided between the vertical lateral edges, two by two facing each other, adjacent elevation elements 11 as is also visible in FIG. 4. All the seals 13 must be such that they do not prevent the folding of the elevating elements 11 relative to one another and relative to the lateral flanks 14 of the weir 5 when it is made necessary for the evacuation of a flood. important.
  • Each elevating element 11 is constituted by a plate made of a metal (suitably protected against corrosion) or other material capable of being folded. At its lower end, the plate 11 can be engaged in an embedding groove 12 formed in the threshold 6 of the weir 5, the groove 12 having a width slightly greater than the thickness of the plate 11 as shown in the figures 6 and 7.
  • the seal at the base of the plates 11 can be ensured by a seal 15 disposed between the threshold 6 and the lower part of the plates 11, for example on the upstream side thereof, and / or by a filling material 16, such as by example of sand, put in the groove 12 on either side of the plates 11.
  • the embedding line 17 around which the elevation elements 11 will bend can be materialized by a support member, continuous or disconstinu, disposed on the downstream side of the elevation elements 11; said support member may be constituted by a longitudinal bar 18, fixed to each elevating element 11, or by a spoiler 19 fixed to the masonry of the threshold 6 in the region of the downstream edge of the groove 12.
  • the elevating elements 11 may comprise, in one or both of their faces, at the level of the embedding line 17, a weakening (not shown) in the form of a groove, continuous or discontinuous, which facilitates the folding of the raising element 11 around the line 17 under a predetermined force.
  • the crest line of the rise 10 is no longer straight, but broken, in a crenelation, so that the length of discharge over the rise 10 is notably increased, which allows, as will be seen below, for a given water level and a given evacuation rate, to reduce the height (thickness) of the overflow blade, therefore to increase the height of the rise and consequently further increase the water storage capacity of the dam .
  • the increase 10 of the present invention makes it possible to raise the level of the normal retention of the level RN (level of the normal retention of the free overflow threshold 6, that is to say without the increase 10) up to the level RN 'corresponding to the height of the rise 10 above the threshold 6.
  • each rise element 11 is dimensioned so as to resist bending for a water load of less than one predetermined level N, itself at most equal to the maximum level RM already mentioned above.
  • said predetermined level is equal to the RM level
  • the water level remains below the RM level for low or medium-sized floods and is between the RN 'and RM levels, the water spills over the rise 10 as shown in figure 8b, without the rise being destroyed.
  • the water level drops to level RN 'or to a lower level if water is drawn into the reservoir.
  • the risks of malfunction due to floating bodies can be easily eliminated by upstream protection using conventional techniques adaptable to each particular case.
  • the protection can for example be constituted by floating lines on the reservoir, at a certain distance upstream from the weir, or by stop devices fixed on the upstream facing of the dam.
  • the dams and overflow weirs are dimensioned so that the level of the lake (level of the reservoir) reaches the maximum level RM for the exceptional flood envisaged (project flood).
  • This flood may for example be the flood occurring only one year in a thousand (millennial flood).
  • the flow of this project flood is for example 200m3 / s and that the free spillway threshold 6 is 40 m long.
  • the height H of the water layer necessary to evacuate the flow of the project flood corresponds to 5m3 / s per linear meter of threshold.
  • the level of the threshold 6 of the weir 5 is leveled 2 m below the maximum level RM to allow the evacuation of the millennial flood, and we lose therefore a useful volume of water corresponding to a 2 meter section.
  • the level of the normal reservoir RN ' is raised to 1.20 m above the level of the normal reservoir RN of the overflow threshold 6 free, that is to say without the elevating elements 11.
  • elevation elements 11 having a height greater than 1.2m the height of the admissible sheet of water will be less than 0.8m and it will be necessary to allow the destruction of the elevation elements, for example every 10 years, but the level of normal restraint will be further increased.
  • elevation elements 11 having a height less than 1.2m we can admit a sheet of water having a height greater than 0.8m, the elevation elements being then destroyed only all 50 or 100 years, but the level of normal withholding will then be lower than in the previous cases.
  • the choice of the height of the elevating elements 11 is therefore essentially an economic choice. In general, it is probably desirable to fix the time interval between two successive total destructions of the fusible riser at approximately 20 years, which would lead to a theoretical height of 1.2 m for the augmentation elements in the example considered here.
  • the destruction of the first element 11c by a medium-sized flood may be sufficient for the flow of the flood without additional rise in the water level, which avoids the destruction of the other elements 11a, 11b, 11d and 11e .
  • the margin of 10 cm which is thus taken is added to the maximum admissible overhanging blade height, so that the height of the rising elements and, consequently, the slice of water gained (RN'-RN) becomes equal at 1.1m (2m-0.8m-0.1m) in the example considered here.
  • the folding of the elevation element or elements 11 and, consequently, their destruction depends on the balance between, on the one hand, the motor moment Mm, that is to say the moment of the forces which tend to bend the rising element considered, and, on the other hand, the resistant moment Mr, that is to say the moment of the forces which oppose the folding of said rising element to the embedding. If a trigger device, directly linked to the water level, is not provided to trigger the folding of the raising element with precision for a predetermined water level, the water height corresponding to the above-mentioned equilibrium cannot be fixed only with a margin of uncertainty of up to 0.2m.
  • the flow rate of 50m3 / s considered in this example to reduce the height of the maximum permissible overhanging blade before folding the lifting elements to less than 0.8m, by ensuring that the crest line of the elements 11 of the rise 10, considered together, is no longer disposed parallel to the crest of the overflow threshold 6, but along a non-rectilinear line, for example a broken line as shown in FIG. 4a, to lengthen the length of discharge of the flow mentioned above. If this length is doubled, the flow rate of 50m3 / s is then distributed over 80m instead of 40m and the height of the corresponding maximum admissible blade is reduced from 0.8m to 0.5m. This allows, all other things being equal, to raise the height of the elevating elements 11 by 0.3 m and to consequently increase the volume of water stored in the reservoir.
  • Figures 9a and 9b show the forces which, in service, can be applied to a riser 11 of the present invention.
  • the element 11 in the form of a plate, has a thickness e and a height H les above the threshold 6.
  • RM designates as before the maximum level
  • H2 denotes the height of the maximum permissible overhanging blade above the raising element 11
  • z denotes the water level.
  • the driving forces, which tend to bend the raising element 11, are the thrust P of water on the upstream face of the raising element 11.
  • the resistant forces, which oppose the folding of the elevating element 11, are the inherent resistance of the elevating element 11.
  • ⁇ w is the density of water and ⁇ a is the elastic limit of the material used for the construction of the rising element, for example steel.
  • This triggering device essentially consists of a vent pipe 24 which, in normal service, places the space between the plates 11 and 21 in relation to the atmosphere, the upper end 24a of the pipe vent 24 being located at a level N equal to the level for which it is desired that the folding of the plate 11 occurs.
  • the pipe 24 can be bent and pass through the plate 21 as shown in FIG. 11.
  • An orifice 25 having a smaller cross-section than that of the pipe 24 is provided at the lower part of the downstream plate 11, near the threshold 6 , to evacuate the space between the plates 11 and 21 the water due to possible leaks at the joint 22 or the water which could enter through the upper orifice of the pipe 24, because of the waves, before the level of water has actually reached level N.
  • vent pipe 24 is associated with each rising element and each pipe 24 extends upwards to a level N equal to the level N1 or N2 or RM for which the corresponding element must bend.
  • each vent pipe 24 can be equipped with a device for protection against floating bodies, so as not to be blocked by them, or with a device for protection against waves, so that one or more successive waves do not inadvertently trigger the folding of the plate 11.
  • Such protection devices are shown in Figures 12a to 12c.
  • the protection device of FIG. 12a essentially consists of a funnel 26, the upper edge 26a of which is at a level higher than the level N and which has at least one small hole 27 at a level lower than the level N.
  • the protection device consists of the pipe 24 itself, the upper end of which is bent in the form of a siphon 28.
  • the protection device of FIG. 12c consists of a bell 29 , which covers the upper end 24a of the vent pipe 24 and of which the vertex 29a is at a slightly higher level than the level N.
  • the overflow threshold 6 of which was initially leveled depending on the project flood initially chosen, at a level determining the level of the normal reservoir RN (FIG. 13c), to level the threshold 6 a few decimeters below its current coast (corresponding to RN) and to embed on the leveled threshold 6 a fuse increase 10, in accordance with the present invention, composed of at least one increase element 11 dimensioned in height and thickness as described above to fold around line 17 when the water level reaches a predetermined level at most equal to the maximum level RM corresponding to the project flood.
  • the probability of opening of the increase 10 is not modified but, in the event of an exceptional flood, the flow section available after total destruction of the increase 10 is notably increased for the same water level in the reservoir, which makes it possible to safely pass a flood having a flow rate much higher than that of the flood for which the structure was originally dimensioned.
  • the height chosen for the elevating elements 11 is equal to the leveling height of the threshold 6 (FIG. 13a)
  • the plate 21 remains upright ( Figure 14c) and the normal retention level is only partially reduced (RN''instead of RN' before folding the plate downstream 11). If the folding of the plate 11 was not sufficient to evacuate the flood and if the water level reaches a second predetermined level N2 (N1 ⁇ N2 ⁇ RM), the upstream plate 21 in turn folds as shown on the figure 14d. After folding of the plate 11 and, if necessary, of the plate 21 and after evacuation of the flood, the plate or plates 11 and 21 can be replaced by unfolded plates.
  • each plate 11 (or 21 or 31) forming a raising element was engaged in a groove provided in the threshold 6.
  • the plate 11 (or 21 or 31) can be engaged in a groove formed in a mounting part 32, continuous or discontinuous, which is itself rigidly fixed to the threshold 6, for example by means of bolts and threaded rods 33 sealed in the masonry of the threshold 6 as shown in Figure 15.
  • the threshold 6 is leveled at least by an amount corresponding to the height of the mounting piece 32.
  • the embedding can be carried out as shown in Figure 16.
  • the plate 11 ' seen in vertical section, is curved in the shape of L and its horizontal branch 11'a is rigidly fixed to the threshold 6 by a connection of the embedding type, that is to say a connection where no movement relative is only authorized, for example by means of several bolts and threaded rods 33 (only one is visible in FIG. 16) sealed in the masonry of the threshold.
  • a connection of the embedding type that is to say a connection where no movement relative is only authorized, for example by means of several bolts and threaded rods 33 (only one is visible in FIG. 16) sealed in the masonry of the threshold.
  • straight vertical plates can be used, like the plates 11 of FIGS. 8, 13, 14, 15, which are then rigidly fixed to the threshold 6 by brackets, the vertical branches of the brackets being fixed to the plates for example by welding, while that their horizontal branches can be fixed to the threshold 6 in a manner similar to that shown in Figure 16.
  • FIG. 17 shows, in vertical section, an elevation element 11 composed of two plates 11i and 11j which are removably stacked one on the other. If desired, several plates 11j can be provided and stacked one on the other. Plates 11i and 11j can be held together by at least two pairs of plates 34, one pair of which is visible in FIGS. 17 and 18, which are rigidly fixed to one of the two plates 11i and 11j and which straddle the other plate. Instead of the plates 34, it is also possible to use bars extending over the entire length of the plates 11i and 11j. A seal 35 is provided between the plates 11i and 11j and, if necessary, between the plates 11j when there are several.
  • the plates can all have the same vertical dimension or different vertical dimensions; for example, the upper plate 11j has a smaller vertical dimension than that of the plate 11i.
  • the height of the rise 10 depends on an economic choice, on the desired progressiveness in the folding of the various rise elements, on the precision of the water level at which the folding (precision which can be improved by providing a trigger device as described above with reference to Figure 11) and the shape of the peak line of the rise, line which can be straight or square.
  • the height of the resulting rising elements can vary between 0.9m and 1.5m, allowing, depending on the options taken, to gain between 45 and 75% of the slice of water which would be lost without the use of the fusible link.
  • the fuse increase implemented in the present invention allows to substantially and almost permanently increase the storage capacity of a dam or other structure with a free discharge threshold, while maintaining or increasing the operational safety specific to structures with a free discharge threshold, by reliably allowing the evacuation of exceptional floods by automatic opening (folding of 'at least one element of the increase) without any monitoring or any human intervention or control device. It is also clear that the surge can be manufactured and installed on the weir sill of a dam or other structure for a lower cost than that of previously known valves, and without major modification of the weir sill.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)
  • Sewage (AREA)
  • Revetment (AREA)
  • Road Paving Structures (AREA)
  • Catching Or Destruction (AREA)
  • Building Environments (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

For the purpose of effecting a quasi-permanent raising of the normal water level of an impounded reservoir and thereby augmenting its storage capacity except during the passage of major floods, the invention consists of rigidly fixing to the sill of the spillway a water level raising means comprising at least one vertical plate capable of resisting the water loads when spilling moderate heads (for discharging the floods of shorter recurrence intervals) but bending at its lower portion where it is fixed to the sill at a predetermined head not higher than the maximum water level in order to discharge larger floods.

Description

La présente invention concerne un déversoir évacuateur de crues pour barrages et ouvrages similaires, du type défini dans le préambule de la revendication 1.The present invention relates to a spillway spillway for dams and similar structures, of the type defined in the preamble of claim 1.

Des déversoirs connus de ce type sont décrits dans "Engineering for Dams", W.F. Creager et al. , Vol. 3, pp 870-876 John Wiley & Sons, Inc. New York/Chapman & Hall, Ltd. Londres, ainsi que dans le document US-A-2 118 535.Known weirs of this type are described in "Engineering for Dams", W.F. Creager et al. , Flight. 3, pp 870-876 John Wiley & Sons, Inc. New York / Chapman & Hall, Ltd. London, as well as in document US-A-2 118 535.

Dans la publication "Engineering for Dams" les éléments de hausse sont formés par une série de planches ou panneaux disposés verticalement et par des piquets qui soutiennent les planches du côté aval et qui sont encastrés à leur base dans le seuil du déversoir. Quand l'eau atteint un certain niveau, les piquets se plient dans la région de leur encastrement et les planches ou panneaux sont chassés par l'eau et perdus. Le brevet USA-2 118 535 décrit un système semblable au précédent , mais dans lequel la hausse, réalisée sous la forme d'une unique plaque rigide en bois, en métal ou autre matière, est reliée au seuil du déversoir par une articulation d'axe horizontal permettant à la plaque de pivoter vers le bas et vers l'aval quand les piquets qui la soutiennent se plient.In the publication "Engineering for Dams" the rising elements are formed by a series of boards or panels arranged vertically and by stakes which support the boards on the downstream side and which are embedded at their base in the weir threshold. When the water reaches a certain level, the stakes bend in the region of their embedding and the boards or panels are driven out by the water and lost. Patent US-2 118 535 describes a system similar to the previous one, but in which the rise, produced in the form of a single rigid plate of wood, metal or other material, is connected to the threshold of the spillway by an articulation of horizontal axis allowing the plate to pivot down and downstream when the stakes which support it bend.

L'état actuel de la pratique de la conception et de la construction des barrages à seuil déversant conduit à dimensionner ces ouvrages pour des conditions de crues (millénale par exemple) conduisant à des hauteurs de lame déversante importantes (de l'ordre de 1 à 5m suivant les ouvrages).The current state of practice in the design and construction of dams with overhanging thresholds means that these structures must be dimensioned for flood conditions (millennial for example) leading to significant heights of overhanging blade (of the order of 1 to 5m depending on the works).

A dimensionnement égal des organes d'évacuation des crues, le barrage à seuil déversant libre offre par rapport à un ouvrage muni de vannes la meilleure sécurité face à l'aléa hydrologique qui reste un des risques majeurs pour les barrages.With an equal dimensioning of the bodies of evacuation of the floods, the barrier with free overflow threshold offers compared to a work provided with valves the best safety vis-a-vis the hydrological hazard which remains one of the major risks for the dams.

En contre-partie, l'adoption d'un seuil déversant complètement libre conduit à une perte de la tranche de retenue utile correspondant à la hauteur maximale de la lame déversante, c'est-à-dire à la différence susmentionnée desdits premier et second niveaux prédéterminés. Cette perte peut représenter, notamment pour des ouvrages de petite ou moyenne importance, une part significative du volume utile de la retenue, (cette part pouvant atteindre ou dépasser 50%).In return, the adoption of a completely free overhanging threshold leads to a loss of the useful retaining edge corresponding to the maximum height of the overhanging blade, that is to say the aforementioned difference of said first and second predetermined levels. This loss can represent, in particular for small or medium-sized works, a significant part of the useful volume of the reservoir (this part can reach or exceed 50%).

Le problème que la présente invention cherche à résoudre peut se résumer aux deux objectifs principaux suivants, qui peuvent être recherchés simultanément ou alternativement :

  • 1°/ augmenter de façon quasi-permanente la capacité de stockage d'un barrage à seuil déversant libre;
  • 2°/ maintenir et/ou accroître la sécurité de fonctionnement propre aux ouvrages à seuil déversant, en permettant de façon fiable le passage des crues exceptionnelles, tout en tolérant un déversement des crues de faible ou moyenne importance, sans intervention extérieure et sans modification majeure de l'ouvrage.
The problem that the present invention seeks to solve can be summed up in two main objectives following, which can be searched simultaneously or alternatively:
  • 1 ° / almost permanently increase the storage capacity of a dam with a free overflow threshold;
  • 2 ° / maintain and / or increase the operational safety specific to overflowing threshold works, by reliably allowing the passage of exceptional floods, while tolerating a spill of low or medium-sized floods, without external intervention and without major modification of the book.

Divers dispositifs ont déjà été proposés et existent actuellement pour augmenter la capacité de stockage d'une retenue. En majorité, ces dispositifs sont essentiellement constitués par des systèmes de vannes, qui obturent le seuil déversant quand les vannes sont fermées. Les vannes, de quelque nature qu'elles soient, classiques ou gonflables, de fonctionnement automatique ou manuel, sont en général d'un coût d'investissement assez élevé et elles nécessitent un entretien et des manoeuvres périodiques. Elles nécessitent en outre une surveillance humaine continue ou un mécanisme asservi réagissant au niveau d'eau de la retenue, mécanisme qui est souvent onéreux et sophistiqué et qui n'est jamais totalement à l'abri d'une défaillance. Enfin, à capacité d'évacuation égale, la sécurité d'exploitation et la fiabilité d'un ouvrage vanné sont inférieures à celles d'un ouvrage à seuil déversant libre (non vanné).Various devices have already been proposed and currently exist to increase the storage capacity of a reservoir. In majority, these devices are essentially constituted by valve systems, which close the overflow threshold when the valves are closed. The valves, of whatever nature, conventional or inflatable, of automatic or manual operation, are generally of a fairly high investment cost and they require periodic maintenance and maneuvers. They also require continuous human monitoring or a controlled mechanism reacting to the water level of the reservoir, a mechanism which is often expensive and sophisticated and which is never completely immune to failure. Finally, for an equal discharge capacity, the operational safety and reliability of a gated structure is lower than that of a structure with a free overflow threshold (not gated).

Certains dispositifs existent, qui permettent d'augmenter temporairement la capacité de stockage d'une retenue, tels que sacs de sable ou batardeaux (également appelés flash boards). Ces dispositifs, décrits dans l'ouvrage précité "Engineering for Dams", restent cependant d'une ampleur limitée et, du fait qu'ils nécessitent une intervention humaine préalable à chaque crue, ils présentent un aléa de fonctionnement important.Some devices exist, which temporarily increase the storage capacity of a reservoir, such as sandbags or cofferdams (also called flash boards). These devices, described in the aforementioned book "Engineering for Dams", however remain of limited scope and, because they require human intervention prior to each flood, they present a significant operating hazard.

Il existe également, sur certains grands barrages en remblais, une section de digue fusible, arasée à une côte inférieure à celle du reste de l'ouvrage et fonctionnant suivant le principe de l'érosion de ses matériaux constitutifs, érosion qui est engendrée par une montée extrême du niveau de la retenue lors d'une crue d'importance très exceptionnelle. Cette digue fusible a en fait pour but d'éviter le déversement incontrôlé et catastrophique d'une crue extrême sur l'ensemble d'un ouvrage, en concentrant les effets de la crue sur une section spécialement aménagée pour se rompre par érosion et offrir ainsi une capacité d'évacuation supplémentaire. Après la rupture de la digue fusible, des travaux de réparation importants seraient nécessaires pour permettre à nouveau l'exploitation normale de l'ouvrage.There is also, on certain large embankment dams, a section of fusible dam, leveled at a lower coast than that of the rest of the structure and operating according to the principle of the erosion of its constituent materials, erosion which is generated by a extreme rise in the level of the reservoir during a flood of very exceptional importance. The purpose of this fuse dam is in fact to avoid the uncontrolled and catastrophic discharge of an extreme flood on the whole of a structure, by concentrating the effects of the flood on a section specially equipped to break by erosion and thus offer additional evacuation capacity. After the rupture of the fusible dike, major repair work would be necessary to allow normal operation of the structure again.

A la connaissance de la demanderesse, il semble donc qu'aucun dispositif existant ne réponde de manière satisfaisante aux objectifs indiqués plus haut, avec une exploitation simple et pour un coût d'investissement modéré.To the knowledge of the applicant, it therefore seems that no existing device satisfactorily meets the objectives indicated above, with simple operation and for a moderate investment cost.

Selon la présente invention, le problème susmentionné est résolu par les caractéristiques contenues dans la partie caractérisante de la revendication 1.According to the present invention, the above problem is solved by the features contained in the characterizing part of claim 1.

Dans ces conditions, il est clair que la capacité de stockage du barrage est accrue d'une quantité correspondant a la hauteur du ou des éléments de hausse. Le ou les éléments de hausse peuvent être fabriqués à un coût très modéré par rapport aux vannes et, dans le cas où ils sont installés sur le seuil déversant d'un barrage déjà existant, cette installation peut être faite sans qu'il soit nécessaire d'apporter des modifications majeures au seuil déversant du barrage comme on le verra plus loin. Il est également clair que pour des crues d'importance moyenne, tant que le niveau de l'eau n'atteint pas ledit troisième niveau prédéterminé, lequel peut être déterminé de façon à être en pratique égal ou légèrement plus bas que ledit second niveau prédéterminé (niveau maximal ou niveau des plus hautes eaux), l'eau pourra passer par-dessus le ou lesdits éléments de hausse pour évacuer la crue, sans qu'il en résulte une destruction de la hausse et, par suite, sans qu'il en résulte une diminution de la capacité accrue de stockage du barrage. Par contre, si, dans le cas d'une crue exceptionnelle, le niveau de l'eau atteint ledit troisième niveau prédéterminé, le ou les éléments de hausse se plient automatiquement autour de la ligne d'encastrement sous la seule action des forces de poussée de l'eau, donc sans aucune intervention extérieure, redonnant ainsi au seuil déversant sa pleine capacité d'évacuation correspondant à la hauteur maximale de la lame déversante pour laquelle le barrage a été conçu.Under these conditions, it is clear that the storage capacity of the dam is increased by an amount corresponding to the height of the raising element or elements. The raising element (s) can be manufactured at a very moderate cost compared to the valves and, in the case where they are installed on the overflow threshold of an already existing dam, this installation can be done without the need for d '' make major modifications to the overflow threshold of the dam as we will see below. It is also clear that for medium floods, as long as the level water does not reach said third predetermined level, which can be determined so as to be in practice equal or slightly lower than said second predetermined level (maximum level or highest water level), the water may pass through above the said rising element or elements to evacuate the flood, without this resulting destruction of the rise and, consequently, without this resulting in a decrease in the increased storage capacity of the dam. On the other hand, if, in the event of an exceptional flood, the water level reaches said third predetermined level, the raising element or elements automatically fold around the embedding line under the sole action of the pushing forces. water, therefore without any external intervention, thus restoring the discharge threshold to its full evacuation capacity corresponding to the maximum height of the discharge blade for which the dam was designed.

A sa partie inférieure, la plaque formant chaque élément de hausse peut être engagée dans une rainure prévue dans le seuil lui-même ou dans une pièce de montage fixée rigidement au seuil. Ou encore, la plaque formant chaque élément de hausse peut avoir, en coupe verticale transversale, une forme sensiblement en L et sa branche horizontale peut être fixée rigidement au seuil par exemple par une liaison boulonnée du type encastrement. L'étanchéité à la base de la plaque peut être assurée par remplissage de la rainure d'encastrement avec un matériau de remplissage approprié, ou par un joint d'étanchéité approprié ou par les deux à la fois. Quand la hausse est formée de plusieurs plaques juxtaposées le long de la crête du seuil déversant, des joints d'étanchéité peuvent être aussi disposés entre les bords verticaux des plaquesAt its lower part, the plate forming each raising element can be engaged in a groove provided in the threshold itself or in a mounting piece rigidly fixed to the threshold. Or, the plate forming each raising element can have, in transverse vertical section, a substantially L-shape and its horizontal branch can be rigidly fixed to the threshold for example by a bolted connection of the embedding type. Sealing at the base of the plate can be ensured by filling the embedding groove with a suitable filling material, or by a suitable seal or by both. When the rise is formed of several plates juxtaposed along the crest of the overflow threshold, seals can also be arranged between the vertical edges of the plates

L'invention peut être appliquée aussi bien au déversoir d'un barrage existant qu'à celui d'un barrage en cours de construction. Dans le premier cas, la crête du seuil déversant est de préférence dérasée à un niveau plus bas que ledit premier niveau prédéterminé et le ou lesdits éléments de hausse sont encastrés sur le seuil dérasé. Dans ce cas, la capacité de stockage du barrage peut être maintenue égale à celle qu'il avait avant dérasement du seuil déversant, ou elle peut être accrue selon que l'on donne à ou aux éléments de hausse une hauteur telle que son ou leur sommet trouve audit premier niveau prédéterminé, ou à un niveau supérieur à celui-ci, mais inférieur audit troisième niveau prédéterminé. Quelle que soit la hauteur du ou des éléments de hausse, dans les limites indiquées ci-dessus, on obtient une sécurité plus grande qu'avec le seuil déversant non dérasé, étant donné que l'ouverture qui est obtenue après pliage du ou des éléments de hausse a une hauteur plus grande que dans le cas d'un seuil déversant non dérasé, permettant ainsi d'évacuer un débit de crue plus important que le débit maximal de la crue exceptionnelle pour laquelle le barrage avait été initialement conçu.The invention can be applied both to the spillway of an existing dam and to that of a dam under construction. In the first case, the crest of the overhanging threshold is preferably leveled at a level lower than said first predetermined level and the one or more rising elements are embedded on the leveled threshold. In this case, the storage capacity of the dam can be kept equal to that it had before the overflow threshold was lowered, or it can be increased depending on whether the elevating element or elements are given a height such as their sound or their vertex finds at said first predetermined level, or at a level higher than this, but lower than said third predetermined level. Whatever the height of the elevation element (s), within the limits indicated above, greater security is obtained than with the undisturbed overflow threshold, since the opening which is obtained after folding of the element (s) rise at a higher height than in the case of an undisturbed overflow threshold, thus allowing to evacuate a higher flood flow than the maximum flow of the exceptional flood for which the dam was originally designed.

De même, dans la conception d'un nouveau barrage, on pourra adopter une plus grande différence entre les premier et second niveaux prédéterminés (ce qui contribue à augmenter la sécurité) sans craindre que celà entraîne une diminution de la capacité de stockage du barrage, étant donné que cette capacité de stockage pourra être maintenue, voire même augmentée, sans diminution de la sécurité, en prévoyant un ou plusieurs éléments de hausse conformes à la présente invention.Similarly, in the design of a new dam, it will be possible to adopt a greater difference between the first and second predetermined levels (which contributes to increasing safety) without fear that this would lead to a reduction in the storage capacity of the dam, since this storage capacity can be maintained, or even increased, without reducing security, by providing one or more augmentation elements in accordance with the present invention.

Dans le cas où plusieurs éléments de hausse sont prévus, chaque élément de hausse ou un groupe d'éléments de hausse peut être dimensionné de façon à plier pour un niveau d'eau prédéterminé plus bas que celui auquel un autre élément ou groupe d'éléments de hausse pliera, ce dernier étant lui-même dimensionné de façon à plier pour un niveau d'eau plus bas que celui auquel pliera un troisième élément ou groupe d'éléments de hausse, et ainsi de suite. De cette manière, on obtient, si nécessaire, une augmentation progressive de la capacité d'évacuation suivant l'importance de la crue.In the case where several risers are provided, each riser or a group of risers can be dimensioned so as to bend for a predetermined water level lower than that at which another element or group of risers rise will fold, the latter itself being dimensioned so as to fold for a lower water level than that to which a third element or group of rise elements will fold, and so on. In this way, a progressive increase in the evacuation capacity is obtained, if necessary, depending on the extent of the flood.

On notera également que, si un ou plusieurs éléments de hausse ont plié sous la poussée d'une crue exceptionnelle, ils peuvent être facilement et économiquement remplacés par d'autres éléments de hausse, sans avoir à effectuer des réparations importantes, après que la crue a été évacuée.It will also be noted that, if one or more rising elements have bent under the thrust of an exceptional flood, they can be easily and economically replaced by other rising elements, without having to carry out major repairs, after the flood has been evacuated.

D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre de diverses formes d'exécution de la présente invention données à titre d'exemple, en référence aux dessins annexés dans lesquels :Other characteristics and advantages will appear during the description which follows of various embodiments of the present invention given by way of example, with reference to the appended drawings in which:

la figure 1 est une vue en perspective montrant un ouvrage, tel qu'un barrage, et son déversoir évacuateur de crues à seuil déversant libre, auquel l'invention peut être appliquée.Figure 1 is a perspective view showing a structure, such as a dam, and its outlet spillway floods with a free discharge threshold, to which the invention can be applied.

Les figures 2a et 2b montrent, en coupe verticale et à plus grande échelle, la crête du seuil déversant libre du barrage de la figure 1 pour deux niveaux d'eau différents.Figures 2a and 2b show, in vertical section and on a larger scale, the crest of the free overflow threshold of the dam of Figure 1 for two different water levels.

La figure 3 est une vue en élévation du déversoir de la figure 1, vu du côté aval et équipé d'une hausse fusible mise en oeuvre dans la présente invention.Figure 3 is an elevational view of the weir of Figure 1, seen from the downstream side and equipped with a fusible link implemented in the present invention.

La figure 4 est une vue en plan du déversoir de la figure 3.FIG. 4 is a plan view of the weir of FIG. 3.

La figure 4a est une vue semblable à celle de la figure 4, montrant une autre disposition possible des éléments de la hausse fusible mise en oeuvre dans l'invention.Figure 4a is a view similar to that of Figure 4, showing another possible arrangement of the elements of the fuse riser implemented in the invention.

La figure 5 montre, à plus grande échelle, une section horizontale d'un joint d'étanchéité utilisable entre deux éléments adjacents de la hausse des figures 3 et 4.FIG. 5 shows, on a larger scale, a horizontal section of a seal that can be used between two adjacent elements of the riser of FIGS. 3 and 4.

Les figures 6 et 7 montrent, à plus grande échelle et en coupe verticale, deux formes d'exécution de l'encastrement des éléments de hausse.Figures 6 and 7 show, on a larger scale and in vertical section, two embodiments of the embedding of the rising elements.

Les figures 8a à 8e sont des vues en coupe verticale permettant d'expliquer le fonctionnement de la hausse fusible mise en oeuvre dans présente invention, avant, pendant et après le passage d'une crue.FIGS. 8a to 8e are views in vertical section making it possible to explain the operation of the fuse riser implemented in the present invention, before, during and after the passage of a flood.

Les figures 9a et 9b sont des graphiques montrant les forces qui, en service, peuvent être appliquées à un élément de hausse mis en oeuvre dans la présente invention.Figures 9a and 9b are graphs showing the forces which, in service, can be applied to a riser used in the present invention.

La figure 10 est un graphique représentant les variations des moments des forces motrice et résistante en fonction de la hauteur d'eau au dessus du seuil déversant, ainsi que les variations du débit d'eau évacué en fonction de la hauteur de la lame déversante.FIG. 10 is a graph representing the variations of the moments of the driving and resistant forces as a function of the height of water above the overflow threshold, as well as the variations of the flow of water discharged as a function of the height of the overflow blade.

La figure 11 est une vue en coupe verticale montrant un élément de hausse mis en oeuvre dans la présente invention, auquel est associé un dispositif déclencheur de pliage.FIG. 11 is a view in vertical section showing a lifting element used in the present invention, with which is associated a folding trigger device.

Les figures 12a à 12c montrent, à plus grande échelle, divers dispositifs protecteurs pouvant être prévus à l'extrémité supérieure du dispositif déclencheur de la figure 13.FIGS. 12a to 12c show, on a larger scale, various protective devices which can be provided at the upper end of the trigger device of FIG. 13.

Les figures 13a à 13c sont des vues en coupe transversale permettant de comparer les hauteurs maximales de lames déversantes dans le cas de la présente invention pour des éléments de hausse ayant des hauteurs différentes (figures 11a et 11b) et dans le cas d'un seuil déversant libre connu (figure 11c).Figures 13a to 13c are cross-sectional views for comparing the maximum heights of overflow blades in the case of the present invention for risers having different heights (Figures 11a and 11b) and in the case of a threshold known free discharge (Figure 11c).

Les figures 14a à 14d sont des vues en coupe verticale permettant d'expliquer le fonctionnement d'une double hausse fusible selon une autre forme d'exécution de l'invention.FIGS. 14a to 14d are views in vertical section making it possible to explain the operation of a double fusible riser according to another embodiment of the invention.

Les figures 15 à 17 montrent, en coupe verticale, d'autres formes d'exécution d'un élément de hausse mis en oeuvre dans la présente invention.Figures 15 to 17 show, in vertical section, other embodiments of a lifting element used in the present invention.

La figure 18 est une vue en perspective montrant un détail de l'élément de hausse de la figure 17.FIG. 18 is a perspective view showing a detail of the raising element in FIG. 17.

L'ouvrage 1 représenté dans la figure 1 peut être un barrage en remblais ou un barrage en béton ou maçonnerie. Toutefois, il y a lieu de noter que l'invention n'est pas limitée au type de barrage montré dans la figure 1, mais qu'au contraire elle peut s'appliquer à n'importe quel type de barrage connu à seuil déversant libre.The structure 1 shown in FIG. 1 can be an embankment dam or a concrete or masonry dam. However, it should be noted that the invention is not limited to the type of dam shown in FIG. 1, but that, on the contrary, it can be applied to any type of known dam with a free overflow threshold. .

Dans la figure 1, le numéro de référence 2 désigne la crête du barrage, le numéro 3 son parement aval, le numéro 4 son parement amont, le numéro 5 un déversoir évacuateur de crues, le numéro 6 le seuil du déversoir 5 et le numéro 7 un chenal d'évacuation. Le déversoir 5 peut être implanté dans la partie centrale du barrage 1 ou en extrémité de celui-ci ou encore excavé sur une rive sans que cela n'altère la possibilité d'utilisation de l'invention.In figure 1, the reference number 2 designates the crest of the dam, the number 3 its downstream facing, the number 4 its upstream facing, the number 5 a spillway spillway, the number 6 the weir threshold 5 and the number 7 an evacuation channel. The spillway 5 can be located in the central part of the dam 1 or at the end of it or even excavated on a bank without this altering the possibility of using the invention.

Pour un ouvrage à seuil déversant libre, le niveau RN de la retenue normale en exploitation (voir aussi la figure 2a) est celui de la crête 8 du seuil déversant 6. Ce niveau RN détermine le volume maximal de retenue qui peut être conservé par le réservoir formé par le barrage. La distance verticale R, appelée revanche, entre la crête 8 du déversoir et la crête 2 du barrage est la somme de deux termes à savoir, d'une part, une surélévation h₁ du niveau d'eau due à une crue, jusqu'à un niveau maximal RM ou niveau des plus hautes eaux (PHE), permettant le déversement de la crue maximale (figure 2b) pour laquelle l'ouvrage est dimensionné, et, d'autre part, une surhauteur additionnnelle h₂ destinée à protéger la crête 2 du barrage contre les oscillations du plan d'eau à son niveau maximal RM (effet du vent, vagues, etc.)For a structure with a free overflow threshold, the level RN of the normal reservoir in operation (see also Figure 2a) is that of the crest 8 of the overflow threshold 6. This level RN determines the maximum volume of reservoir that can be kept by the reservoir formed by the dam. The vertical distance R, called revenge, between the crest 8 of the weir and the crest 2 of the dam is the sum of two terms, namely, on the one hand, an increase h₁ in the water level due to a flood, up to a maximum level RM or highest water level (PHE), allowing the discharge of the maximum flood (Figure 2b) for which the structure is dimensioned, and, on the other hand, an additional height h₂ intended to protect the ridge 2 of the dam against the oscillations of the water level at its maximum level RM (effect of wind, waves, etc.)

Dans un barrage classique à seuil déversant libre comme celui montré dans la figure 1, la tranche de réservoir située entre le niveau de retenue normale RN et le niveau maximal RM n'est pas stockée et est donc perdue pour l'exploitation. L'un des buts de l'invention est de permettre de relever de façon quasi-permanente le niveau d'exploitation normale de la retenue et donc d'augmenter sa capacité de stockage, sauf lors du passage de crues exceptionnelles.In a conventional dam with a free overflow threshold like the one shown in FIG. 1, the reservoir portion located between the normal retention level RN and the maximum level RM is not stored and is therefore lost for operation. One of the aims of the invention is to enable the level of normal exploitation of the reservoir to be raised almost permanently, and therefore to increase its storage capacity, except during the passage of exceptional floods.

A cet effet, l'invention prévoit de fixer par un encastrement sur le seuil déversant 6 une hausse 10, constituée par au moins un élément 11, en forme de plaque, par exemple cinq éléments 11a-11e comme montré dans les figures 3 et 4, ladite hausse 10 ou les éléments de hausse 11 étant capables de résister, sans se rompre, à la charge d'eau correspondant à un déversement modéré (permettant le passage des crues les plus fréquentes) et étant rendus fusibles par pliage autour d'une ligne d'encastrement pour une charge d'eau prédéterminée correspondant à un niveau N au plus égal au niveau maximal RM et permettant alors le passage des plus fortes crues.To this end, the invention provides for fixing by embedding on the overhanging threshold 6 a rise 10, constituted by at least one element 11, in the form of a plate, for example five elements 11a-11e as shown in FIGS. 3 and 4 , said rise 10 or the rise elements 11 being able to resist, without breaking, the water load corresponding to a moderate spill (allowing the passage of the most frequent floods) and being rendered fusible by folding around a installation line for a predetermined water load corresponding to a level N at most equal at the maximum level RM and then allowing the passage of the strongest floods.

Bien entendu, le nombre des éléments de hausse 11 n'est pas limité à cinq éléments comme montré dans les figures 3 et 4, mais peut être plus petit ou plus grand selon la longueur du déversoir 5 (mesurée dans le sens longitudinal du barrage). De préférence, le nombre des éléments de hausse 11 est choisi de façon à obtenir des masses unitaires faibles permettant une mise en place et un remplacement aisé desdits éléments de hausse.Of course, the number of elevating elements 11 is not limited to five elements as shown in Figures 3 and 4, but may be smaller or larger depending on the length of the weir 5 (measured in the longitudinal direction of the dam) . Preferably, the number of elevating elements 11 is chosen so as to obtain low unit masses allowing easy installation and replacement of said elevating elements.

Comme montré dans la figure 4, un joint d'étanchéité classique 13, par exemple en caoutchouc, est prévu à chacune des deux extrémités de la hausse 10 entre celle-ci et les flancs latéraux 14 du déversoir 5. Quand la hausse 10 est constituée par plusieurs éléments 11, des joints d'étanchéité 13 (figure 5) sont également prévus entre les bords latéraux verticaux, deux à deux en vis-à-vis, des éléments adjacents de hausse 11 comme cela est également visible dans la figure 4. Tous les joints 13 doivent être tels qu'ils n'empêchent pas le pliage des éléments de hausse 11 les uns par rapport aux autres et par rapport aux flancs latéraux 14 du déversoir 5 quand cela est rendu nécessaire pour l'évacuation d'une crue importante.As shown in FIG. 4, a conventional seal 13, for example made of rubber, is provided at each of the two ends of the riser 10 between it and the lateral flanks 14 of the weir 5. When the riser 10 is formed by several elements 11, seals 13 (FIG. 5) are also provided between the vertical lateral edges, two by two facing each other, adjacent elevation elements 11 as is also visible in FIG. 4. All the seals 13 must be such that they do not prevent the folding of the elevating elements 11 relative to one another and relative to the lateral flanks 14 of the weir 5 when it is made necessary for the evacuation of a flood. important.

Chaque élément de hausse 11 est constitué par une plaque en un métal (convenablement protégé contre la corrosion) ou autre matériau capable d'être plié. A son extrémité inférieure, la plaque 11 peut être engagée dans une rainure 12 d'encastrement formée dans le seuil 6 du déversoir 5, la rainure 12 ayant une largeur un peu plus grande que l'épaisseur de la plaque 11 comme montré dans les figures 6 et 7. L'étanchéité à la base des plaques 11 peut être assurée par un joint d'étanchéité 15 disposé entre le seuil 6 et la partie inférieure des plaques 11, par exemple du côté amont de celles-ci, et/ou par un matériau de remplissage 16, tel que par exemple du sable, mis dans la rainure 12 de part et d'autre des plaques 11.Each elevating element 11 is constituted by a plate made of a metal (suitably protected against corrosion) or other material capable of being folded. At its lower end, the plate 11 can be engaged in an embedding groove 12 formed in the threshold 6 of the weir 5, the groove 12 having a width slightly greater than the thickness of the plate 11 as shown in the figures 6 and 7. The seal at the base of the plates 11 can be ensured by a seal 15 disposed between the threshold 6 and the lower part of the plates 11, for example on the upstream side thereof, and / or by a filling material 16, such as by example of sand, put in the groove 12 on either side of the plates 11.

Comme montré dans les figures 6 et 7, la ligne d'encastrement 17 autour de laquelle les éléments de hausse 11 plieront, peut être matérialisée par un organe d'appui, continu ou disconstinu, disposé du côté aval des éléments de hausse 11; ledit organe d'appui peut être constitué par une barre longitudinale 18, fixée à chaque élément de hausse 11, ou par un becquet 19 fixé à la maçonnerie du seuil 6 dans la région du bord aval de la rainure 12. Il est également à noter que les éléments de hausse 11 peuvent comporter, dans l'une de leurs faces, ou les deux, au niveau de la ligne d'encastrement 17, un affaiblissement (non montré) sous la forme d'une saignée, continue ou discontinue, qui facilite le pliage de l'élément de hausse 11 autour de la ligne 17 sous un effort prédéterminé.As shown in Figures 6 and 7, the embedding line 17 around which the elevation elements 11 will bend, can be materialized by a support member, continuous or disconstinu, disposed on the downstream side of the elevation elements 11; said support member may be constituted by a longitudinal bar 18, fixed to each elevating element 11, or by a spoiler 19 fixed to the masonry of the threshold 6 in the region of the downstream edge of the groove 12. It should also be noted that the elevating elements 11 may comprise, in one or both of their faces, at the level of the embedding line 17, a weakening (not shown) in the form of a groove, continuous or discontinuous, which facilitates the folding of the raising element 11 around the line 17 under a predetermined force.

Dans la figure 4, tous les éléments (11a-11e) de la hausse 10 sont disposés dans un même plan vertical. On peut également les disposer en quinconce comme montré dans la figure 4a. Dans ce cas, d'autres éléments de hausse 20 fixes, c'est-à-dire non pliants, également en forme de plaques, sont fixés rigidement au seuil 6 entre les éléments 11 de manière à rétablir la continuité de la hausse 10, les éléments fixes 20 s'étendant parallèlement entre eux et au sens général d'écoulement de l'eau dans le déversoir. La ligne de crête de la hausse 10 n'est plus alors rectiligne, mais brisée, en créneau, de sorte que la longueur de déversement par dessus la hausse 10 est notablement accrue, ce qui permet, comme on le verra plus loin, pour un niveau d'eau donné et un débit d'évacuation donné, de réduire la hauteur (épaisseur) de la lame déversante, donc d'augmenter la hauteur de la hausse et par conséquent d'accroître encore la capacité de stockage d'eau du barrage.In Figure 4, all the elements (11a-11e) of the riser 10 are arranged in the same vertical plane. They can also be staggered as shown in Figure 4a. In this case, other fixed elevation elements 20, that is to say non-folding, also in the form of plates, are rigidly fixed to the threshold 6 between the elements 11 so as to restore the continuity of the elevation 10, the fixed elements 20 extending parallel to each other and to the general direction of flow of the water in the weir. The crest line of the rise 10 is no longer straight, but broken, in a crenelation, so that the length of discharge over the rise 10 is notably increased, which allows, as will be seen below, for a given water level and a given evacuation rate, to reduce the height (thickness) of the overflow blade, therefore to increase the height of the rise and consequently further increase the water storage capacity of the dam .

Comme montré dans la figure 8a, la hausse 10 de la présente invention permet de relever le niveau de la retenue normale du niveau RN (niveau de la retenue normale du seuil déversant libre 6, c'est-à-dire sans la hausse 10) jusqu'au niveau RN' correspondant à la hauteur de la hausse 10 au-dessus du seuil 6. Comme cela sera expliqué plus loin, chaque élément de hausse 11 est dimensionné de manière à résister en flexion pour une charge d'eau inférieure à un niveau prédéterminé N, lui-même au plus égal au niveau maximal RM déjà mentionné plus haut. Ainsi, en supposant par exemple que ledit niveau prédéterminé est égal au niveau RM, tant que le niveau de l'eau reste inférieur au niveau RM pour des crues de faible ou moyenne importance et est compris entre les niveaux RN' et RM, l'eau se déverse par-dessus la hausse 10 comme montré dans la figure 8b, sans que la hausse ne soit détruite. Dans ce cas, après évacuation de la crue, le niveau de l'eau retombe au niveau RN' ou à un niveau plus bas si de l'eau est soutirée dans la retenue.As shown in FIG. 8a, the increase 10 of the present invention makes it possible to raise the level of the normal retention of the level RN (level of the normal retention of the free overflow threshold 6, that is to say without the increase 10) up to the level RN 'corresponding to the height of the rise 10 above the threshold 6. As will be explained below, each rise element 11 is dimensioned so as to resist bending for a water load of less than one predetermined level N, itself at most equal to the maximum level RM already mentioned above. Thus, assuming for example that said predetermined level is equal to the RM level, as long as the water level remains below the RM level for low or medium-sized floods and is between the RN 'and RM levels, the water spills over the rise 10 as shown in figure 8b, without the rise being destroyed. In this case, after evacuation of the flood, the water level drops to level RN 'or to a lower level if water is drawn into the reservoir.

Par contre, si le niveau de l'eau atteint, dans l'hypothèse susmentionnée, un niveau prédéterminé N égal ou légèrement plus bas que le niveau maximal RM dans le cas d'une forte crue ou crue exceptionnelle, au moins un élément 11 de la hausse 10 est plié par la poussée de l'eau autour de la ligne 17 comme montré dans la figure 8c, permettant ainsi l'évacuation des crues les plus fortes. Après évacuation d'une forte crue ayant entraînée le pliage de la hausse 10, le seuil déversant 6 se retrouve dans l'état montré dans la figure 8d, le niveau de l'eau étant revenu à peu près au niveau de la retenue normale RN ou à un niveau plus bas encore. On peut éventuellement prévoir quelques éléments 11 de rechange, disponibles en permanence sur le site du barrage, pour permettre une réparation de la hausse 10 en cas de besoin et rétablir ainsi le niveau de la retenue normale au niveau RN' comme montré dans la figure 8e. Il faut noter cependant que le non-remplacement d'un ou plusieurs éléments 11 après une crue exceptionnelle ayant entraîné pliage d'au moins un élément 11 ne diminue pas la sécurité de fonctionnement de l'ouvrage.On the other hand, if the water level reaches, in the aforementioned hypothesis, a predetermined level N equal or slightly lower than the maximum level RM in the case of a strong flood or exceptional flood, at least one element 11 of the rise 10 is folded by the push of the water around the line 17 as shown in Figure 8c, thus allowing the evacuation of the strongest floods. After evacuation of a strong flood having caused the folding of the rise 10, the overflow threshold 6 is found in the state shown in Figure 8d, the water level having returned to approximately the level of the normal reservoir RN or even lower. We can possibly provide some spare elements 11, permanently available on the dam site, to allow repair of the surge 10 if necessary and thus restore the level of the normal restraint at RN 'level as shown in Figure 8e. It should be noted, however, that the non-replacement of one or more elements 11 after an exceptional flood which has led to the folding of at least one element 11 does not reduce the operational safety of the structure.

Les risques de mauvais fonctionnement dûs à des corps flottants peuvent être facilement éliminés par une protection amont selon des techniques conventionnelles adaptables à chaque cas particulier. La protection peut être par exemple constituée par des lignes flottantes sur la retenue, à une certaine distance en amont du déversoir, ou par des dispositifs d'arrêt fixés sur le parement amont du barrage.The risks of malfunction due to floating bodies can be easily eliminated by upstream protection using conventional techniques adaptable to each particular case. The protection can for example be constituted by floating lines on the reservoir, at a certain distance upstream from the weir, or by stop devices fixed on the upstream facing of the dam.

On donnera maintenant un exemple numérique de dimensionnement d'une hausse fusible mise en oeuvre dans la présente invention. Habituellement, les barrages et les seuils déversants sont dimensionnés pour que le niveau du lac (niveau de la retenue) atteigne le niveau maximal RM pour la crue exceptionnelle envisagée (crue de projet). Cette crue peut être par exemple la crue ne se produisant qu'une année sur mille (crue millénale).We will now give a numerical example of the design of a fusible link implemented in the present invention. Usually, the dams and overflow weirs are dimensioned so that the level of the lake (level of the reservoir) reaches the maximum level RM for the exceptional flood envisaged (project flood). This flood may for example be the flood occurring only one year in a thousand (millennial flood).

Pour fixer les idées, on supposera que le débit de cette crue de projet est par exemple de 200m³/s et que le seuil déversant libre 6 a une longueur de 40 m. Dans ces conditions, la hauteur H de la lame d'eau nécessaire pour évacuer le débit de la crue de projet correspond à 5m³/s par mètre linéaire de seuil. Cette hauteur H peut être calculée par la formule suivante: Q = 1,8 H 3/2

Figure imgb0001

d'après laquelle on peut voir que H est sensiblement égal à 2 m dans l'hypothèse faite plus haut. Toujours dans cette hypothèse, en l'absence de dispositif de vannes ou de hausses, le niveau du seuil 6 du déversoir 5 est arasé à 2 m en-dessous du niveau maximal RM pour permettre l'évacuation de la crue millénale, et on perd donc un volume utile d'eau correspondant à une tranche de 2 mètres.To fix the ideas, we will assume that the flow of this project flood is for example 200m³ / s and that the free spillway threshold 6 is 40 m long. Under these conditions, the height H of the water layer necessary to evacuate the flow of the project flood corresponds to 5m³ / s per linear meter of threshold. This height H can be calculated by the following formula: Q = 1.8 H 3/2
Figure imgb0001

according to which we can see that H is substantially equal to 2 m in the hypothesis made above. Still in this hypothesis, in the absence of a valve or rising device, the level of the threshold 6 of the weir 5 is leveled 2 m below the maximum level RM to allow the evacuation of the millennial flood, and we lose therefore a useful volume of water corresponding to a 2 meter section.

Pour la détermination de la hauteur des éléments de hausse 11, l'invention est basée sur la constatation que le débit maximum atteint en moyenne sur 20 ans est beaucoup plus faible que celui de la crue de projet. Il peut être d'environ 50m³ /s dans l'exemple choisi ici. D'après la formule (1) ce débit correspond alors à une lame d'eau ayant une hauteur d'environ 0,8m. Si l'on admet que des éléments de hausse 11 peuvent être détruits en moyenne tous les 20 ans, on peut alors donner aux éléments de hausse une hauteur de 2 m - 0,8 m = 1,2 m, permettant ainsi le passage au-dessus des éléments de hausse 11 d'une lame d'eau de 0,8 m de hauteur correspondant au débit de 50m³/s. Dans ce cas, le niveau de la retenue normale RN' est élevé à 1,20 m au-dessus du niveau de la retenue normale RN du seuil déversant 6 libre, c'est-à-dire sans les éléments de hausse 11. Si on choisit des éléments de hausse 11 ayant une hauteur supérieure à 1,2m, la hauteur de la lame d'eau admissible sera inférieure à 0,8m et il faudra admettre la destruction des éléments de hausse, par exemple tous les 10 ans, mais le niveau de la retenue normale sera encore augmenté. En revanche, si on choisit des éléments de hausse 11 ayant une hauteur plus petite que 1,2m, on pourra admettre une lame d'eau ayant une hauteur plus forte que 0,8m, les éléments de hausse n'étant alors détruits que tous les 50 ou 100 ans, mais le niveau de la retenue normale sera alors plus faible que dans les cas précédents. Le choix de la hauteur des éléments de hausse 11 est donc essentiellement un choix économique. Il est probablement souhaitable en général de fixer à 20 ans environ l'intervalle de temps entre deux destructions totales successives de la hausse fusible, ce qui conduirait à une hauteur théorique de 1,2m des éléments de hausse dans l'exemple considéré ici.For the determination of the height of the elevating elements 11, the invention is based on the observation that the maximum flow achieved on average over 20 years is much lower than that of the project flood. It can be around 50m³ / s in the example chosen here. According to formula (1) this flow then corresponds to a sheet of water having a height of about 0.8m. If it is admitted that elevating elements 11 can be destroyed on average every 20 years, then one can give the elevating elements a height of 2 m - 0.8 m = 1.2 m, thus allowing the passage to -above elevation elements 11 of a 0.8 m high water layer corresponding to the flow of 50m³ / s. In this case, the level of the normal reservoir RN 'is raised to 1.20 m above the level of the normal reservoir RN of the overflow threshold 6 free, that is to say without the elevating elements 11. If we choose elevation elements 11 having a height greater than 1.2m, the height of the admissible sheet of water will be less than 0.8m and it will be necessary to allow the destruction of the elevation elements, for example every 10 years, but the level of normal restraint will be further increased. On the other hand, if we choose elevation elements 11 having a height less than 1.2m, we can admit a sheet of water having a height greater than 0.8m, the elevation elements being then destroyed only all 50 or 100 years, but the level of normal withholding will then be lower than in the previous cases. The choice of the height of the elevating elements 11 is therefore essentially an economic choice. In general, it is probably desirable to fix the time interval between two successive total destructions of the fusible riser at approximately 20 years, which would lead to a theoretical height of 1.2 m for the augmentation elements in the example considered here.

Il est par ailleurs avantageux que la destruction de tous les éléments de hausse 11 ne se produise pas exactement pour le même niveau d'eau. On peut prévoir par exemple qu'un seul élément tel que l'élément 11c des figures 3 et 4 soit détruit lorsque l'eau atteint un premier niveau N1 situé environ 10cm en-dessous du niveau maximal RM, qu'au moins un autre élément 11, tel que les éléments 11b et 11d, soient détruits lorsque l'eau atteint un second niveau N2 situé environ 5cm en-dessous du niveau maximal RM, et que les autres éléments 11, tels que les éléments 11a et 11e, soient détruits lorsque l'eau atteint ledit niveau maximal RM.It is also advantageous that the destruction of all the raising elements 11 does not occur exactly for the same level of water. We can provide for example that a single element such as element 11c of Figures 3 and 4 is destroyed when the water reaches a first level N1 located about 10cm below the maximum level RM, that at least one other element 11, such as the elements 11b and 11d, are destroyed when the water reaches a second level N2 situated approximately 5cm below the maximum level RM, and the other elements 11, such as the elements 11a and 11e, are destroyed when the water reaches said maximum level RM.

De cette façon, la destruction du premier élément 11c par une crue d'importance moyenne peut suffire à l'écoulement de la crue sans montée supplémentaire du niveau d'eau, ce qui évite la destruction des autres éléments 11a, 11b, 11d et 11e. Toutefois, la marge de 10cm qui est ainsi prise s'ajoute à la hauteur de lame déversante maximale admissible, de sorte que la hauteur des éléments de hausse et, par suite, la tranche d'eau gagnée (RN'-RN) devient égale à 1,1m (2m-0, 8m-0,1m) dans l'exemple considéré ici.In this way, the destruction of the first element 11c by a medium-sized flood may be sufficient for the flow of the flood without additional rise in the water level, which avoids the destruction of the other elements 11a, 11b, 11d and 11e . However, the margin of 10 cm which is thus taken is added to the maximum admissible overhanging blade height, so that the height of the rising elements and, consequently, the slice of water gained (RN'-RN) becomes equal at 1.1m (2m-0.8m-0.1m) in the example considered here.

Le pliage du ou des éléments de hausse 11 et, par suite, leur destruction dépend de l'équilibre entre, d'une part, le moment moteur Mm, c'est-à-dire le moment des forces qui tendent à plier l'élément de hausse considéré, et, d'autre part, le moment résistant Mr, c'est-à-dire le moment des forces qui s'opposent au pliage dudit élément de hausse à l'encastrement. Si on ne prévoit pas un dispositif déclencheur, directement lié au niveau d'eau, pour déclencher le pliage de l'élément de hausse avec précision pour un niveau d'eau prédéterminé, la hauteur d'eau correspondant à l'équilibre susmentionné ne peut être fixée qu'avec une marge d'incertitude pouvant atteindre 0,2m. Dans ces conditions, il est nécessaire, par sécurité, de réduire la hauteur du ou des éléments de hausse 11 d'une quantité correspondant à certe marge d'incertitude, par exemple 0,2m. Toutefois, on peut éviter d'avoir à réduire la hauteur des éléments de hausse en prévoyant un dispositif déclencheur qui sera décrit plus loin en faisant référence à la figure 11.The folding of the elevation element or elements 11 and, consequently, their destruction depends on the balance between, on the one hand, the motor moment Mm, that is to say the moment of the forces which tend to bend the rising element considered, and, on the other hand, the resistant moment Mr, that is to say the moment of the forces which oppose the folding of said rising element to the embedding. If a trigger device, directly linked to the water level, is not provided to trigger the folding of the raising element with precision for a predetermined water level, the water height corresponding to the above-mentioned equilibrium cannot be fixed only with a margin of uncertainty of up to 0.2m. In these conditions, it is necessary, for safety, to reduce the height of the elevation element (s) 11 by a quantity corresponding to this margin of uncertainty, for example 0.2 m. However, it is possible to avoid having to reduce the height of the raising elements by providing a trigger device which will be described later with reference to FIG. 11.

Il est possible, pour le débit de 50m³/s considéré dans le présent exemple, de réduire à moins de 0,8m la hauteur de la lame déversante maximale admissible avant pliage des éléments de hausse, en faisant en sorte que la ligne de crête des éléments 11 de la hausse 10, considérés ensemble, ne soit plus disposée parallèlement à la crête du seuil déversant 6, mais suivant une ligne non rectiligne, par exemple une ligne brisée comme montrée dans la figure 4a, pour allonger la longueur de déversement du débit susmentionné. Si l'on double cette longueur, le débit de 50m³/s est alors réparti sur 80m au lieu de 40m et la hauteur de la lame maximale admissible correspondante est ramenée de 0,8m à 0,5m. Ceci permet, toutes choses égales par ailleurs, de remonter de 0,3 m la hauteur des éléments de hausse 11 et d'augmenter en conséquence le volume d'eau stocké dans la retenue.It is possible, for the flow rate of 50m³ / s considered in this example, to reduce the height of the maximum permissible overhanging blade before folding the lifting elements to less than 0.8m, by ensuring that the crest line of the elements 11 of the rise 10, considered together, is no longer disposed parallel to the crest of the overflow threshold 6, but along a non-rectilinear line, for example a broken line as shown in FIG. 4a, to lengthen the length of discharge of the flow mentioned above. If this length is doubled, the flow rate of 50m³ / s is then distributed over 80m instead of 40m and the height of the corresponding maximum admissible blade is reduced from 0.8m to 0.5m. This allows, all other things being equal, to raise the height of the elevating elements 11 by 0.3 m and to consequently increase the volume of water stored in the reservoir.

Les figures 9a et 9b montrent les forces qui, en service, peuvent être appliquées à un élément de hausse 11 de la présente invention. Pour la description qui va suivre, on supposera que l'élément 11, en forme de plaque, a une épaisseur e et une hauteur H₁ au dessus du seuil 6. Dans les figures 9a et 9b, RM désigne comme auparavant le niveau maximal, H₂ désigne la hauteur de la lame déversante maximale admissible au-dessus de l'élément de hausse 11 et z désigne le niveau de l'eau. Les forces motrices, qui tendent à plier l'élément de hausse 11 sont la poussée P de l'eau sur la face amont de l'élément de hausse 11. Les forces résistantes, qui s'opposent au pliage de l'élément de hausse 11, sont la résistance propre de l'élément de hausse 11.Figures 9a and 9b show the forces which, in service, can be applied to a riser 11 of the present invention. For the description which follows, it will be assumed that the element 11, in the form of a plate, has a thickness e and a height H les above the threshold 6. In FIGS. 9a and 9b, RM designates as before the maximum level, H₂ denotes the height of the maximum permissible overhanging blade above the raising element 11 and z denotes the water level. The driving forces, which tend to bend the raising element 11, are the thrust P of water on the upstream face of the raising element 11. The resistant forces, which oppose the folding of the elevating element 11, are the inherent resistance of the elevating element 11.

Dans le présent exemple, pour simplifier les calculs, on supposera que la ligne d'encastrement 17 autour de laquelle se produira le pliage de l'élément de hausse 11, est située au niveau du seuil 6. Dans ces conditions, pour calculer la valeur de P et la valeur du moment moteur correspondant Mm par rapport à la ligne 17, il y a lieu de considérer deux cas en fonction de la hauteur d'eau z au dessus du seuil 6. Les valeurs de P et Mm et la valeur du moment résistant Mr sont résumées ci-dessous, lesdites valeurs étant données par unité de longueur de l'élément de hausse 11.

  • a) si : 0 < z < H₁ : P = 1 2 · γ w · z²
    Figure imgb0002
    Mm = 1 6 · γ w · z³
    Figure imgb0003
  • b) si : H₁ < z : P = 1 2 · γ w · H 1 2 + γ w · H₁ · (z - H₁)
    Figure imgb0004
    Mn = 1 6 · γ w · H 1 3 + 1 2 · γ w · H 1 2 · (z-H₁)
    Figure imgb0005
In the present example, to simplify the calculations, it will be assumed that the embedding line 17 around which the folding of the rising element 11 will occur, is located at the threshold 6. Under these conditions, to calculate the value of P and the value of the corresponding motor moment Mm with respect to line 17, two cases should be considered as a function of the water height z above the threshold 6. The values of P and Mm and the value of resistant moment Mr are summarized below, said values being given per unit of length of the elevating element 11.
  • a) if: 0 <z <H₁: P = 1 2 Γ w
    Figure imgb0002
    Mm = 1 6 Γ w
    Figure imgb0003
  • b) if: H₁ <z: P = 1 2 Γ w · H 1 2 + γ w · H₁ · (z - H₁)
    Figure imgb0004
    Mn = 1 6 Γ w · H 1 3 + 1 2 Γ w · H 1 2 · (Z-H₁)
    Figure imgb0005

Dans les deux cas : Mr = 1 6 σ a · e²

Figure imgb0006
In both cases : Mr = 1 6 σ at · E²
Figure imgb0006

Dans les formules sus-indiquées, P, Mm, Mr, e, H₁ et z ont les significations déjà indiquées plus haut. γw est le poids volumique de l'eau et σa est la limite élastique de la matière utilisée pour la construction de l'élément de hausse, par exemple de l'acier.In the above-mentioned formulas, P, Mm, Mr, e, H₁ and z have the meanings already indicated above. γ w is the density of water and σ a is the elastic limit of the material used for the construction of the rising element, for example steel.

Dans le graphique de la figure 10, les tracés A et B représentent respectivement les variations de Mr et Mm en fonction de la hauteur d'eau z au-dessus du seuil 6, et le tracé C représente la variation du débit d'eau évacuée Q en fonction de la hauteur H de la lame déversante [ Q = 1,8. H3/2, H étant égal à (z-H₁) avant pliage de l'élément de hausse 11 et à z après pliage dudit élément ]. Les tracés A, B et C ont été obtenus à partir des formules indiquées plus haut et pour H₁ = 1,2m, e = 2cm, γw = 1 et σa = 30 kg/mm².In the graph in FIG. 10, the plots A and B respectively represent the variations of Mr and Mm as a function of the water height z above the threshold 6, and the plot C represents the variation of the flow of water discharged Q as a function of the height H of the blade overflow [Q = 1.8. H 3/2 , H being equal to (z-H₁) before folding of the rising element 11 and to z after folding of said element]. Traces A, B and C were obtained from the formulas indicated above and for H₁ = 1.2m, e = 2cm, γ w = 1 and σ a = 30 kg / mm².

En considérant les tracés A et B, on voit que le moment moteur Mm atteint la même valeur que le moment résistant Mr pour une valeur de z, (H₁ + H₂), d'environ 2m, c'est-à-dire pour le niveau maximal RM dans l'exemple numérique considéré ici. Autrement dit, le pliage de l'élément de hausse 11 aura lieu lorsque le niveau de l'eau atteindra le niveau maximal RM. D'après le graphique de la figure 10 et d'après les formules (5) et (6), on voit que, sans changer la valeur de la hauteur H₁ de l'élément de hausse 11, si l'on avait voulu que le pliage de ce dernier se produise pour une valeur de z plus petite ou plus grande que 2m, il aurait fallu respectivement diminuer ou augmenter la valeur de e et/ou la valeur de σa par rapport aux valeurs indiquées plus haut.By considering the plots A and B, we see that the motor moment Mm reaches the same value as the resistant moment Mr for a value of z, (H₁ + H₂), of about 2m, that is to say for the maximum level RM in the numerical example considered here. In other words, the folding of the raising element 11 will take place when the water level reaches the maximum level RM. From the graph in Figure 10 and from formulas (5) and (6), we see that, without changing the value of the height H₁ of the rising element 11, if we had wanted that the folding of the latter occurs for a value of z smaller or greater than 2m, it would have been necessary respectively to decrease or increase the value of e and / or the value of σ a compared to the values indicated above.

D'après ce qui précède, on voit que, par un dimensionnement approprié en hauteur (H₁) et en épaisseur (e) de l'élément de hausse 11 et par un choix approprié de sa matière constitutive (limite élastique σa), on peut faire en sorte que l'élément de hausse 11 soit plié pour un niveau d'eau prédéterminé.From the above, we see that, by an appropriate dimensioning in height (H₁) and in thickness (e) of the rising element 11 and by an appropriate choice of its constituent material (elastic limit σ a ), we can cause the riser 11 to be bent to a predetermined water level.

Dans le graphique de la figure 10, on a également tracé, en A', les variations du moment résistant Mr' en fonction de z dans le cas ou l'élément de hausse 11 est composé de deux plaques accolées 11 et 21 de hauteurs différentes, l'étanchéité entre ces deux plaques étant assurée par un joint 22 comme montré dans la figure 11. Les deux plaques 11 et 21 peuvent être encastrées dans la même rainure 12, auquel cas une pièce d'espacement 23, continue ou discontinue, peut être prévue entre les deux plaques à leur partie inférieure, ou elles peuvent être encastrées dans des rainures différentesIn the graph of FIG. 10, we have also drawn, at A ', the variations of the resistant moment Mr' as a function of z in the case where the rising element 11 is composed of two adjoining plates 11 and 21 of different heights , the seal between these two plates being ensured by a seal 22 as shown in FIG. 11. The two plates 11 and 21 can be embedded in the same groove 12, in which case a spacer 23, continuous or discontinuous, can be scheduled between two plates at the bottom, or they can be embedded in different grooves

En considérant les tracés A' et B on voit que le moment moteur Mm atteint la même valeur que le moment résistant Mr' pour une valeur de z, (H₁ + H'₂), d'environ 2,25m. On voit également que si on appliquait à la partie inférieure de la plaque aval 11 la totalité de la pression d'eau au moment où z atteint une valeur comprise entre (H₁ + H₂) et (H₁ + H'₂), on obtiendrait une brusque rupture d'équilibre pour cette valeur de z. Naturellement, dans ce cas, si on souhaite que le pliage ait encore lieu pour une valeur de z égale à 2m ou moins, il faudrait alors dimensionner la plaque 11 (son épaisseur e et/ou sa limite élastique σa) pour que son moment résistant Mr (tracé A de la figure 10) soit plus faible que ce qui est indiqué dans cette figure.By considering the plots A 'and B we see that the motor moment Mm reaches the same value as the resistive moment Mr' for a value of z, (H₁ + H'₂), of about 2.25m. We also see that if we applied to the lower part of the downstream plate 11 all of the water pressure at the time when z reaches a value between (H₁ + H₂) and (H₁ + H'₂), we would obtain a sudden break in equilibrium for this value of z. Naturally, in this case, if it is desired that the folding still takes place for a value of z equal to 2m or less, it would then be necessary to size the plate 11 (its thickness e and / or its elastic limit σ a ) so that its moment resistant Mr (line A in Figure 10) is weaker than what is shown in this figure.

Ceci peut être mis à profit pour provoquer le pliage de l'élément de hausse 11 de manière encore plus sûre et avec une plus grande précision en ce qui concerne le niveau d'eau auquel se produit le pliage. En effet, des dispositions peuvent être prises pour que de l'eau pénètre dans l'espace entre les deux plaques 11 et 21 de la figure 11 quand l'eau atteint un niveau prédéterminé N, le dimensionnement des plaques étant tel qu'à cet instant le moment résistant passe brusquement d'une valeur Mr' plus grande que la valeur du moment moteur Mm à une valeur Mr substantiellement plus petite que la valeur dudit moment moteur Mm. A cet effet, on peut utiliser par exemple un dispositif déclencheur tel que celui montré dans la figure 11. Ce dispositif déclencheur est essentiellement constitué par un tuyau d'évent 24 qui, en service normal, met l'espace entre les plaques 11 et 21 en relation avec l'atmosphère, l'extrémité supérieure 24a du tuyau d'évent 24 étant située à un niveau N égal au niveau pour lequel on désire que le pliage de la plaque 11 se produise. Le tuyau 24 peut être coudé et passer à travers la plaque 21 comme montré dans la figure 11. Un orifice 25 ayant une section de passage plus faible que celle du tuyau 24 est prévu à la partie inférieure de la plaque aval 11, près du seuil 6, pour évacuer de l'espace entre les plaques 11 et 21 l'eau due aux fuites éventuelles au niveau du joint 22 ou l'eau qui pourrait entrer par l'orifice supérieur du tuyau 24, à cause des vagues, avant que le niveau d'eau ait réellement atteint le niveau N.This can be taken advantage of to cause folding of the raising element 11 in an even safer manner and with greater precision with regard to the level of water at which the folding takes place. Indeed, arrangements can be made for water to enter the space between the two plates 11 and 21 of FIG. 11 when the water reaches a predetermined level N, the dimensioning of the plates being such that at this instant the resistive moment suddenly passes from a value Mr 'greater than the value of the motor moment Mm to a value Mr substantially smaller than the value of said motor moment Mm. For this purpose, a triggering device such as that shown in FIG. 11. This triggering device essentially consists of a vent pipe 24 which, in normal service, places the space between the plates 11 and 21 in relation to the atmosphere, the upper end 24a of the pipe vent 24 being located at a level N equal to the level for which it is desired that the folding of the plate 11 occurs. The pipe 24 can be bent and pass through the plate 21 as shown in FIG. 11. An orifice 25 having a smaller cross-section than that of the pipe 24 is provided at the lower part of the downstream plate 11, near the threshold 6 , to evacuate the space between the plates 11 and 21 the water due to possible leaks at the joint 22 or the water which could enter through the upper orifice of the pipe 24, because of the waves, before the level of water has actually reached level N.

Dans le cas où plusieurs éléments de hausse 11, 21 sont prévus et doivent se plier pour des niveaux d'eau différents, tels que les niveaux N₁, N₂ et RM (figure 3) au moins un tuyau d'évent 24 est associé à chaque élément de hausse et chaque tuyau 24 s'étend vers le haut jusqu'à un niveau N égal au niveau N₁ ou N₂ ou RM pour lequel l'élément correspondant doit se plier.In the case where several rising elements 11, 21 are provided and must bend for different water levels, such as the levels N₁, N₂ and RM (FIG. 3) at least one vent pipe 24 is associated with each rising element and each pipe 24 extends upwards to a level N equal to the level N₁ or N₂ or RM for which the corresponding element must bend.

L'extrémité supérieure de chaque tuyau d'évent 24 peut être équipée d'un dispositif de protection contre les corps flottants, afin de ne pas être obturé par ceux-ci, ou d'un dispositif de protection contre les vagues, afin qu'une ou plusieurs vagues successives ne déclenchent pas intempestivement le pliage de la plaque 11. De tels dispositifs de protection sont montrés dans les figures 12a à 12c. Le dispositif de protection de la figure 12a est essentiellement constitué par un entonnoir 26 dont le bord supérieur 26a se trouve à un niveau plus élevé que le niveau N et qui comporte au moins un petit trou 27 à un niveau plus bas que le niveau N. Dans la figure 12b, le dispositif de protection est constitué par le tuyau 24 lui-même dont l'extrémité supérieure est recourbée sous la forme d'un siphon 28. Enfin, le dispositif de protection de la figure 12c est constitué par une cloche 29, qui coiffe l'extrémité supérieure 24a du tuyau d'évent 24 et dont le sommet 29a se trouve à un niveau légèrement plus élevé que le niveau N.The upper end of each vent pipe 24 can be equipped with a device for protection against floating bodies, so as not to be blocked by them, or with a device for protection against waves, so that one or more successive waves do not inadvertently trigger the folding of the plate 11. Such protection devices are shown in Figures 12a to 12c. The protection device of FIG. 12a essentially consists of a funnel 26, the upper edge 26a of which is at a level higher than the level N and which has at least one small hole 27 at a level lower than the level N. In FIG. 12b, the protection device consists of the pipe 24 itself, the upper end of which is bent in the form of a siphon 28. Finally, the protection device of FIG. 12c consists of a bell 29 , which covers the upper end 24a of the vent pipe 24 and of which the vertex 29a is at a slightly higher level than the level N.

Il peut être avantageux, pour améliorer la sérurité d'un ouvrage existant dont le seuil déversant 6 avait été initialement arasé, en fonction de la crue de projet initialement choisie, à un niveau déterminant le niveau de la retenue normale RN (figure 13c), de déraser le seuil 6 de quelques décimètres en-dessous de sa côte actuelle (correspondant à RN) et d'encastrer sur le seuil dérasé 6 une hausse fusible 10, conformément à la présente invention, composée d'au moins un élément de hausse 11 dimensionné en hauteur et en épaisseur de la manière décrite plus haut pour se plier autour de la ligne 17 lorsque le niveau de l'eau atteint un niveau prédéterminé au plus égal au niveau maximal RM correspondant à la crue de projet. Dans ces conditions, la probabilité d'ouverture de la hausse 10 n'est pas modifiée mais, en cas de crue exceptionnelle, la section d'écoulement disponible après destruction totale de la hausse 10 est notablement augmentée pour un même niveau d'eau dans la retenue, ce qui permet de passer sans risque une crue ayant un débit très supérieur à celui de la crue pour laquelle l'ouvrage avait été initialement dimensionné. Dans le cas où la hauteur choisie pour les éléments de hausse 11 est égale à la hauteur de dérasement du seuil 6 (figure 13a), on obtient simplement une augmentation de la sécurité de l'ouvrage, sans changement du niveau de la retenue normale RN, par rapport à l'ouvrage existant avant dérasement de son seuil 6 (figure 13c). Toutefois, on peut à la fois augmenter la sécurité de l'ouvrage et réhausser le niveau de la retenue normale à un niveau RN' en donnant aux éléments de hausse 11 une hauteur telle que leur sommet se trouve à un niveau plus élevé que le niveau RN, mais inférieur au niveau maximal RM (figure 13b).It may be advantageous, in order to improve the safety of an existing structure, the overflow threshold 6 of which was initially leveled, depending on the project flood initially chosen, at a level determining the level of the normal reservoir RN (FIG. 13c), to level the threshold 6 a few decimeters below its current coast (corresponding to RN) and to embed on the leveled threshold 6 a fuse increase 10, in accordance with the present invention, composed of at least one increase element 11 dimensioned in height and thickness as described above to fold around line 17 when the water level reaches a predetermined level at most equal to the maximum level RM corresponding to the project flood. Under these conditions, the probability of opening of the increase 10 is not modified but, in the event of an exceptional flood, the flow section available after total destruction of the increase 10 is notably increased for the same water level in the reservoir, which makes it possible to safely pass a flood having a flow rate much higher than that of the flood for which the structure was originally dimensioned. In the case where the height chosen for the elevating elements 11 is equal to the leveling height of the threshold 6 (FIG. 13a), one simply obtains an increase in the safety of the structure, without changing the level of the normal restraint RN , compared to the existing structure before the threshold 6 is lowered (Figure 13c). However, it is possible both to increase the safety of the structure and to raise the level of the normal restraint to a level RN 'by giving the elevating elements 11 a height such that their apex is at a level higher than the level RN, but lower than the maximum level RM (figure 13b).

Dans la forme d'exécution montrée dans la figure 11 on a supposé que les deux plaques 11 et 21 étaient encastrées dans une même rainure 12 et accolées l'une à l'autre. Toutetois on peut envisager d'encastrer, les deux plaques 11 et 21, ou un plus grand nombre encore de plaques, par exemple trois plaques 11, 21 et 31 (figure 14a), dans une ou plusieurs rainures d'encastrement espacées sur le seuil 6, les plaques ayant des hauteurs différentes, qui croissent d'amont vers l'aval, et étant dimensionnées (e, σa) de façon à plier successivement de l'aval vers l'amont pour des conditions hydrologiques de sévérité croissante comme illustré par les figures 14a à 14d dans le cas de deux plaques 11 et 21. De cette manière, si le pliage de la plaque aval 11 a suffi pour évacuer une crue de moyenne importance, ayant entraîné une élévation du niveau de l'eau jusqu'à un premier niveau prédéterminé N₁ (RN'<N₁<RM), la plaque 21 reste dressée (figure 14c) et le niveau de retenue normale n'est réduit que partiellement (RN'' au lieu de RN' avant pliage de la plaque aval 11). Si le pliage de la plaque 11 n'a pas suffi pour évacuer la crue et si le niveau d'eau atteint un second niveau prédéterminé N₂ (N₁<N₂≦RM), la plaque amont 21 se plie à son tour comme montré sur la figure 14d. Après pliage de la plaque 11 et, le cas échéant, de la plaque 21 et après évacuation de la crue, la ou les plaques 11 et 21 peuvent être remplacées par des plaques non pliées.In the embodiment shown in Figure 11 it was assumed that the two plates 11 and 21 were embedded in the same groove 12 and joined to one another. However, it is possible to envisage embedding the two plates 11 and 21, or a greater number of plates, for example three plates 11, 21 and 31 (FIG. 14a), in one or more recessed grooves spaced on the threshold. 6, the plates having different heights, which grow from upstream to downstream, and being dimensioned (e, σ a ) so as to fold successively from downstream to upstream for hydrological conditions of increasing severity as illustrated by FIGS. 14a to 14d in the case of two plates 11 and 21. In this way, if the folding of the downstream plate 11 was sufficient to evacuate a medium-sized flood, having caused a rise in the water level up to at a first predetermined level N₁ (RN '<N₁ <RM), the plate 21 remains upright (Figure 14c) and the normal retention level is only partially reduced (RN''instead of RN' before folding the plate downstream 11). If the folding of the plate 11 was not sufficient to evacuate the flood and if the water level reaches a second predetermined level N₂ (N₁ <N₂ ≦ RM), the upstream plate 21 in turn folds as shown on the figure 14d. After folding of the plate 11 and, if necessary, of the plate 21 and after evacuation of the flood, the plate or plates 11 and 21 can be replaced by unfolded plates.

Dans les formes d'exécution qui ont été décrites jusqu'ici, chaque plaque 11 (ou 21 ou 31) formant un élément de hausse était engagée dans une rainure prévue dans le seuil 6. Cependant, la plaque 11 (ou 21 ou 31) peut être engagée dans une rainure formée dans une pièce de montage 32, continue ou discontinue, qui est elle-même fixée rigidement au seuil 6, par exemple au moyen de boulons et de tiges filetées 33 scellées dans la maçonnerie du seuil 6 comme montré dans la figure 15. De préférence, le seuil 6 est dérasé au moins d'une quantité correspondant à la hauteur de la pièce de montage 32.In the embodiments which have been described so far, each plate 11 (or 21 or 31) forming a raising element was engaged in a groove provided in the threshold 6. However, the plate 11 (or 21 or 31) can be engaged in a groove formed in a mounting part 32, continuous or discontinuous, which is itself rigidly fixed to the threshold 6, for example by means of bolts and threaded rods 33 sealed in the masonry of the threshold 6 as shown in Figure 15. From preferably, the threshold 6 is leveled at least by an amount corresponding to the height of the mounting piece 32.

Suivant une autre forme d'exécution, au lieu de réaliser l'encastrement de la plaque 11 (ou 21 ou 31) par engagement de sa partie inférieure dans une rainure, l'encastrement peut être effectué comme montré dans la figure 16. Dans cette figure, la plaque 11', vue en coupe verticale, est cintrée en forme de L et sa branche horizontale 11'a est fixée rigidement au seuil 6 par une liaison du type encastrement, c'est-à-dire une liaison où aucun mouvement relatif n'est autorisé, par exemple au moyen de plusieurs boulons et tiges filetées 33 (une seule est visible dans la figure 16) scellées dans la maçonnerie du seuil. Lorsque plusieurs plaques sont prévues, comme les plaques 11' et 21' (figure 16), elles peuvent être fixées ensemble au seuil 6 par les mêmes boulons et tiges filetées 33. Suivant une variante, au lieu d'utiliser des plaques cintrées en L, on peut utiliser des plaques verticales droites, comme les plaques 11 des figures 8, 13, 14, 15, qui sont alors fixées rigidement au seuil 6 par des équerres, les branches verticales des équerres étant fixées aux plaques par exemple par soudage, tandis que leurs branches horizontales peuvent être fixées au seuil 6 d'une manière semblable à celle montrée dans la figure 16. Dans ce dernier cas, c'est l'épaisseur du matériau constituant les équerres et sa limite élastique σa qu'il faut prendre en considération pour le calcul du moment résistant Mr qui détermine le niveau d'eau pour lequel se produit le "pliage" des éléments de hausse.According to another embodiment, instead of embedding the plate 11 (or 21 or 31) by engaging its lower part in a groove, the embedding can be carried out as shown in Figure 16. In this figure, the plate 11 ', seen in vertical section, is curved in the shape of L and its horizontal branch 11'a is rigidly fixed to the threshold 6 by a connection of the embedding type, that is to say a connection where no movement relative is only authorized, for example by means of several bolts and threaded rods 33 (only one is visible in FIG. 16) sealed in the masonry of the threshold. When several plates are provided, like plates 11 'and 21' (Figure 16), they can be fixed together at threshold 6 by the same bolts and threaded rods 33. According to a variant, instead of using curved L-shaped plates , straight vertical plates can be used, like the plates 11 of FIGS. 8, 13, 14, 15, which are then rigidly fixed to the threshold 6 by brackets, the vertical branches of the brackets being fixed to the plates for example by welding, while that their horizontal branches can be fixed to the threshold 6 in a manner similar to that shown in Figure 16. In the latter case, it is the thickness of the material constituting the brackets and its elastic limit σ a that must be taken in consideration for the calculation of the resistant moment Mr which determines the level of water for which the "folding" of the rising elements occurs.

La figure 17 montre, en coupe verticale, un élément de hausse 11 composé de deux plaques 11i et 11j qui sont empilées de façon amovible l'une sur l'autre. Si on le désire plusieurs plaques 11j peuvent être prévues et empilées l'une sur l'autre. Les plaques 11i et 11j peuvent être maintenues ensemble par au moins deux paires de plaquettes 34, dont une paire est visible dans les figures 17 et 18, qui sont fixées rigidement à l'une des deux plaques 11i et 11j et qui enfourchent l'autre plaque. Au lieu des plaquettes 34 on peut aussi utiliser des barrettes s'étendant sur toute la longueur des plaques 11i et 11j. Un joint d'étanchéité 35 est prévu entre les plaques 11i et 11j et, le cas échéant, entre les plaques 11j quand il y en a plusieurs. Les plaques peuvent avoir toutes la même dimension verticale ou des dimensions verticales différentes; par exemple, la plaque supérieure 11j a une dimension verticale plus faible que celle de la plaque 11i. Avec une telle construction de l'élément de hausse, non seulement les opérations de mise en place de la hausse sont facilitées, mais il est aussi possible de donner à la hausse des hauteurs différentes selon les saisons, sans que cela nécessite une surveillance humaine particulière du point de vue de l'évacuation des crues.FIG. 17 shows, in vertical section, an elevation element 11 composed of two plates 11i and 11j which are removably stacked one on the other. If desired, several plates 11j can be provided and stacked one on the other. Plates 11i and 11j can be held together by at least two pairs of plates 34, one pair of which is visible in FIGS. 17 and 18, which are rigidly fixed to one of the two plates 11i and 11j and which straddle the other plate. Instead of the plates 34, it is also possible to use bars extending over the entire length of the plates 11i and 11j. A seal 35 is provided between the plates 11i and 11j and, if necessary, between the plates 11j when there are several. The plates can all have the same vertical dimension or different vertical dimensions; for example, the upper plate 11j has a smaller vertical dimension than that of the plate 11i. With such a construction of the rise element, not only are the operations for setting up the rise easier, but it is also possible to give the rise different heights depending on the season, without requiring special human supervision from the point of view of flood evacuation.

En conclusion, la hauteur de la hausse 10, donc de son ou ses éléments 11, dépend d'un choix économique, de la progressivité souhaitée dans le pliage des divers éléments de hausse, de la précision du niveau d'eau auquel se produit le pliage (précision qui peut être améliorée en prévoyant un dispositif déclencheur comme décrit plus haut en référence à la figure 11) et de la forme de la ligne de crête de la hausse, ligne qui peut être rectiligne ou en créneau. Dans l'exemple numérique décrit plus haut, la hauteur des éléments de hausse qui en résulte peut varier entre 0,9m et 1,5m, permettant, suivant les options prises, de gagner entre 45 et 75% de la tranche d'eau qui serait perdue sans l'utilisation de la hausse fusible.In conclusion, the height of the rise 10, therefore of its element or elements 11, depends on an economic choice, on the desired progressiveness in the folding of the various rise elements, on the precision of the water level at which the folding (precision which can be improved by providing a trigger device as described above with reference to Figure 11) and the shape of the peak line of the rise, line which can be straight or square. In the numerical example described above, the height of the resulting rising elements can vary between 0.9m and 1.5m, allowing, depending on the options taken, to gain between 45 and 75% of the slice of water which would be lost without the use of the fusible link.

D'après ce qui précède, il est clair que la hausse fusible mise en oeuvre dans la présente invention permet d'augmenter substantiellement et de façon quasi-permanente la capacité de stockage d'un barrage ou autre ouvrage à seuil déversant libre, tout en maintenant ou en accroissant la sécurité de fonctionnement propre aux ouvrages à seuil déversant libre, en permettant de façon fiable l'évacuation des crues exceptionnelles par ouverture automatique (pliage d'au moins un élément de la hausse) sans aucune surveillance ni aucune intervention humaine ou d'un dispositif de contrôle. Il est également clair que la hausse peut être fabriquée et installée sur le seuil du déversoir d'un barrage ou autre ouvrage pour un coût plus faible que celui des vannes antérieurement connues, et sans modification majeure du seuil du déversoir.From the above, it is clear that the fuse increase implemented in the present invention allows to substantially and almost permanently increase the storage capacity of a dam or other structure with a free discharge threshold, while maintaining or increasing the operational safety specific to structures with a free discharge threshold, by reliably allowing the evacuation of exceptional floods by automatic opening (folding of 'at least one element of the increase) without any monitoring or any human intervention or control device. It is also clear that the surge can be manufactured and installed on the weir sill of a dam or other structure for a lower cost than that of previously known valves, and without major modification of the weir sill.

Il est bien entendu que les formes d'exécution de la présente invention qui ont été décrites ci-dessus ont été données à titre purement indicatif et nullement limitatif, et que de nombreuses modifications peuvent être facilement apportées par l'homme de l'art sans pour autant sortir du cadre de la présente invention telle que définie par les revendications annexées.It is understood that the embodiments of the present invention which have been described above have been given for purely indicative and in no way limitative, and that numerous modifications can be easily made by those skilled in the art without however, depart from the scope of the present invention as defined by the appended claims.

Claims (12)

  1. Overflow spillway for dams and similar structures comprising an overspill sill (6) whose crest (8) is set at a first predetermined level (RN), lower than a second predetermined level (RM) corresponding to the maximum reservoir level for which the dam is designed, the difference between the said first and second predetermined levels (RN and RM) corresponding to a predetermined maximum discharge of a design flood and a water level raising means (10) on the sill (6) of the spillway (5), the said water level raising means (10) comprising at least one water level raising element (11) in the form of a substantially vertical plate whose lower portion is rigidly fixed to the sill (6) of the spillway (5), the said element having a predetermined height (H1) which is less than the difference between the aforementioned first and second predetermined levels (RN and RM) and which corresponds, for a headwater level substantially equal to the said maximum level (RM) to a mean flood with a predetermined lower discharge than the predetermined maximum discharge, the said element (11) being so designed that it bends about a zone (17) near by its fixed lower portion when the headwater reaches a higher level than the top of the water level raising element, characterised in that the water level raising element (11) is maintained at its lower portion by fixing the plate itself to the sill (6) of the spillway (5), and characterised in that the plate forming the water level raising element (11) is of such thickness at its fixed lower portion and made of a material with such a yield point that the moment of the forces applied to the plate by the water comes to equal the resisting moment at the fixed lower portion of the said element when the headwater reaches a third predetermined level (N) higher than the top of the water level raising element (11) but not higher than the second predetermined level (RM).
  2. Overflow spillway as claimed in Claim 1, characterised in that the plate (11) forming the water level raising element is let into a slot (12) in the sill (6) or into a mount (32) affixed to the sill (6).
  3. Overflow spillway as claimed in Claim 1, characterised in that the plate (11) forming the water level raising element is bent to an L shape with its horizontal leg (11a) rigidly fixed to the sill by fixing means of a type preventing any relative movement between contact surfaces of the said plate and sill.
  4. Overflow spillway as claimed in Claims 1 to 3, characterised in that in the case of an existing spillway (5), the crest (8) of the overspill sill (6) is lowered to a lower level than the said first predetermined level (RN) and the water level raising element (11) is rigidly fixed on the lowered sill and is given a height such that its top is at a level (RN) at least equal to the said first predetermined level (RN) but lower than the said third predetermined level (N).
  5. Overflow spillway as claimed in Claims 1 to 4 characterised in that a seal (15) is provided between the overspill sill (6) and the lower portion of the water level raising element (11).
  6. Overflow spillway as claimed in Claims 1 to 5, characterised in that the said water level raising element consists of a pair of plates (11 and 21) of different heights with a seal (22) between the two.
  7. Overflow spillway as claimed in Claim 6, characterised in that it comprises at least one vent pipe (24) which under normal service conditions maintains a space between the two plates (11 and 21) at atmospheric pressure, the top end of the vent pipe being at a level equal to the said third predetermined level (N).
  8. Overflow spillway as claimed in Claims 1 to 7, characterised in that a plurality of water level raising elements (11) are located side-by-side along the crest (8) of the spillway sill (6) with seals (13) between adjacent edges of the said elements.
  9. Overflow spillway as claimed in Claim 8, characterised in that the thickness and yield point of the water level raising elements (11) are such that at least a first one of said elements (11c) bends when the headwater reaches the said third predetermined level (N1), the said third level being lower than the said second predetermined level (RM), that at least a second one of said elements (11b, 11d) bends when the headwater reaches a fourth predetermined level (N2) between the second and third predetermined levels (RM and N1) and that at least a third one of said elements (11a, 11e) bends when the headwater reaches a fifth predetermined level higher than the fourth level (N2) but not higher than the second predetermined level (RM).
  10. Overflow spillway as claimed in Claims 1 to 8, characterised in that the water level raising means (10) comprises at least two elements (11 and 21) located one after the other in the upstream-downstream direction and being of different heights in increasing order in the upstream-downstream direction, the thicknesses and yield points being so selected that the downstream element (11) bends when the headwater reaches the said third predetermined level (N1) lower than the second predetermined level (RM) and that the upstream element (21) bends when the headwater reaches a fourth predetermined level (N2) higher than the third predetermined level (N1) but not higher than the second predetermined level (RM).
  11. Overflow spillway as claimed in Claims 1 to 10 characterised in that said element (11) comprises at least two stacked vertical plates (11i, 11j).
  12. Overflow spillway as claimed in Claims 1 to 10 characterised in that the water level raising means (10) comprises a plurality of vertical plates (11) in a staggered pattern between permanent vertical plates (20) such that the crest line of the water level raising means has a crenellated shape.
EP90403593A 1989-12-28 1990-12-14 Spillway for high water for barrages and similar structures Expired - Lifetime EP0435732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90403593T ATE98723T1 (en) 1989-12-28 1990-12-14 FLOOD DRAINAGE FOR DAMS AND SIMILAR STRUCTURES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8917333 1989-12-28
FR8917333A FR2656638B1 (en) 1989-12-28 1989-12-28 FLOOD SPRINKLER FOR DAMS AND SIMILAR WORKS.

Publications (2)

Publication Number Publication Date
EP0435732A1 EP0435732A1 (en) 1991-07-03
EP0435732B1 true EP0435732B1 (en) 1993-12-15

Family

ID=9389075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403593A Expired - Lifetime EP0435732B1 (en) 1989-12-28 1990-12-14 Spillway for high water for barrages and similar structures

Country Status (7)

Country Link
US (1) US5061118A (en)
EP (1) EP0435732B1 (en)
AT (1) ATE98723T1 (en)
CA (1) CA2032258C (en)
DE (1) DE69005280D1 (en)
FR (1) FR2656638B1 (en)
NO (1) NO905419L (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108225A (en) * 1991-10-02 1992-04-28 Neal Charles W Elevated wall reservoir system
FR2733260B1 (en) * 1995-04-19 1997-05-30 Hydroplus DEVICE FOR TRIGGERING THE DESTRUCTION OF A SELECTED PART OF A HYDRAULIC STRUCTURE SUCH AS A LIFTING, A DYK OR A DAM IN FILLING, AND HYDRAULIC STRUCTURE CONTAINING SUCH A DEVICE
US6117162A (en) 1996-08-05 2000-09-12 Arthrex, Inc. Corkscrew suture anchor
AU4412797A (en) * 1997-09-10 1999-03-29 Goodyear Tire And Rubber Company, The Rubber gate configuration
US7192217B2 (en) * 2003-03-01 2007-03-20 United States Of America Department Of The Interior, Bureau Of Reclamation Baffle apparatus
WO2009050342A1 (en) 2007-10-19 2009-04-23 Hydroplus Fusegate
MY167053A (en) * 2008-04-28 2018-08-02 Aker Subsea As Internal tree cap running tool
CN103821112B (en) * 2014-01-17 2015-09-23 四川大学 Side goes out to flow spillway on bank along journey
FR3062406B1 (en) * 2017-01-31 2019-04-05 Hydroplus FLUSH EVAPORATOR DEVICE FOR DAMS AND SIMILAR WORKS HAVING AN INTEGRATED DEVICE FOR AERATION OF THE DOWNWATER.
CN107975015A (en) * 2017-11-21 2018-05-01 中国电建集团成都勘测设计研究院有限公司 It is provided with the checkdam of surface spillways
IT201800009417A1 (en) * 2018-10-12 2020-04-12 Sws Eng Spa WATER SYSTEM WITH OVERFLOW THRESHOLD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2118535A (en) * 1937-08-27 1938-05-24 Betts Clifford Allen Hinged automatic flashboard gate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US972059A (en) * 1910-05-11 1910-10-04 Thomas Curtis Clarke Temporary wall.
US1266748A (en) * 1913-01-06 1918-05-21 Walter H Zimmerman Dam construction.
US1544996A (en) * 1921-12-10 1925-07-07 Laufer August Whirlpool filling and parrying plant
US1806255A (en) * 1929-04-17 1931-05-19 Groner Christian Fredrik Arch dam
US1938675A (en) * 1932-11-11 1933-12-12 Morgan Smith S Co Crest gate
JPS603310A (en) * 1983-06-22 1985-01-09 Nippon Jido Kiko Kk Movable retaining wall
US4787774A (en) * 1987-07-01 1988-11-29 Grove William M Fluid control apparatus
DE8808124U1 (en) * 1988-06-24 1988-10-20 Lohmar, Hans Josef, 5000 Koeln, De

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2118535A (en) * 1937-08-27 1938-05-24 Betts Clifford Allen Hinged automatic flashboard gate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.P.Creager, Engineering for dams,1945, Chapman & Hall,Londres, pp.870-876 *

Also Published As

Publication number Publication date
DE69005280D1 (en) 1994-01-27
CA2032258C (en) 1995-11-07
NO905419D0 (en) 1990-12-14
NO905419L (en) 1991-07-01
US5061118A (en) 1991-10-29
FR2656638B1 (en) 1992-04-10
EP0435732A1 (en) 1991-07-03
CA2032258A1 (en) 1991-06-29
FR2656638A1 (en) 1991-07-05
ATE98723T1 (en) 1994-01-15

Similar Documents

Publication Publication Date Title
EP0434521B1 (en) High water spillway for barriers and similar works
EP0493183B1 (en) Spillway for exceptional floods for barrages comprising et least two spillways
EP0435732B1 (en) Spillway for high water for barrages and similar structures
EP2215308B1 (en) Fusegate
US20120034032A1 (en) Self-Actuating Flood Guard
EP1793043A1 (en) Mobile flood protection wall
EP0874941A1 (en) Automatic wicket for a hydraulic structure such as a river sill, a dam spillway or a protective dyke
WO2006114547A1 (en) Elongated device for maritime and waterway planning and production method thereof
EP1650355B1 (en) Device for mitigation of a wave
FR3062406A1 (en) FLUSH EVAPORATOR DEVICE FOR DAMS AND SIMILAR WORKS HAVING AN INTEGRATED DEVICE FOR AERATION OF THE DOWNWATER.
CA2219576C (en) Device for triggering the destruction of a selected part of a hydraulic structure, such as a levee, a dike or a backfilled dam, and a hydraulic structure comprising such a device
EP3625393B1 (en) Device for protecting the shoreline against the risks of submergence from the sea, comprising a curved front face and protective dike comprising a plurality of aligned protection devices
EP2547899B1 (en) Device for recovering wave energy and corresponding method
FR2792661A1 (en) Barrage assembly for controlling the flow of water through a channel, into and out of a main body of water and other such applications, utilizes piles driven through the bed and lower substrata supporting rotating vanes
EP0346554B1 (en) Structure for the attenuation of waves
EP3653793B1 (en) Reduction of the reflection coefficient of a vertical wall in a port
FR2556379A1 (en) Method for forming an anti-swell device and device related thereto
FR3105273A1 (en) Ready-to-assemble set of parts for barring a torrent to maintain a fixed level ford.
FR2677052A1 (en) Breakwater
WO2004016859A1 (en) Device for protecting seacoasts
FR3095454A1 (en) Kit for the construction of a bridge
FR2596434A1 (en) Device for protecting a coastal region from the effects of swell and waves and method for producing and installing the said device
FR2885147A1 (en) Safety embankments` crests reinforcing method for use in e.g. urbanized zone, involves connecting concrete blocks covered by waterproof membrane, and positioning blocks in trench which is then covered with clay to tighten base of blocks
FR2708013A1 (en) Automatic sluice for spillways constructed without sluices with a view to raising the normal barrage or for new spillways
FR2877022A1 (en) Swell attenuating device for protecting places e.g. harbors, has raft with perforations on part of its surface and placed between perpendicular upstream and downstream edges extended at their base by stubs of same determined length

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19920504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GTM-ENTREPOSE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931215

Ref country code: AT

Effective date: 19931215

Ref country code: DK

Effective date: 19931215

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19931215

Ref country code: NL

Effective date: 19931215

Ref country code: GB

Effective date: 19931215

Ref country code: DE

Effective date: 19931215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931215

REF Corresponds to:

Ref document number: 98723

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69005280

Country of ref document: DE

Date of ref document: 19940127

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941231

Ref country code: CH

Effective date: 19941231

Ref country code: LI

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 90403593.8

BERE Be: lapsed

Owner name: GTM-ENTREPOSE

Effective date: 19941231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981217

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991215

EUG Se: european patent has lapsed

Ref document number: 90403593.8