EP0422748B1 - Method for planarizing an integrated structure - Google Patents

Method for planarizing an integrated structure Download PDF

Info

Publication number
EP0422748B1
EP0422748B1 EP90203418A EP90203418A EP0422748B1 EP 0422748 B1 EP0422748 B1 EP 0422748B1 EP 90203418 A EP90203418 A EP 90203418A EP 90203418 A EP90203418 A EP 90203418A EP 0422748 B1 EP0422748 B1 EP 0422748B1
Authority
EP
European Patent Office
Prior art keywords
layer
planarizing
insulating layer
integrated circuit
circuit structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90203418A
Other languages
German (de)
French (fr)
Other versions
EP0422748A2 (en
EP0422748A3 (en
Inventor
Jeffrey Marks
Kam Shing Law
David Nin-Kou Wang
Dan Maydan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority claimed from EP19890310921 external-priority patent/EP0368504A3/en
Publication of EP0422748A2 publication Critical patent/EP0422748A2/en
Publication of EP0422748A3 publication Critical patent/EP0422748A3/en
Application granted granted Critical
Publication of EP0422748B1 publication Critical patent/EP0422748B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2

Definitions

  • This invention relates to a method for planarizing an integrated circuit structure. More particularly, this invention relates to a method for planarizing an integrated circuit structure using a low melting glass which is deposited over a layer of insulating material and then etched back. In a preferred embodiment, the etching step is carried out after the deposition step without an intervening exposure of the structure to ambient atmosphere, thus permitting the use of hygroscopic low melting glasses as planarizing material.
  • planarizing layers of either photoresist or organic-based glass materials such as "SOG” (Spin On Glass) which will etch at about the same rate as the underlying silicon oxide insulating layer.
  • SOG Spin On Glass
  • the structure is then anisotropically etched to remove the planarizing layer, as well as raised portions of the underlying silicon oxide layer.
  • both photoresist and SOG have what is called as a loading effect.
  • the etch rate of these materials depends upon how much of the insulating layer, e.g., the silicon oxide layer, is exposed.
  • achieving an equal etch rate of both insulating material (silicon oxide) and the sacrificial or planarizing material is very difficult and the etch rate is, therefore, dependent upon the geometry of the structure.
  • the spinning process of applying either of these two planarizing materials is not effective.
  • planarizing materials also have limited step coverage and are also limited with respect to the total amount or thickness of these materials which can be deposited. Furthermore, since these planarizing materials are dispersed in organic binders and solvents, prior to application of such planarizing materials, the integrated circuit structure must be removed from a vacuum chamber in which the insulating layer such as silicon oxide is deposited, e.g., by CVD methods, in order to coat the structure with the planarizing layer. After such coating, the solvent in the planarizing coating must be allowed to evaporate and the planarizing coating must then be baked to remove further solvents and to harden the coating prior to the etching step, which is conventionally a dry etching process which is also usually carried out in a vacuum chamber.
  • the present planarizing processes not only yield unsatisfactory results, but also result in the need for a number of additional and time consuming intermediate steps outside of the vacuum apparatus which is normally used for the preceding CVD deposition of the underlying insulating layer as well as for the subsequent dry etching step which normally follows the formation of such a planarizing layer.
  • Such additional steps not only add expense to the process, but also risk the possible introduction of undesirable contaminants to the surface of the integrated circuit structure by exposure of the integrated circuit structure to the atmosphere.
  • This invention provides a process for planarizing an integrated circuit structure as defined in claim 1.
  • Figures 1-3 are fragmentary vertical cross-sectional views which sequentially illustrate the process of the invention.
  • Figure 4 is a flow sheet illustrating the movement of the integrated circuit structure from a deposition zone to an etching zone during the process.
  • Figures 5-9 are fragmentary vertical cross-sectional views also sequentially illustrating the process of the invention.
  • the invention provides an improved planarization process for integrated circuit structures wherein a low melting inorganic planarizing material is deposited over a conformal insulating layer such as silicon oxide followed by etching of the planarizing layer.
  • a low melting inorganic planarizing material such as a low melting glass
  • no intermediate deposition or coating, solvent evaporation, or baking steps need be carried out outside of the vacuum apparatus and the same apparatus may be used to deposit the low melting inorganic planarizing material as is used to deposit the underlying insulating layer.
  • layer 10 which may include a substrate such as silicon, one or more doped or undoped buried layers, one or more doped or undoped epitaxial layers, one or more doped or undoped polysilicon layers, oxide isolation and insulation portions or layers, etc. Shown formed on integrated circuit structure 10, by way of illustration and not of limitation, are two spaced apart metal lines 14 and 16. An insulating layer 20 of a material such as silicon oxide is deposited over integrated circuit structure 10 and metal lines 14 and 16 in preparation for the formation thereon of further patterned layers such as, for example, a metal wiring harness which will interconnect metal lines 14 and/or 16 with other portions of integrated circuit structure 10.
  • Insulation material 20 may comprise an oxide of silicon or a silicate such as phosphorus silicate when the underlying integrated circuit structure comprises silicon.
  • a nitride or oxynitride of silicon may also be used when the underlying structure comprises silicon.
  • the insulation material may be either a doped or undoped material. Other insulation materials may, of course, be used as well and may even be preferred over those just named when the underlying structure comprises some other material than silicon, e.g., germanium, gallium arsenide, etc.
  • the process of the invention may be used whenever it is desired to planarize an integrated circuit structure having closely spaced apart raised portions with respect to the portion of the substrate structure therebetween.
  • the process may be used for front end application such as dielectric planarization, for filling trenches or slots, or for top side planarization as well as the illustrated intermetal planarization.
  • front end application such as dielectric planarization
  • top side planarization such as the illustrated intermetal planarization.
  • BPSG boron phosphorus silicate glass
  • PSG phosphorus silicate glass
  • the process may also be used to planarize an integrated circuit structure prior to a blanket deposit of another metal layer such as tungsten.
  • raised portions portions of an integrated circuit structure raised with respect to the height of the surface therebetween and thus may include not only structures raised with respect to the entire surface but also the raised sidewalls, for example, of a trench or slot with respect to the bottom of the trench.
  • insulation layer 20 comprises silicon oxide
  • planarizing layer 30 of a low melting inorganic material such as a low melting glass, is first applied over insulating layer 20, and then the coated structure is subjected to a planarizing etch step to remove planarizing layer 30 as well as the higher regions 24 and 26 of underlying insulating layer 20.
  • Low melting inorganic planarizing material 30 may comprise any inorganic material which: a) may be deposited on the surface of insulating layer 20 without the use of a solvent; b) which does not need to be subsequently cured or baked to harden the deposited material sufficiently to permit etching thereof; and c) is capable of being etched, preferably dry etched, at approximately the same rate as the underlying insulation layer.
  • low melting inorganic planarizing material 30 comprises a material which may be deposited over insulating layer 20 using the same chemical vapor deposition apparatus as used to deposit insulating layer 20 on integrated circuit structure 10.
  • low melting is meant a material which has a melting point of about 575°C or lower, and which will flow at about 500°C or lower, i.e., from about 100 to about 500°C.
  • the melting point should not exceed about 480°C with a flow of 390°C or lower.
  • the use of a material which will flow at about 390°C or lower will result in the flowing of the material over the underlying surface without risk of any harm to the underlying integrated circuit structure.
  • the low melting inorganic planarizing material comprises a low melting glass.
  • low melting glasses include B2O3, B2S6, B2O3/SiO2 mixtures, As2O3, As2S3, P2O5 or any combinations of the above.
  • planarizing material 30 may be deposited using, for example, the same CVD methods and apparatus used to deposit the insulating material 20 such as silicon oxide.
  • a deposition of a low melting glass such as, for example, B2O3 at from about 390°C to about 480°C, at which temperature the planarizing material will flow over the stepped surface of insulating layer 20 on integrated circuit structure 10, will result in the generally planar surface 32 on layer 30 shown in Figure 2.
  • a lower deposition temperature may, of course, be used if the material is subsequently heated sufficiently to cause the planarizing material to flow over the surface. However, usually such an additional heating step will be avoided if possible.
  • a lower deposition temperature may also be used provided that the low melting planarizing material has a flow point temperature at least as low as the deposition temperature so that the planarization material will flow as it is deposited.
  • both depositions may be carried out in the same deposition chamber or in separate chambers within the same apparatus which are interconnected in a manner which permits transfer of the integrated circuit structure from one chamber to another without exposure to the atmosphere and particularly to moisture and other contaminants in the atmosphere.
  • the low melting inorganic planarizing material is deposited onto the surface of insulating layer 20 within a temperature range of from about 100°C to about 700°C, preferably about 300°C to about 500°C, and under a pressure of from about 10 millitorr to about atmospheric pressure, preferably from a bout 2 to 30 torr, to a thickness of from about 200 Angstroms, at its thinnest point, up to about 2 microns in its thickess regions, i.e., overlying the low areas of the insulation layer beneath it.
  • the deposition temperature ranges from about 390°C to about 440°C at a pressure of about 9-10 torr with an rf plasma power of about 400-500 watts.
  • the application of a low melting inorganic planarizing material using a deposition step similar to that used to deposit the underlying insulating layer, makes possible the use of the same deposition apparatus for both deposition steps.
  • This has the dual advantage of reducing the number of processing steps as well as reducing the risk of contamination of the integrated circuit structure by unnecessary exposure of the structure outside of the vacuum apparatus.
  • planarizing layer 30 is then etched until substantially all of planarizing layer 30 has been removed, i.e., about 99.9% or more, as well as the high areas 26 and the stepped sides 24 of insulating layer 20, as shown at the top surface indicated by solid line 28 of Figure 3, leaving a planarized portion 20' of insulating layer 20 approximately conforming in height to about the height of the lowest portions 22 of layer 20.
  • planarized surface may still have somewhat raised portions adjacent the underlying raised parts of the integrated circuit structure, e.g., above lines 14 and 16.
  • the 45° or higher slopes of the steps of the unplanarized insulation layer will be reduced down to about 10 to 15° or even lower after the planarization process of this invention.
  • the final slope is controllable by varying the film thickness and/or deposition temperature used to deposit the planarizing material. Raising the deposition temperature reduces the slope because the planarizing material will flow better. Increasing the thickness of the planarizing material will also cause the film to flow more evenly across the underlying integrated circuit structure.
  • the etch step may comprise any etch system capable of etching both the planarizing layer 30 and underlying insulating layer 20 at approximately the same rate.
  • the etchant may comprise any dry etch such as a conventional anisotropic etch.
  • the dry etch will comprise a plasma etch using CHF3 or CF4 or argon. Examples of other dry etching systems useful in the practice of the invention include a sputter etching system or an RIE system.
  • the integrated circuit structure after having both the insulation layer and the planarizing layer deposited in the same deposition apparatus, is etched in another zone in the same apparatus while still maintaining the integrated circuit structure under vacuum.
  • the integrated circuit structure may be coated with both insulation layer 20 and planarizing layer 30 in a deposition zone, which may comprise the same or different deposition chambers in a common deposition apparatus, and then the coated structure may be moved to or through an interlock or intermediate chamber from which the coated structure may be moved to an etching zone without removing the coated structure from the vacuum apparatus.
  • closely spaced may be defined as when, in an integrated circuit structure having raised portions or structures, the ratio of the height of the raised portions to the spacing between the raised portions is 0.5 or greater, e.g., where the height is 1 micron and the spacing is 2 microns or less. It may also be defined as the case whenever the spacing between the raised portions is less than about 1 micron.
  • a void 25 may be formed in the portion of insulation layer 20a deposited between the facing sidewalls of metal lines 14 and 15, as shown in Figure 5.
  • the structure is subjected to an etch step prior to deposition of the low melting inorganic planarization layer.
  • This etch step is an isotropic dry etch which will preferentially etch the less dense sidewall insulating material, e.g., silicon oxide material, leaving a portion of layer 20a designated as 20b in Figure 6.
  • This etching step is carried out until about 90% of the sidewall thickness has been removed.
  • a further layer of insulating material 20c may be deposited over etched layer 20b, as shown in Figure 7, followed by deposition of the low melting inorganic planarizing material 30a, as shown in Figure 8.
  • planarizing material 30a may be deposited directly over the etched insulating layer 20b.
  • low melting inorganic planarizing layer 30a either over second insulation layer 20c, as shown in Figure 8, or directly over etched insulation layer 20b
  • the structure is subjected to an etch step, as described in the previous method of Figures 1-3, to remove substantially all of planarizing layer 30a as well as the raised portions of the underlying insulation layer resulting in the structure shown in Figure 9 with a planarized layer 20d of insulation material over integrated circuit structure 10 and metal lines 14 and 15.
  • the vapor being deposited to form layer 20a may be mixed with an etchant such as a fluorine species, e.g., a CF4, C2F6, or NF3 gas, so that an in situ etch of the less dense silicon oxide sidewalls of layer 20a will occur during the deposition.
  • an etchant such as a fluorine species, e.g., a CF4, C2F6, or NF3 gas
  • the gaseous etchants may be mixed, for example, with the gaseous constituents used to deposit the silicon oxide in a ratio of about 1 to about 20 volume % etchant to provide a deposition vapor mixture which will form a layer of silicon oxide over integrated circuit structure 10 without forming voids between closely spaced together metal lines 14 and 15.
  • the invention provides a planarization process for removing the steps formed in an insulation layer deposited over an integrated circuit structure in which a low melting inorganic planarizing material is deposited over the insulation layer, preferably using the same deposition apparatus used to deposit the insulation layer to minimize the risk of contamination of the integrated circuit structure.
  • a low melting inorganic planarization material such as a low melting glass, eliminates the prior art steps of evaporating solvents, drying the planarization coating, and then baking the coating sufficiently to harden it.
  • the integrated circuit structure having the low melting inorganic planarizing layer deposited thereon in accordance with the invention, is then dry etched to remove substantially all of the planarization layer as well as the high or stepped portions of the underlying insulation layer leaving a substantially planarized structure.
  • the etch step is also carried out in the same vacuum apparatus used in the deposition steps to again lower the risk of contamination of the integrated circuit structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Description

  • This invention relates to a method for planarizing an integrated circuit structure. More particularly, this invention relates to a method for planarizing an integrated circuit structure using a low melting glass which is deposited over a layer of insulating material and then etched back. In a preferred embodiment, the etching step is carried out after the deposition step without an intervening exposure of the structure to ambient atmosphere, thus permitting the use of hygroscopic low melting glasses as planarizing material.
  • In the formation of integrated circuit structures, patterning of layers to permit formation on a substrate of active devices such as transistors, passive devices such as resistors, and metal lines to interconnect devices, can result in the formation of uneven surfaces.
  • When a layer of insulating material such as silicon oxide is applied over such uneven surfaces, to permit the formation of further patterned layers thereover, the silicon oxide tends to conform to the underlying topography resulting in the creation of a nonplanar or stepped surface. It is very difficult to pattern further layers over such an uneven surface using standard lithography techniques.
  • It has, therefore, become the customary practice to apply planarizing layers of either photoresist or organic-based glass materials, such as "SOG" (Spin On Glass) which will etch at about the same rate as the underlying silicon oxide insulating layer. The structure is then anisotropically etched to remove the planarizing layer, as well as raised portions of the underlying silicon oxide layer.
  • However, both photoresist and SOG have what is called as a loading effect. This means that the etch rate of these materials depends upon how much of the insulating layer, e.g., the silicon oxide layer, is exposed. Thus, achieving an equal etch rate of both insulating material (silicon oxide) and the sacrificial or planarizing material is very difficult and the etch rate is, therefore, dependent upon the geometry of the structure. Furthermore, when the spaces between raised portions are less than about 1.5 microns, the spinning process of applying either of these two planarizing materials is not effective.
  • The above described planarizing materials also have limited step coverage and are also limited with respect to the total amount or thickness of these materials which can be deposited. Furthermore, since these planarizing materials are dispersed in organic binders and solvents, prior to application of such planarizing materials, the integrated circuit structure must be removed from a vacuum chamber in which the insulating layer such as silicon oxide is deposited, e.g., by CVD methods, in order to coat the structure with the planarizing layer. After such coating, the solvent in the planarizing coating must be allowed to evaporate and the planarizing coating must then be baked to remove further solvents and to harden the coating prior to the etching step, which is conventionally a dry etching process which is also usually carried out in a vacuum chamber.
  • Thus, the present planarizing processes not only yield unsatisfactory results, but also result in the need for a number of additional and time consuming intermediate steps outside of the vacuum apparatus which is normally used for the preceding CVD deposition of the underlying insulating layer as well as for the subsequent dry etching step which normally follows the formation of such a planarizing layer. Such additional steps not only add expense to the process, but also risk the possible introduction of undesirable contaminants to the surface of the integrated circuit structure by exposure of the integrated circuit structure to the atmosphere.
  • It would, therefore, be highly desirable to be able to planarize an integrated circuit structure without the use of such organic-based planarizing materials which require removal of the integrated circuit structure from the vacuum system for application, drying, and baking of a planarizing layer.
  • This invention provides a process for planarizing an integrated circuit structure as defined in claim 1.
  • The following is a description of the invention, reference being made to the accompanying drawings in which:
  • Figures 1-3 are fragmentary vertical cross-sectional views which sequentially illustrate the process of the invention.
  • Figure 4 is a flow sheet illustrating the movement of the integrated circuit structure from a deposition zone to an etching zone during the process.
  • Figures 5-9 are fragmentary vertical cross-sectional views also sequentially illustrating the process of the invention.
  • The invention provides an improved planarization process for integrated circuit structures wherein a low melting inorganic planarizing material is deposited over a conformal insulating layer such as silicon oxide followed by etching of the planarizing layer. By using a low melting inorganic planarizing material such as a low melting glass, no intermediate deposition or coating, solvent evaporation, or baking steps need be carried out outside of the vacuum apparatus and the same apparatus may be used to deposit the low melting inorganic planarizing material as is used to deposit the underlying insulating layer.
  • Turning now to Figure 1 portions of a typical integrated circuit structure are generally shown as layer 10 which may include a substrate such as silicon, one or more doped or undoped buried layers, one or more doped or undoped epitaxial layers, one or more doped or undoped polysilicon layers, oxide isolation and insulation portions or layers, etc. Shown formed on integrated circuit structure 10, by way of illustration and not of limitation, are two spaced apart metal lines 14 and 16. An insulating layer 20 of a material such as silicon oxide is deposited over integrated circuit structure 10 and metal lines 14 and 16 in preparation for the formation thereon of further patterned layers such as, for example, a metal wiring harness which will interconnect metal lines 14 and/or 16 with other portions of integrated circuit structure 10.
  • Insulation material 20 may comprise an oxide of silicon or a silicate such as phosphorus silicate when the underlying integrated circuit structure comprises silicon. A nitride or oxynitride of silicon may also be used when the underlying structure comprises silicon. The insulation material may be either a doped or undoped material. Other insulation materials may, of course, be used as well and may even be preferred over those just named when the underlying structure comprises some other material than silicon, e.g., germanium, gallium arsenide, etc.
  • In this regard, it should be noted that the process of the invention may be used whenever it is desired to planarize an integrated circuit structure having closely spaced apart raised portions with respect to the portion of the substrate structure therebetween. Thus, the process may be used for front end application such as dielectric planarization, for filling trenches or slots, or for top side planarization as well as the illustrated intermetal planarization. For example, when using the process in a front end application, the use of boron phosphorus silicate glass (BPSG) may be eliminated and a phosphorus silicate glass (PSG) may be substituted for the BPSG as the insulating material to be planarized. The process may also be used to planarize an integrated circuit structure prior to a blanket deposit of another metal layer such as tungsten.
  • By use of the term "raised portions" is meant portions of an integrated circuit structure raised with respect to the height of the surface therebetween and thus may include not only structures raised with respect to the entire surface but also the raised sidewalls, for example, of a trench or slot with respect to the bottom of the trench.
  • By way of example, when insulation layer 20 comprises silicon oxide, it may be deposited over integrated circuit structure 10 and metal lines 14 and 16 thereon within a temperature range of from about 20°C to about 350°C in a plasma CVD apparatus to an appropriate thickness which may range from about 1000 Angstroms (10 Å = 1 nm) to about 3 micrometers, typically about 1 micron.
  • It will be readily seen in Figure 1 that the application of an insulation material such as silicon oxide as insulating layer 20 results in the formation of a very conformal layer having steps or shoulders 24 interconnecting low regions 22 with raised regions 26 in conformity with the raised metal lines 14 and 16 thereunder.
  • As a result of this conformity of insulating layer 20 to the underlying raised portions of the integrated circuit structure and the resulting uneven or stepped geometry of insulating layer 20, patterning of a subsequently applied layer by photolithography would be very difficult.
  • Therefore a planarizing layer 30 of a low melting inorganic material, such as a low melting glass, is first applied over insulating layer 20, and then the coated structure is subjected to a planarizing etch step to remove planarizing layer 30 as well as the higher regions 24 and 26 of underlying insulating layer 20.
  • Low melting inorganic planarizing material 30 may comprise any inorganic material which: a) may be deposited on the surface of insulating layer 20 without the use of a solvent; b) which does not need to be subsequently cured or baked to harden the deposited material sufficiently to permit etching thereof; and c) is capable of being etched, preferably dry etched, at approximately the same rate as the underlying insulation layer.
  • In a preferred embodiment, low melting inorganic planarizing material 30 comprises a material which may be deposited over insulating layer 20 using the same chemical vapor deposition apparatus as used to deposit insulating layer 20 on integrated circuit structure 10.
  • By "low melting" is meant a material which has a melting point of about 575°C or lower, and which will flow at about 500°C or lower, i.e., from about 100 to about 500°C. In a preferred embodiment where the process will be used over low melting materials already present in the integrated circuit structure such as aluminum, e.g., over aluminum lines or in topside applications, the melting point should not exceed about 480°C with a flow of 390°C or lower. The use of a material which will flow at about 390°C or lower will result in the flowing of the material over the underlying surface without risk of any harm to the underlying integrated circuit structure.
  • By way of example, the low melting inorganic planarizing material comprises a low melting glass. Examples of such low melting glasses include B₂O₃, B₂S₆, B₂O₃/SiO₂ mixtures, As₂O₃, As₂S₃, P₂O₅ or any combinations of the above.
  • By using a low melting planarizing material such as a low melting glass, planarizing material 30 may be deposited using, for example, the same CVD methods and apparatus used to deposit the insulating material 20 such as silicon oxide. Thus, a deposition of a low melting glass such as, for example, B₂O₃ at from about 390°C to about 480°C, at which temperature the planarizing material will flow over the stepped surface of insulating layer 20 on integrated circuit structure 10, will result in the generally planar surface 32 on layer 30 shown in Figure 2.
  • A lower deposition temperature may, of course, be used if the material is subsequently heated sufficiently to cause the planarizing material to flow over the surface. However, usually such an additional heating step will be avoided if possible. A lower deposition temperature may also be used provided that the low melting planarizing material has a flow point temperature at least as low as the deposition temperature so that the planarization material will flow as it is deposited.
  • The use of the same apparatus for deposition of both layers 20 and 30, together with the selection of a low melting inorganic material as the planarizing material which does not use solvents which must be removed, and which does not require further baking or curing prior to etching, permits the preferential carrying out of the two deposition steps sequentially in the same deposition apparatus without intermediate removal of the integrated circuit structure from the vacuum deposition apparatus. This not only reduces the total number of process steps, compared to the prior art planarizing processes, but additionally protects the integrated circuit structure from the risk of possible contamination which may occur whenever the integrated circuit structure is removed from the vacuum apparatus and exposed to the atmosphere.
  • It should be noted that both depositions may be carried out in the same deposition chamber or in separate chambers within the same apparatus which are interconnected in a manner which permits transfer of the integrated circuit structure from one chamber to another without exposure to the atmosphere and particularly to moisture and other contaminants in the atmosphere.
  • The low melting inorganic planarizing material is deposited onto the surface of insulating layer 20 within a temperature range of from about 100°C to about 700°C, preferably about 300°C to about 500°C, and under a pressure of from about 10 millitorr to about atmospheric pressure, preferably from a bout 2 to 30 torr, to a thickness of from about 200 Angstroms, at its thinnest point, up to about 2 microns in its thickess regions, i.e., overlying the low areas of the insulation layer beneath it. In a typical plasma CVD deposition of B₂O₃, the deposition temperature ranges from about 390°C to about 440°C at a pressure of about 9-10 torr with an rf plasma power of about 400-500 watts.
  • As discussed above, the application of a low melting inorganic planarizing material, using a deposition step similar to that used to deposit the underlying insulating layer, makes possible the use of the same deposition apparatus for both deposition steps. This has the dual advantage of reducing the number of processing steps as well as reducing the risk of contamination of the integrated circuit structure by unnecessary exposure of the structure outside of the vacuum apparatus.
  • After deposition of the low melting inorganic planarizing material, the coated structure is then etched until substantially all of planarizing layer 30 has been removed, i.e., about 99.9% or more, as well as the high areas 26 and the stepped sides 24 of insulating layer 20, as shown at the top surface indicated by solid line 28 of Figure 3, leaving a planarized portion 20' of insulating layer 20 approximately conforming in height to about the height of the lowest portions 22 of layer 20.
  • It should be noted, in this regard, that while surface line 28 is shown as substantially flat, the planarized surface may still have somewhat raised portions adjacent the underlying raised parts of the integrated circuit structure, e.g., above lines 14 and 16. However the 45° or higher slopes of the steps of the unplanarized insulation layer will be reduced down to about 10 to 15° or even lower after the planarization process of this invention.
  • It should also be noted that the final slope is controllable by varying the film thickness and/or deposition temperature used to deposit the planarizing material. Raising the deposition temperature reduces the slope because the planarizing material will flow better. Increasing the thickness of the planarizing material will also cause the film to flow more evenly across the underlying integrated circuit structure.
  • The etch step may comprise any etch system capable of etching both the planarizing layer 30 and underlying insulating layer 20 at approximately the same rate. The etchant may comprise any dry etch such as a conventional anisotropic etch. Preferably the dry etch will comprise a plasma etch using CHF₃ or CF₄ or argon. Examples of other dry etching systems useful in the practice of the invention include a sputter etching system or an RIE system.
  • In a particularly preferred embodiment of the invention, the integrated circuit structure, after having both the insulation layer and the planarizing layer deposited in the same deposition apparatus, is etched in another zone in the same apparatus while still maintaining the integrated circuit structure under vacuum. Thus, as shown in the flow chart of Figure 4, the integrated circuit structure may be coated with both insulation layer 20 and planarizing layer 30 in a deposition zone, which may comprise the same or different deposition chambers in a common deposition apparatus, and then the coated structure may be moved to or through an interlock or intermediate chamber from which the coated structure may be moved to an etching zone without removing the coated structure from the vacuum apparatus.
  • Turning now to Figures 5-9, the steps of the invention are sequentially illustrated for the case where the close horizontal spacing between several adjacent raised shapes or structures on the surface of an integrated circuit structure, such as metal lines, may result not only in the formation of steps in an insulating layer deposited thereon, but also in the formation of voids in the overlying insulation material. This void formation may occur when the raised portions are closely spaced apart.
  • The term "closely spaced" may be defined as when, in an integrated circuit structure having raised portions or structures, the ratio of the height of the raised portions to the spacing between the raised portions is 0.5 or greater, e.g., where the height is 1 micron and the spacing is 2 microns or less. It may also be defined as the case whenever the spacing between the raised portions is less than about 1 micron.
  • Due to the close spacing between the underlying structures, such as metal lines 14 and 15, a void 25 may be formed in the portion of insulation layer 20a deposited between the facing sidewalls of metal lines 14 and 15, as shown in Figure 5.
  • Since subsequent planarization may open up the top of void 25, it is important that void 25 be removed prior to final planarization of the structure.
  • Therefore, as shown in Figure 6, the structure is subjected to an etch step prior to deposition of the low melting inorganic planarization layer. This etch step is an isotropic dry etch which will preferentially etch the less dense sidewall insulating material, e.g., silicon oxide material, leaving a portion of layer 20a designated as 20b in Figure 6. This etching step is carried out until about 90% of the sidewall thickness has been removed.
  • Examples of dry etchants which may be utilized as isotropic etchants for this step of the process include a C₂F₆ or NF₃ plasma etch within a temperature range of from about 80°C to about 300°C, preferably about 350°C to about 430°C, at a vacuum of about 100 millitorr to about 30 torr, preferably about 5 to 10 torr (1 Torr = 133.3 Pa).
  • After the etching step is completed, a further layer of insulating material 20c may be deposited over etched layer 20b, as shown in Figure 7, followed by deposition of the low melting inorganic planarizing material 30a, as shown in Figure 8. Alternatively, planarizing material 30a may be deposited directly over the etched insulating layer 20b.
  • After the deposition of low melting inorganic planarizing layer 30a, either over second insulation layer 20c, as shown in Figure 8, or directly over etched insulation layer 20b, the structure is subjected to an etch step, as described in the previous method of Figures 1-3, to remove substantially all of planarizing layer 30a as well as the raised portions of the underlying insulation layer resulting in the structure shown in Figure 9 with a planarized layer 20d of insulation material over integrated circuit structure 10 and metal lines 14 and 15.
  • In a variation on this method when silicon oxide comprises insulation layer 20a, the vapor being deposited to form layer 20a may be mixed with an etchant such as a fluorine species, e.g., a CF₄, C₂F₆, or NF₃ gas, so that an in situ etch of the less dense silicon oxide sidewalls of layer 20a will occur during the deposition. The gaseous etchants may be mixed, for example, with the gaseous constituents used to deposit the silicon oxide in a ratio of about 1 to about 20 volume % etchant to provide a deposition vapor mixture which will form a layer of silicon oxide over integrated circuit structure 10 without forming voids between closely spaced together metal lines 14 and 15.
  • Thus, the invention provides a planarization process for removing the steps formed in an insulation layer deposited over an integrated circuit structure in which a low melting inorganic planarizing material is deposited over the insulation layer, preferably using the same deposition apparatus used to deposit the insulation layer to minimize the risk of contamination of the integrated circuit structure. The use of such a low melting inorganic planarization material, such as a low melting glass, eliminates the prior art steps of evaporating solvents, drying the planarization coating, and then baking the coating sufficiently to harden it.
  • The integrated circuit structure, having the low melting inorganic planarizing layer deposited thereon in accordance with the invention, is then dry etched to remove substantially all of the planarization layer as well as the high or stepped portions of the underlying insulation layer leaving a substantially planarized structure. Preferably the etch step is also carried out in the same vacuum apparatus used in the deposition steps to again lower the risk of contamination of the integrated circuit structure.

Claims (6)

  1. A process for planarizing an integrated circuit structure having closely spaced apart raised portions which comprises:
    (a) depositing a layer of insulating material over said integrated circuit structure;
    (b) isotropically dry etching said insulating layer to remove a portion of or portions of the sidewalls of said insulation layer to remove any voids that may have formed between said raised portions;
    (c) depositing a low melting inorganic planarizing layer over said insulating layer;
    (d) dry etching said inorganic planarizing layer and any raised portions of said insulating layer where necessary, the insulating layer and the planarizing layer being capable of being etched at approximately the same rate, to planarize said structure until substantially all of said inorganic planarizing layer and any raised portions of said insulating layer have been removed.
  2. A process according to Claim 1, wherein said insulating layer is silicon oxide.
  3. A process according to Claim 1, wherein after the step (b) etching of the insulating layer deposited in step (a), a second insulating layer is deposited prior to depositing said planarizing layer.
  4. A process according to Claim 3, wherein both insulating layers are silicon oxide.
  5. A process according to Claim 2, wherein said step (b) of removing one or more portions of said insulating layer between said closely spaced apart raised portions of said integrated circuit structure is carried out simultaneously with the deposition of the insulating layer in step (a).
  6. A process according to Claim 1, wherein said deposition and planarizing steps are performed without removing the integrated circuit structure from a vacuum environment.
EP90203418A 1988-11-10 1989-10-24 Method for planarizing an integrated structure Expired - Lifetime EP0422748B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26950888A 1988-11-10 1988-11-10
US269508 1988-11-10
EP19890310921 EP0368504A3 (en) 1988-11-10 1989-10-24 Method for planarizing an integrated circuit structure

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP89310921.5 Division 1989-10-24
EP19890310921 Division EP0368504A3 (en) 1988-11-10 1989-10-24 Method for planarizing an integrated circuit structure

Publications (3)

Publication Number Publication Date
EP0422748A2 EP0422748A2 (en) 1991-04-17
EP0422748A3 EP0422748A3 (en) 1991-04-24
EP0422748B1 true EP0422748B1 (en) 1996-05-01

Family

ID=26122457

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90203418A Expired - Lifetime EP0422748B1 (en) 1988-11-10 1989-10-24 Method for planarizing an integrated structure
EP90203417A Expired - Lifetime EP0423907B1 (en) 1988-11-10 1989-10-24 Method for planarizing an integrated circuit structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP90203417A Expired - Lifetime EP0423907B1 (en) 1988-11-10 1989-10-24 Method for planarizing an integrated circuit structure

Country Status (1)

Country Link
EP (2) EP0422748B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382547A (en) * 1992-07-31 1995-01-17 Sultan; Pervaiz Void free oxide fill for interconnect spaces
US6190233B1 (en) 1997-02-20 2001-02-20 Applied Materials, Inc. Method and apparatus for improving gap-fill capability using chemical and physical etchbacks
US10879108B2 (en) * 2016-11-15 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Topographic planarization method for lithography process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1165014A (en) * 1981-04-13 1984-04-03 Kei Kurosawa Method for manufacturing semiconductor device
JPS58210634A (en) * 1982-05-31 1983-12-07 Toshiba Corp Preparation of semiconductor device

Also Published As

Publication number Publication date
EP0422748A2 (en) 1991-04-17
EP0423907A1 (en) 1991-04-24
EP0423907B1 (en) 1996-04-24
EP0422748A3 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
US5204288A (en) Method for planarizing an integrated circuit structure using low melting inorganic material
US5244841A (en) Method for planarizing an integrated circuit structure using low melting inorganic material and flowing while depositing
EP0386337B1 (en) Multistep planarized chemical vapor deposition process
US5393708A (en) Inter-metal-dielectric planarization process
EP0545263B1 (en) Method of forming trench isolation having polishing step and method of manufacturing semiconductor device
US5312512A (en) Global planarization using SOG and CMP
US5110712A (en) Incorporation of dielectric layers in a semiconductor
US5837613A (en) Enhanced planarization technique for an integrated circuit
JPH0799237A (en) Manufacture of integrated circuit
US5552346A (en) Planarization and etch back process for semiconductor layers
USRE38363E1 (en) Method of forming trench isolation having polishing step and method of manufacturing semiconductor device
US5639345A (en) Two step etch back process having a convex and concave etch profile for improved etch uniformity across a substrate
KR0145644B1 (en) Planarization of insulation film using low wettingness surface
JPH0629287A (en) Flattening method of semiconductor substrate
US5554560A (en) Method for forming a planar field oxide (fox) on substrates for integrated circuit
US5393709A (en) Method of making stress released VLSI structure by the formation of porous intermetal layer
US5366850A (en) Submicron planarization process with passivation on metal line
US5112776A (en) Method for planarizing an integrated circuit structure using low melting inorganic material and flowing while depositing
EP0441653B1 (en) Improvements in process for planarizing an integrated circuit structure using low melting inorganic material
US20030054616A1 (en) Electronic devices and methods of manufacture
EP0422748B1 (en) Method for planarizing an integrated structure
EP0368504A2 (en) Method for planarizing an integrated circuit structure
EP0652588B1 (en) Process for etching conductor layers in integrated circuits
US5639692A (en) Non-etch back SOG process using a metal via stud
US4642162A (en) Planarization of dielectric layers in integrated circuits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19901218

AC Divisional application: reference to earlier application

Ref document number: 368504

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940223

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 368504

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 137608

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68926392

Country of ref document: DE

Date of ref document: 19960605

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2088958

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961024

Ref country code: AT

Effective date: 19961024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961025

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2088958

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: APPLIED MATERIALS INC.

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 90203418.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051024