EP0433908B1 - Intake and air-fuel mixture preparing system for spark-ignited multi-cylinder internal combustion engine - Google Patents

Intake and air-fuel mixture preparing system for spark-ignited multi-cylinder internal combustion engine Download PDF

Info

Publication number
EP0433908B1
EP0433908B1 EP90124212A EP90124212A EP0433908B1 EP 0433908 B1 EP0433908 B1 EP 0433908B1 EP 90124212 A EP90124212 A EP 90124212A EP 90124212 A EP90124212 A EP 90124212A EP 0433908 B1 EP0433908 B1 EP 0433908B1
Authority
EP
European Patent Office
Prior art keywords
group
intake
cylinder
groups
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124212A
Other languages
German (de)
French (fr)
Other versions
EP0433908A1 (en
Inventor
Helmut Endres
Helmut Thöne
Heinz-Jakob Neusser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Publication of EP0433908A1 publication Critical patent/EP0433908A1/en
Application granted granted Critical
Publication of EP0433908B1 publication Critical patent/EP0433908B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line

Definitions

  • the invention relates to an intake and mixture formation system for multi-cylinder, spark-ignited internal combustion engines with at least two intake valves per cylinder, at least two separate intake manifold arms assigned to the intake valves per cylinder and fuel injection, in the first intake manifold arms per cylinder to a first group and further intake manifold arms per cylinder at least are combined to form a further group and each group is assigned a throttle element, the first group having a common fuel injection into the intake system and the intake manifold arms or inlet channels of the further group or the further groups being assigned an injection.
  • the two intake valves of each cylinder are usually connected to a common intake manifold, and an injection nozzle is assigned to each cylinder.
  • Such a design is structurally relatively simple to implement, but its disadvantage is that load and speed-dependent control of the charge movement in the intake manifold arms and in the cylinder is not possible, since the throttling of a partial flow of the charge supplied to the cylinder cannot take place with this design.
  • the flow rate of the fresh air (or mixture with recirculated exhaust gas - EGR) is low at low air throughputs, so that there is inadequate mixture preparation. Due to the quickly released, large opening cross-sections in multi-valve engines, high residual gas components occur at idle and at low partial load, which, in conjunction with the low charge movement in the combustion chamber, lead to an unstable combustion process and unfavorable efficiency levels.
  • a control of the charge movement in the cylinder adapted to the air throughput can be achieved with intake systems that have two completely separate intake manifold arms per cylinder. By partially or completely closing one of these arms, the charge movement and turbulence in the combustion chamber can be significantly increased with small air throughputs, and the combustion process can thus be improved.
  • the consistent implementation of such an intake system with completely separate intake manifold arms up to the intake valves would require twice the number of injection nozzles compared to today's conventional systems. It represents the most complex and expensive solution in terms of production technology.
  • DE-A-37 07 805 describes an intake manifold arrangement for multi-cylinder internal combustion engines with fuel injection nozzles, in which each cylinder has a first intake manifold with a first intake manifold and a low-resistance one with a first intake manifold, which is designed for optimal filling in a lower air flow rate range second intake manifold is connected to a second intake manifold, each of which is preceded by a throttle element, of which that of the first intake manifold already opens in the lower air throughput range, whereas the throttle element of the second intake manifold only opens in a higher air throughput range and in which the first and second intake manifolds individual intake valves open into the cylinders and individual injection nozzles are arranged in the first intake manifolds, whereas an injection nozzle common to the second intake manifolds is arranged in the second intake manifold, which supplies fuel only when the associated throttle member is opened. It is provided that the individual injection nozzles are designed only for the maximum fuel requirement in the lower air
  • An intake manifold arrangement of this type represents an advance over the arrangements described in that it has a more economical fuel metering with a portable design effort enabled over the performance range of the internal combustion engine.
  • a disadvantage of this arrangement is still that, due to the rapidly released, large opening cross-sections, high residual gas fractions occur in multi-valve engines at idle and at low load, which lead to an unstable combustion process, a deterioration in efficiency and additional environmental pollution.
  • the invention has for its object to enable a load- and speed-dependent control of the flow movement in the intake manifold arms and thus in the cylinder with simultaneous advantageous mixture formation in a simple, economical and reliable manner, in particular when idling and at low partial load, a stable combustion process and a cheaper Efficiency is achieved.
  • the throttle elements are controlled in such a way that the first group opens first for the area of low air throughputs and the other group or other groups are connected at speed and load as a function of higher air throughputs will.
  • the use of single injections on the second group or on the other groups offers a better design option for the intake manifold arm geometry, i.e. in particular, short, gas-dynamically favorable intake manifold arms with the lowest throttle losses. This creates favorable conditions for the presentation of high specific performance.
  • the advantages of the central mixture formation can be combined particularly advantageously with the long intake manifold arms of the first group, which are desirable from a gas dynamic point of view. This enables high torques to be displayed at low engine speeds.
  • the most favorable flow movement and structure (turbulence) for the mixture formation and combustion process and the most favorable gas dynamics can be generated in the intake manifold.
  • Another advantage of the intake and mixture formation system according to the invention is that the fuel-air ratio can be set independently of one another by varying the injected fuel quantities for the respective group or groups.
  • homogeneous or inhomogeneous cylinder charges can be generated depending on the load and speed, which means that stratified charge effects can be used to increase efficiency and reduce pollutant emissions.
  • possible fuel-air ratio variations of the first group at low intake manifold pressures can be avoided by different injection periods of the individual injections within the second group.
  • the knock sensitivity of the engine i.e. reduce the tendency to uncontrolled combustion processes. As a result, higher torques and lower efficiency levels result.
  • the amount of fuel required at starting can preferably be provided by switching on the fuel injections of the second group.
  • the injectors can be selected to be smaller and better adapted to the respective air throughput.
  • the introduction of exhaust gas can preferably be carried out selectively in the first and / or the further group or the further groups, as a result of which a good uniform distribution of the exhaust gases over the individual cylinders of a group is achieved, but at the same time stratification effects in the cylinder can also be used.
  • stratification effects in the cylinder can also be used.
  • the improved ignition conditions then lead to a more stable ignition phase and accordingly to a more stable engine running.
  • higher exhaust gas recirculation rates can be achieved.
  • the common fuel injection of the first group takes place behind the common throttle element, as seen in the inlet flow direction, the intake manifold pressures which exist when the throttle element is partially or completely closed promote fuel evaporation.
  • Another possibility is that the common fuel injection of the first group takes place upstream of the common throttle element, as seen in the inlet flow direction.
  • the advantage is achieved that the throttle gap existing when the throttle valve is partially closed promotes the mixing of the injected fuel with the intake air due to the high flow velocity present there and thus improves the mixture formation.
  • the fuel may also be injected into the cylinder by the further group or groups. This allows the dynamic engine behavior to be improved. A faster response can be achieved when accelerating; during the deceleration process, wall deposits in the intake manifold are avoided.
  • a throttle member per intake manifold arm for controlling the intake manifold arms of the individual groups can be provided in addition or as an alternative to the common throttle members. This measure reduces the volumes between the intake valve and throttle element for the respective cylinder when the second group is closed. This has a favorable influence on the residual gas content and consequently the smooth running of the engine.
  • Figure 1 shows schematically the assignment of intake manifold arms and injection valves to a cylinder of a multi-cylinder injection engine.
  • Figure 2 shows schematically an embodiment of a complete intake and mixture formation system according to the invention.
  • FIG 3 shows an embodiment of the intake and mixture formation system according to Figure 2 in side view.
  • Figure 4 shows an embodiment of the intake and mixture formation system according to Figure 2 in rear view.
  • Figure 5 shows an embodiment of the intake and mixture formation system according to Figure 2 in plan view.
  • Figure 1 shows schematically the connection of the intake manifold arms to the valves of a cylinder of a multi-cylinder injection internal combustion engine.
  • a first inlet valve 1 of a cylinder 2 is connected to an intake manifold arm 3, which is part of a group 4 with further intake manifold arms 5, 6 and 7 of a four-cylinder internal combustion engine shown for example. Exhaust valves 8 and 9 are suitably connected to the exhaust system.
  • Group 4 contains a common mixture formation element, which is represented by an injection valve 10.
  • Group 4 also has a common throttle element (not shown).
  • a second inlet valve 11 is connected to a further intake manifold arm 12, which may belong to a second group of intake manifold arms, the further intake manifold arms of which are not shown. As a rule, the second group will also have a common throttle element (not shown).
  • a mixture formation member is represented by injection valve 13, so that in the exemplary embodiment shown, a separate mixture formation member is assigned to the intake manifold arm 12.
  • the intake manifold arm group 4 is assigned to the area 50 of low air throughputs, while the second intake manifold arm group, of which the intake manifold arm 12 is a part, is assigned to the area 51 of high air throughputs.
  • FIG. 2 An embodiment is shown in FIG. 2. It is provided that the first group of intake manifold arms has a common fuel injection and one injection is assigned to the intake manifold arms or inlet ducts of the second group.
  • a first intake manifold arm group 25 and a second intake manifold arm group 26 are assigned to cylinders 21, 22, 23, 24 for the four-cylinder engine shown as an example.
  • the first group 25 includes intake manifold arms I-1, I-2, I-3 and I-4, while the second group 26 includes intake manifold arms II-1, II-2, II-3 and II-4.
  • Different intake manifold arm lengths and intake manifold arm cross sections can be implemented in each group.
  • the first intake manifold arm group 25 has a common mixture formation element I-5, and there may be a common exhaust gas recirculation EGR at I-6.
  • EGR exhaust gas recirculation
  • the fuel is fed into the intake manifold arms or inlet channels separately at II-5, II-6, II-7 and II-8.
  • a EGR common exhaust gas recirculation at II-9 there is the possibility of common exhaust gas recirculation for the first and second groups in front of a common throttle element (not shown), which can be designed, for example, as a register throttle valve.
  • the first intake manifold arm group 25 contains a common throttle member I-7, and the second intake manifold arm group 26 also contains a common throttle member II-10. It is therefore advantageously possible for the individual throttle elements to be closed completely or partially independently, and thus for the load and speed-dependent control of the flow movement in the intake manifold arms of the groups and in the cylinder. Flow cross sections and intake manifold arm lengths can also be controlled in a targeted manner depending on the load and speed.
  • the first intake manifold arm group 4 with the intake manifold arms 3, 5, 6 and 7 is assigned to the operating area 50 of low air flow rates, while the intake manifold arm 12 together with the three further intake manifold arms (not shown) is assigned to the operating area 51 high air flow rates is assigned.
  • the intake manifold arms I-1, I-2, I-3 and I-4 of the intake manifold arm group 25 are assigned to the operating range 50 of low air throughputs, while the intake manifold arm group 26 with the intake manifold arms II-1, II-2, II-3 and II-4 is assigned to the operating area 51 of high air flow rates.
  • the throttle elements are controlled in such a way that the first group 25 opens first for the area of low air throughputs and the other group 26 (or the other groups) are switched on at higher air throughputs as a function of speed and load.
  • This achieves the advantages that in the region of low air throughputs, that is to say at high intake manifold pressures and / or low engine speeds, a more favorable mixture preparation is achieved with a central injection than with a single injection. This will result in this operating area more economical efficiencies, lower pollutant emissions and improved operability when operated with lean mixtures or with diluted exhaust gases.
  • fuel enrichment during cold starts and in the warm-up phase can be reduced.
  • the use of single injections on the second group or on the other groups offers a better design option for the intake manifold arm geometry, i.e. in particular, short, gas-dynamically favorable intake manifold arms with the lowest throttle losses. This creates favorable conditions for the presentation of high specific performance.
  • the speed and load-dependent connection of the second group can also generate the flow movement and structure (turbulence) that is most favorable in terms of combustion technology in the cylinder.
  • FIGS. 3-5 show the spatial design of the intake manifold arm groups 25 and 26 shown in FIG. 2 as an exemplary embodiment.
  • the common throttle devices I-7 and II-10 of groups 25 and 26 can be seen in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

Die Erfindung bezieht sich auf ein Ansaug- und Gemischbildungssystem für mehrzylindrige, fremdgezündete Brennkraftmaschinen mit mindestens zwei Einlaßventilen je Zylinder, mindestens zwei den Einlaßventilen zugeordneten getrennten Saugrohrarmen je Zylinder und Kraftstoffeinspritzung, bei dem erste Saugrohrarme je Zylinder zu einer ersten Gruppe und weitere Saugrohrarme je Zylinder wenigstens zu einer weiteren Gruppe zusammengefaßt sind und jeder Gruppe je ein Drosselorgan zugeordnet ist, wobei die erste Gruppe eine gemeinsame Kraftstoffeinspritzung ins Ansaugsystem aufweist und den Saugrohrarmen bzw. Einlaßkanälen der weiteren Gruppe bzw. der weiteren Gruppen je eine Einspritzung zugeordnet ist.The invention relates to an intake and mixture formation system for multi-cylinder, spark-ignited internal combustion engines with at least two intake valves per cylinder, at least two separate intake manifold arms assigned to the intake valves per cylinder and fuel injection, in the first intake manifold arms per cylinder to a first group and further intake manifold arms per cylinder at least are combined to form a further group and each group is assigned a throttle element, the first group having a common fuel injection into the intake system and the intake manifold arms or inlet channels of the further group or the further groups being assigned an injection.

Bei Brennkraftmaschinen dieser Art sind üblicherweise die beiden Einlaßventile eines jeden Zylinders mit einem gemeinsamen Saugrohr verbunden, und jedem Zylinder ist eine Einspritzdüse zugeordnet. Eine solche Bauart ist konstruktiv verhältnismäßig einfach realisierbar, jedoch ist ihr Nachteil, daß eine last- und drehzahlabhängige Steuerung der Ladungsbewegung in den Saugrohrarmen und im Zylinder nicht möglich ist, da die Drosselung eines Teilstromes der dem Zylinder zugeführten Ladung bei dieser Bauart nicht erfolgen kann. Außerdem ist bei niedrigen Luftdurchsätzen die Strömungsgeschwindigkeit der Frischluft (bzw. Mischung mit rückgeführtem Abgas - EGR) gering, so daß eine unzureichende Gemischaufbereitung gegeben ist. Aufgrund der schnell freigegebenen, großen Öffnungsquerschnitte bei Mehrventilmotoren treten im Leerlauf sowie bei niedriger Teillast hohe Restgasanteile auf, die in Verbindung mit der geringen Ladungsbewegung im Brennraum zu einem instabilen Verbrennungsablauf und ungünstigen Wirkungsgraden führen.In internal combustion engines of this type, the two intake valves of each cylinder are usually connected to a common intake manifold, and an injection nozzle is assigned to each cylinder. Such a design is structurally relatively simple to implement, but its disadvantage is that load and speed-dependent control of the charge movement in the intake manifold arms and in the cylinder is not possible, since the throttling of a partial flow of the charge supplied to the cylinder cannot take place with this design. In addition, the flow rate of the fresh air (or mixture with recirculated exhaust gas - EGR) is low at low air throughputs, so that there is inadequate mixture preparation. Due to the quickly released, large opening cross-sections in multi-valve engines, high residual gas components occur at idle and at low partial load, which, in conjunction with the low charge movement in the combustion chamber, lead to an unstable combustion process and unfavorable efficiency levels.

Eine dem Luftdurchsatz angepaßte Steuerung der Ladungsbewegung im Zylinder kann mit Ansaugsystemen erzielt werden, die pro Zylinder zwei vollständig getrennte Saugrohrarme aufweisen. Durch teilweises oder vollständiges Schließen eines dieser Arme kann bei kleinen Luftdurchsätzen die Ladungsbewegung und die Turbulenz im Brennraum deutlich erhöht werden und damit der Verbrennungsablauf verbessert werden. Die konsequente Ausführung eines solchen Ansaugsystems mit vollständig getrennten Saugrohrarmen bis zu den Einlaßventilen würde jedoch die doppelte Anzahl von Einspritzdüsen im Vergleich zu heutigen konventionellen Systemen erfordern. Sie stellt die fertigungstechnisch aufwendigste und teuerste Lösung dar.A control of the charge movement in the cylinder adapted to the air throughput can be achieved with intake systems that have two completely separate intake manifold arms per cylinder. By partially or completely closing one of these arms, the charge movement and turbulence in the combustion chamber can be significantly increased with small air throughputs, and the combustion process can thus be improved. However, the consistent implementation of such an intake system with completely separate intake manifold arms up to the intake valves would require twice the number of injection nozzles compared to today's conventional systems. It represents the most complex and expensive solution in terms of production technology.

In DE-A-37 07 805 ist eine Saugrohranordnung für Mehrzylinder-Brennkraftmaschinen mit Kraftstoff-Einspritzdüsen beschrieben, bei der jeder Zylinder über ein erstes Saugrohr, das für optimale Füllung in einem unteren Luftdurchsatzbereich ausgelegt ist, mit einem ersten Saugverteiler und über ein widerstandsärmer ausgelegtes zweites Saugrohr mit einem zweiten Saugverteiler verbunden ist, denen jeweils ein Drosselorgan vorgeschaltet ist, von denen dasjenige des ersten Saugverteilers bereits im unteren Luftdurchsatzbereich, dagegen das Drosselorgan des zweiten Saugverteilers zusätzlich erst in einem höheren Luftdurchsatzbereich öffnet und bei dem die ersten und die zweiten Saugrohre über individuelle Einlaßventile in die Zylinder einmünden und in den ersten Saugrohren individuelle Einspritzdüsen, dagegen im zweiten Saugverteiler eine den zweiten Saugrohren gemeinsame Einspritzdüse angeordnet ist, die erst bei Öffnen des zugeordneten Drosselorgans Kraftstoff liefert. Dabei ist vorgesehen, daß die individuellen Einspritzdüsen nur für den maximalen Kraftstoffbedarf in dem unteren Luftdurchsatzbereich ausgelegt sind.DE-A-37 07 805 describes an intake manifold arrangement for multi-cylinder internal combustion engines with fuel injection nozzles, in which each cylinder has a first intake manifold with a first intake manifold and a low-resistance one with a first intake manifold, which is designed for optimal filling in a lower air flow rate range second intake manifold is connected to a second intake manifold, each of which is preceded by a throttle element, of which that of the first intake manifold already opens in the lower air throughput range, whereas the throttle element of the second intake manifold only opens in a higher air throughput range and in which the first and second intake manifolds individual intake valves open into the cylinders and individual injection nozzles are arranged in the first intake manifolds, whereas an injection nozzle common to the second intake manifolds is arranged in the second intake manifold, which supplies fuel only when the associated throttle member is opened. It is provided that the individual injection nozzles are designed only for the maximum fuel requirement in the lower air throughput range.

Eine Saugrohranordnung dieser Art stellt gegenüber den beschriebenen Anordnungen einen Fortschritt dadurch dar, daß sie bei tragbarem konstruktiven Aufwand eine günstigere Kraftstoffzumessung über den Leistungsbereich der Brennkraftmaschine ermöglicht. Ein Nachteil dieser Anordnung ist jedoch nach wie vor, daß aufgrund der schnell freigegebenen, großen Öffnungsquerschnitte bei Mehrventilmotoren im Leerlauf und bei niedriger Last hohe Restgasanteile auftreten, die zu einem instabilen Verbrennungsablauf, zu einer Verschlechterung des Wirkungsgrades und zu zusätzlicher Umweltbelastung führen.An intake manifold arrangement of this type represents an advance over the arrangements described in that it has a more economical fuel metering with a portable design effort enabled over the performance range of the internal combustion engine. A disadvantage of this arrangement, however, is still that, due to the rapidly released, large opening cross-sections, high residual gas fractions occur in multi-valve engines at idle and at low load, which lead to an unstable combustion process, a deterioration in efficiency and additional environmental pollution.

Der Erfindung liegt die Aufgabe zugrunde, eine last- und drehzahlabhängige Steuerung der Strömungsbewegung in den Saugrohrarmen und damit im Zylinder bei gleichzeitig vorteilhafter Gemischbildung in einfacher, wirtschaftlicher und betriebssicherer Weise zu ermöglichen, wobei insbesondere im Leerlauf und bei niedriger Teillast ein stabiler Verbrennungsablauf und ein günstiger Wirkungsgrad erreicht wird.The invention has for its object to enable a load- and speed-dependent control of the flow movement in the intake manifold arms and thus in the cylinder with simultaneous advantageous mixture formation in a simple, economical and reliable manner, in particular when idling and at low partial load, a stable combustion process and a cheaper Efficiency is achieved.

Gemäß der Erfindung ist bei einem Ansaug- und Gemischbildungssystem der eingangs bezeichneten Art vorgesehen, daß die Drosselorgane so gesteuert sind, daß für den Bereich niedriger Luftdurchsätze zuerst die erste Gruppe öffnet und die weitere Gruppe bzw. weiteren Gruppen bei höheren Luftdurchsätzen drehzahl- und lastabhängig zugeschaltet werden.According to the invention, it is provided in a suction and mixture formation system of the type described in the introduction that the throttle elements are controlled in such a way that the first group opens first for the area of low air throughputs and the other group or other groups are connected at speed and load as a function of higher air throughputs will.

Mit einem solchen System lassen sich wesentliche Vorteile erreichen:With such a system, major advantages can be achieved:

Im Bereich niedriger Luftdurchsätze, also bei hohen Saugrohrunterdrücken und/oder niedrigen Motordrehzahlen, wird mit einer Zentraleinspritzung eine günstigere Gemischaufbereitung als mit einer Einzeleinspritzung erreicht. Durch die Kraftstoffzumessung durch nur eine Düse sind in diesem Luftdurchsatzbereich die Mengenstreuungen von Zylinder zu Zylinder deutlich geringer. Weiterhin verbessert die längere Strecke des Gemischaufbereitungsvorgangs bei der gemeinsamen Einspritzung insbesondere beim betriebswarmen Motor die Gemischbildung. Hieraus resultieren im Bereich niedriger Luftdurchsätze ein günstigerer Wirkungsgrad, niedrigere Schadstoff-Emissionen sowie eine verbesserte Lauffähigkeit bei Betrieb mit mageren Brennstoff-Luftgemischen bzw. eine erhöhte Toleranz in der Bemessung der Abgasrückführung bei mit Abgas verdünnten Gemischen. Außerdem kann die Kraftstoffanreicherung beim Kaltstart und in der Warmlaufphase verringert werden, und dies bietet zusätzliche Vorteile hinsichtlich des Wirkungsgrades und der Emission von Schadstoffen.In the area of low air throughputs, i.e. with high intake manifold pressures and / or low engine speeds, a Central injection achieved a cheaper mixture preparation than with a single injection. Due to the fuel metering through only one nozzle, the volume scatter from cylinder to cylinder is significantly lower in this air flow range. Furthermore, the longer distance of the mixture preparation process in the case of joint injection improves the mixture formation, in particular when the engine is at operating temperature. In the area of low air throughputs, this results in a lower level of efficiency, lower pollutant emissions and improved operability when operating with lean fuel-air mixtures or an increased tolerance in the dimensioning of exhaust gas recirculation for mixtures diluted with exhaust gas. In addition, fuel build-up during cold start and warm-up can be reduced, and this offers additional advantages in terms of efficiency and emission of pollutants.

Im Bereich höherer Luftdurchsätze bietet die Verwendung der Einzeleinspritzungen auf der zweiten Gruppe bzw. auf den weiteren Gruppen eine bessere Gestaltungsmöglichkeit der Saugrohrarmgeometrie, d.h. insbesondere kurze, gasdynamisch günstige Saugrohrarme mit niedrigsten Drosselverlusten. Damit werden günstige Voraussetzungen zur Darstellung hoher spezifischer Leistungen geschaffen.In the area of higher air throughputs, the use of single injections on the second group or on the other groups offers a better design option for the intake manifold arm geometry, i.e. in particular, short, gas-dynamically favorable intake manifold arms with the lowest throttle losses. This creates favorable conditions for the presentation of high specific performance.

Die Vorteile der zentralen Gemischbildung lassen sich mit den aus gasdynamischer Sicht wünschenswert langen Saugrohrarmen der ersten Gruppe besonders vorteilhaft kombinieren. Damit lassen sich insbesondere hohe Drehmomente bei niedrigen Motordrehzahlen darstellen.The advantages of the central mixture formation can be combined particularly advantageously with the long intake manifold arms of the first group, which are desirable from a gas dynamic point of view. This enables high torques to be displayed at low engine speeds.

In Verbindung mit einer geeigneten Ausbildung bzw. Abstimmung des Ansaugsystems (Saugrohrarmlänge, Saugrohrarmdurchmesser, Sammlervolumen, Einlaßkanalgeometrie) kann so die für den Gemischbildungs-und Verbrennungsvorgang günstigste Strömungsbewegung und -struktur (Turbulenz) im Zylinder sowie die günstigste Gasdynamik im Saugrohr erzeugt werden.In conjunction with a suitable design or coordination of the intake system (intake manifold arm length, intake manifold arm diameter, collector volume, inlet duct geometry), the most favorable flow movement and structure (turbulence) for the mixture formation and combustion process and the most favorable gas dynamics can be generated in the intake manifold.

Ein weiterer Vorteil des Ansaug- und Gemischbildungssystems gemäß der Erfindung besteht darin, daß das Kraftstoff-Luftverhältnis durch Variation der eingespritzten Kraftstoffmengen für die jeweilige Gruppe bzw. Gruppen unabhängig voneinander einstellbar ist. Dadurch können last- und drehzahlabhängig homogene bzw. inhomogene Zylinderladungen erzeugt werden, wodurch Schichtladeeffekte gezielt zur Wirkungsgradsteigerung und Schadstoffemissionsverringerung genutzt werden können. Außerdem können durch unterschiedliche Einspritzdauern der Einzeleinspritzungen innerhalb der zweiten Gruppe mögliche Kraftstoff-Luftverhältnisstreuungen der ersten Gruppe bei niedrigen Saugrohrunterdrücken vermieden werden. Damit läßt sich die Klopfempfindlichkeit des Motors, d.h. die Neigung zu unkontrollierten Verbrennungsvorgängen, reduzieren. Als Folge ergeben sich höhere Drehmomente und günstigere Wirkungsgrade.Another advantage of the intake and mixture formation system according to the invention is that the fuel-air ratio can be set independently of one another by varying the injected fuel quantities for the respective group or groups. As a result, homogeneous or inhomogeneous cylinder charges can be generated depending on the load and speed, which means that stratified charge effects can be used to increase efficiency and reduce pollutant emissions. In addition, possible fuel-air ratio variations of the first group at low intake manifold pressures can be avoided by different injection periods of the individual injections within the second group. The knock sensitivity of the engine, i.e. reduce the tendency to uncontrolled combustion processes. As a result, higher torques and lower efficiency levels result.

Vorzugsweise kann die beim Starten erforderliche Kraftstoffmenge durch Zuschalten der Kraftstoffeinspritzungen der zweiten Gruppe bereitgestellt werden. Dadurch können die Einspritzvorrichtungen kleiner gewählt und besser an den jeweiligen Luftdurchsatz angepaßt werden. Auch kann gleichzeitig den Anforderungen an die Gemischbildung bei kleinen Luftdurchsätzen, d.h. insbesondere im Leerlauf, sowie bei hohen Luftmengen im Nennleistungsbereich Rechnung getragen werden.The amount of fuel required at starting can preferably be provided by switching on the fuel injections of the second group. As a result, the injectors can be selected to be smaller and better adapted to the respective air throughput. At the same time, the requirements for mixture formation with small air throughputs, i.e. in particular when idling, as well as with high air volumes in the nominal power range.

Wenn die Kraftstoffeinspritzung der weiteren Gruppe bzw. der weiteren Gruppen von der Kraftstoffeinspritzung der ersten Gruppe unabhängig ist, hat dies den Vorteil, daß bei gruppenweise unterschiedlichem Bedarf an Druck im Kraftstoffsystem energetische Vorteile bei der Druckerzeugung erzielbar sind.If the fuel injection of the further group or of the further groups is independent of the fuel injection of the first group, this has the advantage that energetic advantages in the generation of pressure can be achieved when the pressure in the fuel system varies in groups.

Vorzugsweise kann die Einleitung von Abgas selektiv in die erste und/oder die weitere Gruppe bzw. die weiteren Gruppen vorgenommen werden, wodurch eine gute Gleichverteilung der Abgase auf die einzelnen Zylinder einer Gruppe erzielt wird, gleichzeitig jedoch auch Schichtungseffekte im Zylinder genutzt werden können. In diesem Fall ist es möglich, das zündfähigere Gemisch im Bereich der Zündkerze zu konzentrieren. Die verbesserten Zündbedingungen führen dann zu einer stabileren Entflammungsphase und dementsprechend zu einem stabileren Motorlauf. Alternativ können höhere Abgasrückführraten realisiert werden.The introduction of exhaust gas can preferably be carried out selectively in the first and / or the further group or the further groups, as a result of which a good uniform distribution of the exhaust gases over the individual cylinders of a group is achieved, but at the same time stratification effects in the cylinder can also be used. In In this case it is possible to concentrate the more ignitable mixture in the area of the spark plug. The improved ignition conditions then lead to a more stable ignition phase and accordingly to a more stable engine running. Alternatively, higher exhaust gas recirculation rates can be achieved.

In einer günstigen Ausführungsform erfolgt die gemeinsame Kraftstoffeinspritzung der ersten Gruppe in Einlaß-Strömungsrichtung gesehen hinter dem gemeinsamen Drosselorgan, wobei die bei teilweise bzw. vollständig geschlossenem Drosselorgan bestehenden Saugrohrunterdrücke die Kraftstoffverdampfung begünstigen.In a favorable embodiment, the common fuel injection of the first group takes place behind the common throttle element, as seen in the inlet flow direction, the intake manifold pressures which exist when the throttle element is partially or completely closed promote fuel evaporation.

Eine weitere Möglichkeit besteht darin, daß die gemeinsame Kraftstoffeinspritzung der ersten Gruppe in Einlaß-Strömungsrichtung gesehen vor dem gemeinsamen Drosselorgan erfolgt. In diesem Fall wird der Vorteil erreicht, daß der bei teilweise geschlossener Drosselklappe bestehende Drosselspalt durch die dort vorliegende hohe Strömungsgeschwindigkeit die Durchmischung des eingespritzten Kraftstoffes mit der Ansaugluft fördert und damit die Gemischbildung verbessert.Another possibility is that the common fuel injection of the first group takes place upstream of the common throttle element, as seen in the inlet flow direction. In this case, the advantage is achieved that the throttle gap existing when the throttle valve is partially closed promotes the mixing of the injected fuel with the intake air due to the high flow velocity present there and thus improves the mixture formation.

Auch kann die Kraftstoffeinspritzung der weiteren Gruppe bzw. der weiteren Gruppen in den Zylinder erfolgen. Dadurch läßt sich das dynamische Motorverhalten verbessern. Beim Beschleunigen kann damit ein schnelleres Ansprechverhalten erzielt werden; beim Verzögerungsvorgang werden Wandanlagerungseffekte im Saugrohr vermieden.The fuel may also be injected into the cylinder by the further group or groups. This allows the dynamic engine behavior to be improved. A faster response can be achieved when accelerating; during the deceleration process, wall deposits in the intake manifold are avoided.

Eine weitere vorteilhafte Möglichkeit besteht darin, daß ein Drosselorgan pro Saugrohrarm zur Steuerung der Saugrohrarme der einzelnen Gruppen zusätzlich oder ersatzweise zu den gemeinsamen Drosselorganen vorgesehen werden kann. Durch diese Maßnahme werden die Volumina zwischen Einlaßventil und Drosselorgan für den jeweiligen Zylinder bei geschlossener zweiter Gruppe verringert. Damit wird der Restgasgehalt und infolgedessen die Laufruhe des Motors günstig beeinflußt.Another advantageous possibility is that a throttle member per intake manifold arm for controlling the intake manifold arms of the individual groups can be provided in addition or as an alternative to the common throttle members. This measure reduces the volumes between the intake valve and throttle element for the respective cylinder when the second group is closed. This has a favorable influence on the residual gas content and consequently the smooth running of the engine.

Vorzugsweise können mehrere gleichartige Ansaugsysteme bei vielzylindrigen Brennkraftmaschinen kombiniert werden. Hierbei können einzelne Bauelemente der einzelnen Gruppen auch gemeinsam genutzt werden.Preferably, several similar intake systems can be combined in multi-cylinder internal combustion engines. Here, individual components of the individual groups can also be used together.

Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen näher beschrieben.Embodiments of the invention are described in more detail with reference to the drawings.

Figur 1 zeigt schematisch die Zuordnung von Saugrohrarmen und Einspritzventilen zu einem Zylinder eines mehrzylindrigen Einspritzmotors.Figure 1 shows schematically the assignment of intake manifold arms and injection valves to a cylinder of a multi-cylinder injection engine.

Figur 2 zeigt schematisch eine Ausführungsform eines vollständigen Ansaug- und Gemischbildungssystems gemäß der Erfindung.Figure 2 shows schematically an embodiment of a complete intake and mixture formation system according to the invention.

Figur 3 zeigt eine Ausführungsform des Ansaug- und Gemischbildungssystems gemäß Figur 2 in Seitenansicht.Figure 3 shows an embodiment of the intake and mixture formation system according to Figure 2 in side view.

Figur 4 zeigt eine Ausführungsform des Ansaug- und Gemischbildungssystems gemäß Figur 2 in Rückansicht.Figure 4 shows an embodiment of the intake and mixture formation system according to Figure 2 in rear view.

Figur 5 zeigt eine Ausführungsform des Ansaug- und Gemischbildungssystems gemäß Figur 2 in Draufsicht.Figure 5 shows an embodiment of the intake and mixture formation system according to Figure 2 in plan view.

Figur 1 zeigt schematisch den Anschluß der Saugrohrarme an die Ventile eines Zylinders einer mehrzylindrigen Einspritzbrennkraftmaschine.Figure 1 shows schematically the connection of the intake manifold arms to the valves of a cylinder of a multi-cylinder injection internal combustion engine.

Ein erstes Einlaßventil 1 eines Zylinders 2 steht mit einem Saugrohrarm 3 in Verbindung, der Teil einer Gruppe 4 mit weiteren Saugrohrarmen 5, 6 und 7 einer beispielsweise dargestellten Vierzylinder-Brennkraftmaschine ist. Auslaßventile 8 und 9 sind in geeigneter Weise an das Abgassystem angeschlossen. Die Gruppe 4 enthält ein gemeinsames Gemischbildungsorgan, das durch ein Einspritzventil 10 repräsentiert ist. Auch besitzt die Gruppe 4 ein (nicht dargestelltes) gemeinsames Drosselorgan.A first inlet valve 1 of a cylinder 2 is connected to an intake manifold arm 3, which is part of a group 4 with further intake manifold arms 5, 6 and 7 of a four-cylinder internal combustion engine shown for example. Exhaust valves 8 and 9 are suitably connected to the exhaust system. Group 4 contains a common mixture formation element, which is represented by an injection valve 10. Group 4 also has a common throttle element (not shown).

Ein zweites Einlaßventil 11 ist mit einem weiteren Saugrohrarm 12 verbunden, der zu einer zweiten Gruppe von Saugrohrarmen gehören kann, deren weitere Saugrohrarme nicht dargestellt sind. Im Regelfall wird auch die zweite Gruppe ein (nicht dargestelltes) gemeinsames Drosselorgan besitzen. Ein Gemischbildungsorgan ist durch Einspritzventil 13 repräsentiert, so daß bei dem dargestellten Ausführungsbeispiel dem Saugrohrarm 12 ein separates Gemischbildungsorgan zugeordnet ist. Hinsichtlich der weiteren (nicht dargestellten) Saugrohrarme besteht insofern Flexibilität, als einzelne oder auch gemeinsame Gemischbildungsorgane vorgesehen sein können.A second inlet valve 11 is connected to a further intake manifold arm 12, which may belong to a second group of intake manifold arms, the further intake manifold arms of which are not shown. As a rule, the second group will also have a common throttle element (not shown). A mixture formation member is represented by injection valve 13, so that in the exemplary embodiment shown, a separate mixture formation member is assigned to the intake manifold arm 12. With regard to the further (not shown) intake manifold arms, there is flexibility insofar as individual or also common mixture formation organs can be provided.

Betriebsmäßig ist die Saugrohrarmgruppe 4 dem Bereich 50 niedriger Luftdurchsätze zugeordnet, während die zweite Saugrohrarmgruppe, von der der Saugrohrarm 12 ein Teil ist, dem Bereich 51 hoher Luftdurchsätze zugeordnet ist.In operation, the intake manifold arm group 4 is assigned to the area 50 of low air throughputs, while the second intake manifold arm group, of which the intake manifold arm 12 is a part, is assigned to the area 51 of high air throughputs.

Eine Ausführungsform zeigt Figur 2. Dabei ist vorgesehen, daß die erste Gruppe der Saugrohrarme eine gemeinsame Kraftstoffeinspritzung aufweist und den Saugrohrarmen bzw. Einlaßkanälen der zweiten Gruppe je eine Einspritzung zugeordnet ist.An embodiment is shown in FIG. 2. It is provided that the first group of intake manifold arms has a common fuel injection and one injection is assigned to the intake manifold arms or inlet ducts of the second group.

In der schematischen Darstellung mehrflutiger Saugrohrarme der Ausführungsform sind für den beispielsweise dargestellten Vierzylindermotor Zylindern 21, 22, 23, 24 eine erste Saugrohrarmgruppe 25 und eine zweite Saugrohrarmgruppe 26 zugeordnet. Die erste Gruppe 25 enthält Saugrohrarme I-1, I-2, I-3 und I-4, während die zweite Gruppe 26 Saugrohrarme II-1, II-2, II-3 und II-4 enthält. In jeder Gruppe können unterschiedliche Saugrohrarmlängen und Saugrohrarmquerschnitte realisiert sein.In the schematic representation of multi-flow intake manifold arms of the embodiment, a first intake manifold arm group 25 and a second intake manifold arm group 26 are assigned to cylinders 21, 22, 23, 24 for the four-cylinder engine shown as an example. The first group 25 includes intake manifold arms I-1, I-2, I-3 and I-4, while the second group 26 includes intake manifold arms II-1, II-2, II-3 and II-4. Different intake manifold arm lengths and intake manifold arm cross sections can be implemented in each group.

Die erste Saugrohrarmgruppe 25 besitzt ein gemeinsames Gemischbildungsorgan I-5, und es kann eine gemeinsame Abgasrückführung EGR bei I-6 vorhanden sein. Bei der zweiten Saugrohrarmgruppe 26 erfolgt die Kraftstoffzufuhr in die Saugrohrarme bzw. Einlaßkanäle getrennt bei II-5, II-6, II-7 und II-8. Außerdem kann eine gemeinsame Abgasrückführung EGR bei II-9 vorhanden sein. Darüberhinaus besteht die Möglichkeit der gemeinsamen Abgasrückführung für die erste und zweite Gruppe vor ein (nicht dargestelltes) gemeinsames Drosselorgan, das z.B. als Registerdrosselklappe ausgeführt sein kann.The first intake manifold arm group 25 has a common mixture formation element I-5, and there may be a common exhaust gas recirculation EGR at I-6. In the second intake manifold arm group 26, the fuel is fed into the intake manifold arms or inlet channels separately at II-5, II-6, II-7 and II-8. In addition, a EGR common exhaust gas recirculation at II-9. In addition, there is the possibility of common exhaust gas recirculation for the first and second groups in front of a common throttle element (not shown), which can be designed, for example, as a register throttle valve.

Die erste Saugrohrarmgruppe 25 enthält ein gemeinsames Drosselorgan I-7, und die zweite Saugrohrarmgruppe 26 enthält ebenfalls ein gemeinsames Drosselorgan II-10. Es ist also in vorteilhafter Weise ein unabhängiges vollständiges oder teilweises Schließen der einzelnen Drosselorgane und dadurch die last- und drehzahlabhängige Steuerung der Strömungsbewegung in den Saugrohrarmen der Gruppen und im Zylinder möglich. Auch können gezielt Strömungsquerschnitte und Saugrohrarmlängen last- und drehzahlabhängig gesteuert werden.The first intake manifold arm group 25 contains a common throttle member I-7, and the second intake manifold arm group 26 also contains a common throttle member II-10. It is therefore advantageously possible for the individual throttle elements to be closed completely or partially independently, and thus for the load and speed-dependent control of the flow movement in the intake manifold arms of the groups and in the cylinder. Flow cross sections and intake manifold arm lengths can also be controlled in a targeted manner depending on the load and speed.

In der in Fig. 1 dargestellten Ausführungsform ist - wie erwähnt die erste Saugrohrarmgruppe 4 mit den Saugrohrarmen 3, 5, 6 und 7 dem Betriebsbereich 50 niedriger Luftdurchsätze zugeordnet, während der Saugrohrarm 12 zusammen mit den (nicht dargestellten) drei weiteren Saugrohrarmen dem Betriebsbereich 51 hoher Luftdurchsätze zugeordnet ist. In entsprechender Weise sind bei der in Fig. 2 dargestellten Ausführungsform die Saugrohrarme I-1, I-2, I-3 und I-4 der Saugrohrarmgruppe 25 dem Betriebsbereich 50 niedriger Luftdurchsätze zugeordnet, während die Saugrohrarmgruppe 26 mit den Saugrohrarmen II-1, II-2, II-3 und II-4 dem Betriebsbereich 51 hoher Luftdurchsätze zugeordnet ist. Gemäß der Erfindung werden dabei die Drosselorgane so gesteuert, daß für den Bereich niedriger Luftdurchsätze zuerst die erste Gruppe 25 öffnet und die weitere Gruppe 26 (bzw. die weiteren Gruppen) bei höheren Luftdurchsätzen drehzahl- und lastabhängig zugeschaltet werden. Hierdurch werden die Vorteile erreicht, daß im Bereich niedriger Luftdurchsätze, also bei hohen Saugrohrunterdrücken und/oder niedrigen Motordrehzahlen, mit einer Zentraleinspritzung eine günstigere Gemischaufbereitung als mit einer Einzeleinspritzung erzielt wird. Dadurch werden in diesem Betriebsbereich güntigere Wirkungsgrade, niedrigere Schadstoffemissionen sowie eine verbesserte Lauffähigkeit bei Betrieb mit mageren Gemischen bzw. bei mit Abgas verdünnten Gemischen erzielt. Gleichzeitig kann die Kraftstoffanreicherung beim Kaltstart und in der Warmlaufphase verringert werden.In the embodiment shown in FIG. 1, as mentioned, the first intake manifold arm group 4 with the intake manifold arms 3, 5, 6 and 7 is assigned to the operating area 50 of low air flow rates, while the intake manifold arm 12 together with the three further intake manifold arms (not shown) is assigned to the operating area 51 high air flow rates is assigned. Correspondingly, in the embodiment shown in FIG. 2, the intake manifold arms I-1, I-2, I-3 and I-4 of the intake manifold arm group 25 are assigned to the operating range 50 of low air throughputs, while the intake manifold arm group 26 with the intake manifold arms II-1, II-2, II-3 and II-4 is assigned to the operating area 51 of high air flow rates. According to the invention, the throttle elements are controlled in such a way that the first group 25 opens first for the area of low air throughputs and the other group 26 (or the other groups) are switched on at higher air throughputs as a function of speed and load. This achieves the advantages that in the region of low air throughputs, that is to say at high intake manifold pressures and / or low engine speeds, a more favorable mixture preparation is achieved with a central injection than with a single injection. This will result in this operating area more economical efficiencies, lower pollutant emissions and improved operability when operated with lean mixtures or with diluted exhaust gases. At the same time, fuel enrichment during cold starts and in the warm-up phase can be reduced.

Im Bereich höherer Luftdurchsätze bietet die Verwendung der Einzeleinspritzungen auf der zweiten Gruppe bzw. auf den weiteren Gruppen eine bessere Gestaltungsmöglichkeit der Saugrohrarmgeometrie, d.h. insbesondere kurze, gasdynamisch günstige Saugrohrarme mit niedrigsten Drosselverlusten. Damit werden günstige Voraussetzungen zur Darstellung hoher spezifischer Leistungen geschaffen.In the area of higher air throughputs, the use of single injections on the second group or on the other groups offers a better design option for the intake manifold arm geometry, i.e. in particular, short, gas-dynamically favorable intake manifold arms with the lowest throttle losses. This creates favorable conditions for the presentation of high specific performance.

Auch kann durch die drehzahl- und lastabhängige Zuschaltung der zweiten Gruppe die jeweils verbrennungstechnisch günstigste Strömungsbewegung und -struktur (Turbulenz) im Zylinder erzeugt werden.The speed and load-dependent connection of the second group can also generate the flow movement and structure (turbulence) that is most favorable in terms of combustion technology in the cylinder.

In den Figuren 3-5 ist als Ausführungsbeispiel die räumliche Gestaltung der in Figur 2 gezeigten Saugrohrarmgruppen 25 und 26 dargestellt. Dabei sind in Figur 3 die gemeinsamen Drosseleinrichtungen I-7 und II-10 der Gruppen 25 und 26 erkennbar.FIGS. 3-5 show the spatial design of the intake manifold arm groups 25 and 26 shown in FIG. 2 as an exemplary embodiment. The common throttle devices I-7 and II-10 of groups 25 and 26 can be seen in FIG.

Die verwendeten Bezugszeichen dienen (auch in den Ansprüchen) lediglich der Verbesserung der Lesbarkeit. Sie sind nicht einschränkend, insbesondere auch nicht auf die dargestellten und beschriebenen Ausführungsformen.The reference numerals used (also in the claims) only serve to improve readability. They are not restrictive, in particular also not to the illustrated and described embodiments.

Claims (11)

  1. An intake and mixture-preparing system for multi-cylinder spark-ignited internal combustion engines comprising at least two intake valves (1, 11) per cylinder, at least two separate suction pipe arms (3, 12 or I-1, I-2, I-3, I-4; II-1, II-2, II-3, II-4) associated with the intake valves for each cylinder (2 or 21, 22, 23, 24) and fuel injection means (10, 13 or I-5; II-5, II-6, II-7, II-8), first suction pipe arms for each cylinder being combined into a first group (4, 25) and other suction pipe arms for each cylinder being combined in at least one other group (12, 26) and each group being assigned one throttle means (I-7 or II-10), the first group (4, 25) having a common fuel injection means (10, I-5) into the intake system whereas the suction pipe arms or intake tubes in the other group (12, 36) or the other groups are each assigned one injection means (13 or II-5, II-6, II-7, II-8), characterised in that the throttle means are actuated so that the first group (4, 25) opens first in the low air throughput region and the other group (12, 26) or the other groups are connected at higher air throughputs in dependence on the speed and load.
  2. An intake and mixture-preparing system according to claim 1, characterised in that the fuel injection system for the other group (12, 26) or the other groups is independent of the fuel injection system for the first group (4, 25).
  3. An intake and mixture-preparing system according to claim 1, characterised by devices (I-6 or II-9) for introducing exhaust gas into the first group (4, 25) and/or the other group (12, 26) or the other groups.
  4. An intake and mixture-preparing system according to claim 1, characterised in that the common fuel injection means (10, I-5) for the first group (4 - 25) is disposed behind the common throttle means (I-7), as considered in the intake flow direction.
  5. An intake and mixture-preparing system according to claim 1, characterised in that the common fuel injection means (10, I-5) for the first group (4 - 25) is disposed in front of the common throttle means (I-7), as considered in the intake flow direction.
  6. An intake and mixture-preparing system according to claim 1, characterised by one throttle means per suction pipe arm for actuating the suction pipe arms in the individual groups, in addition to or instead of the common throttle means.
  7. An intake and mixture-preparing system according to claim 1, characterised by a combination of a number of similar intake systems in multi-cylinder internal combustion engines.
  8. A method of operating an intake and mixture-preparing system for multi-cylinder spark-ignited internal combustion engines comprising at least two intake valves (1, 11) per cylinder, at least two separate suction pipe arms (3, 12 or I-1, I-2, I-3, I-4; II-1, II-2, II-3, II-4) associated with the intake valves for each cylinder (2 or 21, 22, 23, 24) and fuel injection means (10, 13 or I-5; II-5, II-6, II-7, II-8), first suction pipe arms for each cylinder being combined into a first group (4, 25) and other suction pipe arms for each cylinder being combined in at least one other group (12, 26) and each group being assigned one throttle means (I-7 or II-10), the first group (4, 25) having a common fuel injection means (10, I-5) into the intake system whereas the suction pipe arms or intake tubes in the other group (12, 36) or the other groups are each assigned one injection means (II-5, II-6, II-7, II-8), characterised in that the throttle means are actuated so that the first group (4, 25) opens first in the low air throughput region and the other group (12, 26) or the other groups are connected at higher air throughputs in dependence on the speed and load.
  9. A method of operation according to claim 8, characterised in that the fuel-air ratio is adjusted by varying the amounts of injected fuel so as to produce a stratified charge for each respective group (4, 25; 12, 26) or groups independently of one another.
  10. A method of operation according to claim 8, characterised in that the amount of fuel on starting is prepared by switching on the fuel injection means for the other group (4, 25; 12, 26) or groups.
  11. A method of operation according to claim 8, characterised in that in the case of the other group (12, 26) or other groups, fuel is injected into the cylinder.
EP90124212A 1989-12-22 1990-12-14 Intake and air-fuel mixture preparing system for spark-ignited multi-cylinder internal combustion engine Expired - Lifetime EP0433908B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3942578 1989-12-22
DE3942578 1989-12-22

Publications (2)

Publication Number Publication Date
EP0433908A1 EP0433908A1 (en) 1991-06-26
EP0433908B1 true EP0433908B1 (en) 1993-08-11

Family

ID=6396206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124212A Expired - Lifetime EP0433908B1 (en) 1989-12-22 1990-12-14 Intake and air-fuel mixture preparing system for spark-ignited multi-cylinder internal combustion engine

Country Status (3)

Country Link
US (1) US5094210A (en)
EP (1) EP0433908B1 (en)
DE (1) DE59002312D1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2256675A (en) * 1991-06-11 1992-12-16 Ford Motor Co Tuned i.c.engine intake system.
DE69208030T2 (en) * 1991-11-13 1996-06-27 Suzuki Co Ltd Four-stroke internal combustion engine
US5477830A (en) * 1993-12-30 1995-12-26 Servojet Products International Electronic fuel injection system for internal combustion engines having a common intake port for each pair of cylinders
US5429086A (en) * 1994-02-14 1995-07-04 Cummins Engine Company, Inc. Shared runner intake ports for I.C. engine
US5673673A (en) * 1996-04-30 1997-10-07 Servojet Products International Method and apparatus for the high Mach injection of a gaseous fuel into an internal combustion engine
US6098595A (en) * 1998-08-17 2000-08-08 Cummins Engine Company, Inc. Intake port injection system with shared injectors
US6314939B1 (en) * 1999-03-11 2001-11-13 Outboard Marine Corporation Methods and apparatus for controlling engine operation
US6470681B1 (en) * 2002-01-03 2002-10-29 Kevin Orton Supercharged or turbocharged engine having ambient air intake port and charged air intake port
JP3970725B2 (en) * 2002-09-11 2007-09-05 本田技研工業株式会社 Engine fuel injection system
JP4238166B2 (en) * 2004-03-22 2009-03-11 ヤマハ発動機株式会社 Fuel supply device and vehicle
FR2879666B1 (en) * 2004-12-21 2010-01-15 Inst Francais Du Petrole METHOD FOR CONTROLLING A SUPERIOR INTERNAL COMBUSTION ENGINE WITH COMMAND IGNITION, ESPECIALLY OF GASOLINE TYPE
CA2602060C (en) * 2005-03-18 2011-05-17 Toyota Jidosha Kabushiki Kaisha Internal combustion engine provided with double system of fuel injection
EP1860303B1 (en) * 2005-03-18 2019-10-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
ES2724733T3 (en) * 2005-03-18 2019-09-13 Toyota Motor Co Ltd Dual System Fuel Injection Engine
EP1860318B1 (en) * 2005-03-18 2019-02-20 Toyota Jidosha Kabushiki Kaisha Dual circuit fuel injection internal combustion engine
DE102008041237A1 (en) * 2008-08-13 2010-02-18 Robert Bosch Gmbh Method for introducing fuel into a combustion chamber of an internal combustion engine
CN103670839A (en) * 2012-09-17 2014-03-26 广西玉柴机器股份有限公司 Gas incoming pipe of dual-fuel diesel engine
US9103277B1 (en) 2014-07-03 2015-08-11 Daniel Sexton Gurney Moment-cancelling 4-stroke engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1576230A1 (en) * 1966-10-11 1970-04-09 Jarmuefejlesztesi Intezet Piston engine, in particular internal combustion engine
US4488531A (en) * 1981-04-06 1984-12-18 Mazda Motor Corporation Plural intake system for supercharged engine
DE3224946A1 (en) * 1982-07-03 1984-01-05 Bayerische Motoren Werke AG, 8000 München REGISTER AIR INTAKE SYSTEM FOR INTERNAL COMBUSTION ENGINES, ESPECIALLY MULTI-CYLINDER INJECTION INTERNAL COMBUSTION ENGINES
IT1158845B (en) * 1983-03-25 1987-02-25 Fiat Auto Spa INTERNAL COMBUSTION ENGINE ABOVE LIMITED WITH FOUR VALVE HEAD PER CYLINDER
JPS59215929A (en) * 1983-05-24 1984-12-05 Mazda Motor Corp Fuel feeder for engine
US4548175A (en) * 1983-12-05 1985-10-22 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with two intake valves
DE3519143A1 (en) * 1984-06-07 1985-12-12 Volkswagenwerk Ag, 3180 Wolfsburg Reciprocating piston internal combustion engine
US4741295A (en) * 1985-09-09 1988-05-03 Honda Giken Kogyo Kabushiki Kaisha Intake manifold system for V-type multiple cylinder internal combustion engine
JPH0694838B2 (en) * 1986-02-26 1994-11-24 トヨタ自動車株式会社 Intake control device for internal combustion engine
US4726343A (en) * 1986-03-20 1988-02-23 Volkswagen Ag Suction pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
DE3707805A1 (en) * 1986-03-20 1987-09-24 Volkswagen Ag Intake pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
JPS62228622A (en) * 1986-03-31 1987-10-07 Yamaha Motor Co Ltd Suction device for engine
DE3633509A1 (en) * 1986-10-02 1988-04-14 Porsche Ag INTERNAL COMBUSTION ENGINE WITH AT LEAST TWO INLET VALVES PER CYLINDER
US4841935A (en) * 1986-10-24 1989-06-27 Honda Giken Kogyo Kabushiki Kaisha Variable air induction control system for internal combustion engine
US4860709A (en) * 1988-09-20 1989-08-29 Ford Motor Company Engine induction system and method

Also Published As

Publication number Publication date
EP0433908A1 (en) 1991-06-26
US5094210A (en) 1992-03-10
DE59002312D1 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
EP0433908B1 (en) Intake and air-fuel mixture preparing system for spark-ignited multi-cylinder internal combustion engine
DE69016482T2 (en) Internal combustion engine with stratified combustion.
DE3828742C2 (en)
DE3600408C2 (en)
DE3212910C2 (en)
DE3713628C2 (en) Intake system for internal combustion engines
DE2348638B2 (en) Carburetor for an internal combustion engine, which has two Venturi sections arranged concentrically to one another in the intake pipe
DE3514327A1 (en) INLET SYSTEM FOR AN INTERNAL COMBUSTION ENGINE WITH SEVERAL INLET VALVES
DE4439918A1 (en) Device for supplying a fuel/air mixture to an internal combustion engine
DE4439921C2 (en) Intake system of an internal combustion engine
DE19622891A1 (en) Exhaust gas recirculation system
DE102018000706A1 (en) Method for operating an internal combustion engine for a motor vehicle
EP0911502B1 (en) Spark-ignited combustion engine
DE2435840A1 (en) FUEL INJECTION SYSTEM
EP0764773A2 (en) Four stroke internal combustion engine
AT4966U1 (en) FOUR-STOCK COMBUSTION ENGINE WITH AT LEAST TWO INLET VALVES
DE2907223A1 (en) FUEL INTAKE SYSTEM FOR COMBUSTION ENGINES WITH MULTIPLE CYLINDERS
EP0083001B1 (en) Fuel injection system for direct fuel injection in internal-combustion engines
DE4205237C2 (en) Intake channel in a cylinder head of an internal combustion engine with at least two intake valves per cylinder
EP0733158A1 (en) Controlled two-stroke internal combustion engine
DE3707805A1 (en) Intake pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
DE4039916A1 (en) Engine mixture and intake system
DE3704717A1 (en) Multicylinder internal combustion engines with means for increasing the swirl
DE60120604T2 (en) Method for controlling an internal combustion engine for carrying out a homogeneous combustion
DE2435040A1 (en) DEVICE FOR DELIVERING A MIXTURE OF A LIQUID AND A GAS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19911004

17Q First examination report despatched

Effective date: 19920306

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59002312

Country of ref document: DE

Date of ref document: 19930916

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931025

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90124212.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970106

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971214

EUG Se: european patent has lapsed

Ref document number: 90124212.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010129

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051214