EP0422406B1 - Anode for direct current arc furnace - Google Patents

Anode for direct current arc furnace Download PDF

Info

Publication number
EP0422406B1
EP0422406B1 EP90117707A EP90117707A EP0422406B1 EP 0422406 B1 EP0422406 B1 EP 0422406B1 EP 90117707 A EP90117707 A EP 90117707A EP 90117707 A EP90117707 A EP 90117707A EP 0422406 B1 EP0422406 B1 EP 0422406B1
Authority
EP
European Patent Office
Prior art keywords
anode according
bricks
furnace
copper ring
layer made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90117707A
Other languages
German (de)
French (fr)
Other versions
EP0422406A2 (en
EP0422406A3 (en
Inventor
Dane Meredith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Voest Alpine Industrienlagenbau GmbH
Deutsche Voest Alpine Industrieanlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voest Alpine Industrienlagenbau GmbH, Deutsche Voest Alpine Industrieanlagenbau GmbH filed Critical Voest Alpine Industrienlagenbau GmbH
Priority to AT90117707T priority Critical patent/ATE100662T1/en
Publication of EP0422406A2 publication Critical patent/EP0422406A2/en
Publication of EP0422406A3 publication Critical patent/EP0422406A3/en
Application granted granted Critical
Publication of EP0422406B1 publication Critical patent/EP0422406B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes

Definitions

  • the invention relates to an anode according to the preamble of claim 1.
  • GB-A-2 072 470 describes a ladle furnace with arc heating, in which an anode is designed as a quasi-annular current conductor in the form of individual contacts around the ladle. These individual contacts are only connected to a part of the electrically conductive ff-lining that only extends into a small edge area of the container bottom. Due to the small wall and floor areas, which are provided with an electrically conductive lining, there are also only small current-carrying cross sections. Depending on the construction and the material used, the maximum possible arc current is limited by the permissible current density in the refractory material.
  • WO-A-89/11774 discloses a low-wear electrode for direct current arc furnaces, which is said to have an asymmetrical configuration of the electrode over the circumference.
  • EP 0 258 101 A1 discloses the use of a steel stick projecting into the melt as the bottom electrode.
  • the effect of the arc pointing only downward occurs even more, so that the arc cone becomes even more pointed and cold zones also occur adjacent to the furnace wall.
  • This electrode also requires water cooling, which is located below the molten metal. This is problematic for security reasons.
  • a DC arc furnace is known from US Pat. No. 4,853,941, in which between a bottom electrode and the melt a uniform layer of refractory, electrically conductive stones is arranged.
  • the stones are made of magnesite-graphite material that has undergone heat treatment to increase its electrical conductivity. Since the electrically conductive lining and the electrode are only arranged in the bottom area, cold zones on the furnace wall cannot be avoided either. In addition, the cooling conditions are unfavorable, so that the electrode is water-cooled.
  • a copper ring is preferably used as the current conductor, which is fastened to the inside of the steel jacket in the lower wall area of the furnace. This gives a large-area contact between the electrically conductive lining and the current conductor. This training also enables effective air cooling of the conductor.
  • cathode 1 In the middle of the furnace there is a vertically extending and adjustable in this direction cathode 1. Between this and the surface of a molten metal 2, an electric current flows in the form of an arc. This generates enough heat to melt and keep molten metal that has been put into the furnace.
  • the furnace has a steel jacket made of a lower part 3 and a cylindrical upper part 4.
  • Lower part 3 and upper part 4 are mechanically by flanges 5 and 6 via an electrical insulating intermediate layer 7 bonded together.
  • the lining of the furnace contains a layer of electrically conductive, wear and fire-resistant stones 8, which is in contact with the molten metal 2.
  • the unevenness of the surface of this layer facing the molten metal resulting from the shape of the stones 8 is compensated for by an electrically conductive ramming compound 9.
  • the layer of stones 8 extends over most of the bottom area of the furnace.
  • the outer layer of the lining consists of stones 10 made of electrically insulating, refractory material in the floor area. Between the insulating layer of stones 10 in the floor area and the electrically conductive layer of stones 8 there is a layer of stones 11 which have a higher electrical conductivity than stones 8 but do not have their high wear and fire resistance.
  • Graphite stones are preferably used as stones 11. The thickness of the layer of stones 11 increases towards the outer edge. This layer is shown continuously in the figure; however, it can also be omitted in the middle floor area.
  • the graphite stones should be arranged so that their pressing direction coincides with the radial direction of the furnace, whereby the electrical resistance of the layer they form is minimized in the radial direction.
  • a copper ring 12 is plated out of the stones 11 or connected to it in some other way.
  • the copper ring 12 can be continuous or can be divided into several segments in its circumferential direction. Copper conductors 13 are guided through the lower part 3 and connected to the copper ring 12 for carrying current.
  • the lining is formed by a continuous layer of the refractory, electrically insulating stones 10.
  • the bottom and the lower wall area of the furnace are provided with means for guiding a cooling medium, preferably air.
  • the cooling medium is brought under the center of the base and brought radially outwards in a cavity delimited by a base plate 14 under the base and by a deflection to the wall area at the height of the copper ring 12.
  • Cooling fins 15 projecting radially outward from the lower part 3 and projecting into the cavity serve to increase the cooling effect and to guide the cooling medium.
  • the copper ring 12 For a furnace with a capacity of 60 t and a diameter of approx. 5.2 m and a maximum current of 85 000 A, the copper ring 12 has, for example, a height of 400-700 mm and a thickness of 20-60 mm.
  • the copper ring can also be attached to the steel skeleton instead of the steel jacket.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Discharge Heating (AREA)

Abstract

An anode for a d.c. arc furnace is described. The furnace area receiving the melt (2) is provided on the inside with an electrically conductive, refractory lining (8,9,11). The latter is electrically connected to a conductor (12) located on the outside and which has a cylindrical construction and is placed around the electrically conductive lining. The conductor is advantageously fixed to the inside of the steel jacket (3) of the furnace.

Description

Die Erfindung betrifft eine Anode nach dem Oberbegriff des Anspruchs 1.The invention relates to an anode according to the preamble of claim 1.

In der GB-A-2 072 470 ist ein Pfannenofen mit Lichtbogenheizung beschrieben, bei dem eine Anode als quasi ringförmiger Stromleiter in Form von Einzelkontakten um die Pfanne ausgebildet ist. Diese Einzelkontakte sind lediglich mit einem Teil der elektrisch leitfähigen ff-Ausmauerung verbunden, der nur in einen kleinen Randbereich des Behälterbodens reicht. Durch die nur geringen Wand- und Bodenflächen, die mit einer elekrisch leitfähigen Ausmauerung versehen sind, ergeben sich ebenfalls nur geringe stromdurchflossene Querschnitte. In Abhängigkeit von Konstruktion und dem eingesetzten Material wird der maximal mögliche Bogenstrom durch die zulässige Stromdichte im Feuerfestmaterial begrenzt. Bei Pfannenofen ist dies unproblematisch, da in solchen metallurgischen Gefäßen kein Einschmelzprozeß stattfindet, sondern die Einstellung einer vorgegebenen Zieltemperatur über eine nur geringe Temperaturdifferenz hinweg, was selbstverständlich erheblich geringere Heizleistungen und demzufolge Stromdichten erfordert. Im Gleichstromlichtbogenofen, der einen Einschmelzreaktor darstellt, sind demgegenüber weitaus höhere Heizleistungen und damit auch Bogenströme erforderlich, die sich aus oben dargestellten Gründen mit dem aus der GB-A-2 072 470 bekannten Pfannenofen nicht erreichen lassen.GB-A-2 072 470 describes a ladle furnace with arc heating, in which an anode is designed as a quasi-annular current conductor in the form of individual contacts around the ladle. These individual contacts are only connected to a part of the electrically conductive ff-lining that only extends into a small edge area of the container bottom. Due to the small wall and floor areas, which are provided with an electrically conductive lining, there are also only small current-carrying cross sections. Depending on the construction and the material used, the maximum possible arc current is limited by the permissible current density in the refractory material. This is not a problem with ladle furnaces, since no melting process takes place in such metallurgical vessels, but rather the setting of a predetermined target temperature over only a small temperature difference, which of course requires considerably lower heating outputs and consequently current densities. In contrast, in the direct current arc furnace, which represents a melting reactor, much higher heating outputs and thus also arc currents are required which, for the reasons described above, cannot be achieved with the ladle furnace known from GB-A-2 072 470.

Weiterhin ist aus WO-A-89/11774 eine verschleißarme Elektrode für Gleichstromlichtbogenöfen bekannt, die eine unsymmetrische Gestaltung der Elektrode über den Umfang aufweisen soll.Furthermore, WO-A-89/11774 discloses a low-wear electrode for direct current arc furnaces, which is said to have an asymmetrical configuration of the electrode over the circumference.

Aus der DE-A-34 13 745 ist ein Gleichstromlichtbogenofen mit einem Bodenkontakt bekannt, bei dem das Bodenfutter des Ofens an seiner Berührungsfläche mit der Schmelze eine Stampfmasse mit elektrisch leitenden Metallteilen oder Steinen mit Blecheinlagen enthält. Hieran schließen sich eine erste Schicht aus elektrisch leitenden Steinen, eine zweite Schicht aus Isoliersteinen mit Blechzwischenlagen oder elektrisch leitenden Zwischensteinen und schließlich eine dritte, mit Anschlußkontakten verbundene Schicht aus elektrisch leitenden Steinen an. Dieses Futter ist kalottenförmig oder eben ausgebildet, wobei es nur im Bodenbereich mit der Schmelze in Berührung steht.From DE-A-34 13 745 a direct current arc furnace with ground contact is known, in which the bottom lining of the furnace contains a ramming mass with electrically conductive metal parts or stones with sheet metal inserts on its contact surface with the melt. This is followed by a first layer of electrically conductive stones, a second layer of insulating stones with sheet metal intermediate layers or electrically conductive intermediate stones and finally a third layer of electrically conductive stones connected to connecting contacts. This feed is dome-shaped or flat, and is only in contact with the melt in the bottom area.

Abgesehen davon, daß dieses Bodenfutter sehr aufwendig herzustellen ist, wird hier der von der zentralen Lichtbogenelektrode ausgehende Strom kegelförmig nach unten abgeleitet. Die Bereiche in der Nähe der Ofenwand werden daher nur unzureichend mit Wärme versorgt, so daß hier kalte Zonen auftreten.Apart from the fact that this floor lining is very complex to produce, the current emanating from the central arc electrode is discharged conically downwards. The areas near the furnace wall are therefore insufficiently supplied with heat, so that cold zones occur here.

Aus der EP 0 258 101 A1 ist die Verwendung eines in die Schmelze hineinragenden Stahlknüppels als Bodenelektrode bekannt. Hier tritt der Effekt des nur nach unten gerichteten Lichtbogens noch stärker auf, so daß der Lichtbogenkegel noch spitzer wird und ebenfalls kalte Zonen angrenzend an die Ofenwand auftreten. Diese Elektrode erfordert auch eine Wasserkühlung, die sich unterhalb der flüssigen Metallschmelze befindet. Dies ist aus Sicherheitsgründen problematisch.EP 0 258 101 A1 discloses the use of a steel stick projecting into the melt as the bottom electrode. Here, the effect of the arc pointing only downward occurs even more, so that the arc cone becomes even more pointed and cold zones also occur adjacent to the furnace wall. This electrode also requires water cooling, which is located below the molten metal. This is problematic for security reasons.

Bei einem weiteren aus der DE-OS 30 22 566 bekannten Gleichstromlichtbogenofen sind über den gesamten Boden verteilt punktförmig angeordnete metallische Leiter vorgesehen, die durch die Bodenwand nach innen geführt sind. Hierdurch werden zwar die kalten Zonen in Wandnähe vermieden; andererseits bewirkt diese Verteilung jedoch eine punktförmige Abnutzung der feuerfesten Auskleidung. Es entstehen somit im Bodenbereich gefährliche dünne Stellen, die regelmäßig ausgebessert werden müssen.In a further DC arc furnace known from DE-OS 30 22 566, metal conductors arranged in a punctiform manner are provided over the entire floor and are guided inwards through the floor wall. This avoids the cold zones near the wall; on the other hand, however, this distribution causes punctiform wear of the refractory lining. This creates dangerous thin spots in the floor area that must be repaired regularly.

Aus der US-PS 4 853 941 schließlich ist ein Gleichstromlichtbogenofen bekannt, bei dem zwischen einer Bodenelektrode und der Schmelze eine einheitliche Schicht aus feuerfesten, elektrisch leitenden Steinen angeordnet ist. Die Steine bestehen aus Magnesit-Graphit-Material, das einer Wärmebehandlung unterzogen wurde, um dessen elektrische Leitfähigkeit zu erhöhen. Da auch hier die elektrisch leitende Auskleidung und die Elektrode nur im Bodenbereich angeordnet sind, lassen sich kalte Zonen an der Ofenwand ebenfalls nicht vermeiden. Außerdem sind die Kühlungsverhältnisse ungünstig, so daß die Elektrode wassergekühlt wird.Finally, a DC arc furnace is known from US Pat. No. 4,853,941, in which between a bottom electrode and the melt a uniform layer of refractory, electrically conductive stones is arranged. The stones are made of magnesite-graphite material that has undergone heat treatment to increase its electrical conductivity. Since the electrically conductive lining and the electrode are only arranged in the bottom area, cold zones on the furnace wall cannot be avoided either. In addition, the cooling conditions are unfavorable, so that the electrode is water-cooled.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine Anode für einen Gleichstromlichtbogenofen zum Einschmelzen und Schmelzflüssigkeithalten von in den Ofen eingegebenen Material zu schaffen, bei dem der größte Teil des Bodenbereichs des Ofens auf der Innenseite mit einer elektrisch leitenden, feuerfesten Ausmauerung versehen ist, die mit einem auf der Außenseite befindlichen Stromleiter in elektrischer Verbindung steht, die einfach aufgebaut ist, eine gleichförmige Temperaturverteilung im Schmelzgut sicherstellt und außerdem keine ungleichmäßige Abnutzung der feuerfesten Auskleidung bewirkt, wobei gleichzeitig eine Wasserkühlung vermieden werden soll.It is therefore the object of the present invention to provide an anode for a direct-current arc furnace for melting and holding molten liquid of material fed into the furnace, in which the majority of the bottom area of the furnace is provided on the inside with an electrically conductive, refractory lining is in electrical connection with a current conductor on the outside, which is of simple construction, ensures a uniform temperature distribution in the melting material and, in addition, does not cause uneven wear of the refractory lining, while at the same time preventing water cooling.

Diese Aufgabe wird erfindungsgemäß gelöst durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale.This object is achieved by the features specified in the characterizing part of claim 1.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Anode ergeben sich aus den Unteransprüchen.Advantageous developments of the anode according to the invention result from the subclaims.

Dadurch, daß der Stromleiter zylinderförmig ausgebildet und um die elektrisch leitende Ausmauerung herumgelegt ist, ist eine symmetrische, seitlich nach außen erfolgende Stromableitung sichergestellt, die eine gleichförmige und optimale Verteilung des Stromflusses durch die Schmelze gewährleistet.Characterized in that the current conductor is cylindrical and placed around the electrically conductive lining, a symmetrical, laterally outward current dissipation is ensured, which ensures a uniform and optimal distribution of the current flow through the melt.

Als Stromleiter wird bevorzugt ein Kupferring verwendet, der an der Innenseite des Stahlmantels im unteren Wandbereich des Ofens befestigt ist. Hierdurch erhält man einen großflächigen Kontakt zwischen der elektrisch leitenden Ausmauerung und dem Stromleiter. Diese Ausbildung ermöglicht auch eine effektive Luftkühlung des Stromleiters.A copper ring is preferably used as the current conductor, which is fastened to the inside of the steel jacket in the lower wall area of the furnace. This gives a large-area contact between the electrically conductive lining and the current conductor. This training also enables effective air cooling of the conductor.

Die Erfindung wird im folgenden anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert.The invention is explained below with reference to an embodiment shown in the figure.

Diese zeigt eine schematische Schnittdarstellung eines Gleichstromlichtbogenofens. In der Mitte des Ofens befindet sich eine sich vertikal erstreckende und in dieser Richtung verstellbare Kathode 1. Zwischen dieser und der Oberfläche einer Metallschmelze 2 fließt ein elektrischer Strom in Form eines Lichtbogens. Dieser erzeugt ausreichend Wärme, um in den Ofen eingegebenes Metall zu schmelzen und im geschmolzenen Zustand zu halten.This shows a schematic sectional view of a DC arc furnace. In the middle of the furnace there is a vertically extending and adjustable in this direction cathode 1. Between this and the surface of a molten metal 2, an electric current flows in the form of an arc. This generates enough heat to melt and keep molten metal that has been put into the furnace.

Der Ofen weist einen Stahlmantel aus einem Unterteil 3 und einem zylindrischen Oberteil 4 auf. Unterteil 3 und Oberteil 4 sind mechanisch durch Flansche 5 und 6 über eine elektrisch isolierende Zwischenschicht 7 miteinander verbunden.The furnace has a steel jacket made of a lower part 3 and a cylindrical upper part 4. Lower part 3 and upper part 4 are mechanically by flanges 5 and 6 via an electrical insulating intermediate layer 7 bonded together.

Die Ausmauerung des Ofens enthält eine Schicht aus elektrisch leitenden, verschleiß- und feuerfesten Steinen 8, die mit der Metallschmelze 2 in Berührung steht. Die sich durch die Form der Steine 8 ergebenden Unebenheiten der der Metallschmelze zugewandten Oberfläche dieser Schicht sind mit einer elektrisch leitenden Stampfmasse 9 ausgeglichen. Die Schicht aus den Steinen 8 erstreckt sich über den größten Teil des Bodenbereichs des Ofens.The lining of the furnace contains a layer of electrically conductive, wear and fire-resistant stones 8, which is in contact with the molten metal 2. The unevenness of the surface of this layer facing the molten metal resulting from the shape of the stones 8 is compensated for by an electrically conductive ramming compound 9. The layer of stones 8 extends over most of the bottom area of the furnace.

Elektrisch leitende, verschleiß- und feuerfeste Materialien zur Herstellung der Steine 8 sind bekannt, z.B. Carbon-Magnesit -Steine. Die äußere Schicht der Ausmauerung besteht im Bodenbereich aus Steinen 10 aus elektrisch isolierendem, feuerfestem Material. Zwischen der isolierenden Schicht aus den Steinen 10 im Bodenbereich und der elektrisch leitenden Schicht aus den Steinen 8 befindet sich eine Schicht aus Steinen 11, die eine höhere elektrische Leitfähigkeit aufweisen als die Steine 8, nicht jedoch deren hohe Verschleiß- und Feuerfestigkeit besitzen. Als Steine 11 werden vorzugsweise Graphit-Steine verwendet. Die Stärke der Schicht aus den Steinen 11 nimmt zum Außenrand hin zu. In der Figur ist diese Schicht durchgehend dargestellt; sie kann im mittleren Bodenbereich jedoch auch entfallen. Die Graphit-Steine sollten so angeordnet sein, daß ihre Preßrichtung mit der Radialrichtung des Ofens übereinstimmt, wodurch der elektrische Widerstand der von ihnen gebildeten Schicht in Radialrichtung minimiert wird.Electrically conductive, wear and fire resistant materials for the manufacture of the stones 8 are known, e.g. Carbon magnesite stones. The outer layer of the lining consists of stones 10 made of electrically insulating, refractory material in the floor area. Between the insulating layer of stones 10 in the floor area and the electrically conductive layer of stones 8 there is a layer of stones 11 which have a higher electrical conductivity than stones 8 but do not have their high wear and fire resistance. Graphite stones are preferably used as stones 11. The thickness of the layer of stones 11 increases towards the outer edge. This layer is shown continuously in the figure; however, it can also be omitted in the middle floor area. The graphite stones should be arranged so that their pressing direction coincides with the radial direction of the furnace, whereby the electrical resistance of the layer they form is minimized in the radial direction.

Auf der Innenseite des zylindrischen Abschnitts des Unterteils 3 ist auf die Schicht aus den Steinen 11 ein Kupferring 12 aufplattiert oder in anderer Weise mit dieser verbunden. Der Kupferring 12 kann durchgehend sein oder in seiner Umfangsrichtung in mehrere Segmente unterteilt sein. Kupferleiter 13 sind durch das Unterteil 3 geführt und mit dem Kupferring 12 zur Stromführung verbunden.On the inside of the cylindrical section of the lower part 3 is on the layer a copper ring 12 is plated out of the stones 11 or connected to it in some other way. The copper ring 12 can be continuous or can be divided into several segments in its circumferential direction. Copper conductors 13 are guided through the lower part 3 and connected to the copper ring 12 for carrying current.

Oberhalb des Kupferringes 12 wird im Wandbereich des Ofens die Ausmauerung durch eine durchgehende Schicht aus den feuerfesten, elektrisch isolierenden Steinen 10 gebildet.Above the copper ring 12 in the wall area of the furnace, the lining is formed by a continuous layer of the refractory, electrically insulating stones 10.

Durch die großflächige Verbindung zwischen dem Kupferring 12 und der gut leitenden Schicht aus den Steinen 11 einerseits sowie dieser Schicht und der leitenden Schicht aus den Steinen 8 andererseits liegt ein großer Teil der mit der Metallschmelze 2 in Berührung stehende Innenfläche der Ausmauerung weitgehend auf dem gleichen Potential. Dementsprechend erhält man eine Verteilung des Stromflusses nahezu über die gesamte Fläche der Metallschmelze 2. Hierdurch wird das Auftreten kalter Zonen insbesondere in der Nähe der Ofenwand minimiert.Due to the large-area connection between the copper ring 12 and the highly conductive layer of stones 11 on the one hand and this layer and the conductive layer of stones 8 on the other hand, a large part of the inner surface of the lining in contact with the molten metal 2 is largely at the same potential . Accordingly, a distribution of the current flow is obtained almost over the entire surface of the molten metal 2. This minimizes the occurrence of cold zones, particularly in the vicinity of the furnace wall.

Der Boden und der untere Wandbereich des Ofens sind mit Mitteln zur Führung eines Kühlmediums, vorzugsweise Luft, versehen. Das Kühlmedium wird unter der Mitte des Bodens herangeführt und in einem durch ein Bodenblech 14 begrenzten Hohlraum unter dem Boden radial nach außen und durch eine Umlenkung zum Wandbereich in der Höhe des Kupferringes 12 gebracht.The bottom and the lower wall area of the furnace are provided with means for guiding a cooling medium, preferably air. The cooling medium is brought under the center of the base and brought radially outwards in a cavity delimited by a base plate 14 under the base and by a deflection to the wall area at the height of the copper ring 12.

Vom Unterteil 3 radial nach außen abstehende, in den Hohlraum hineinragende Kühlrippen 15 dienen zur Erhöhung der Kühlwirkung sowie zur Führung des Kühlmediums.Cooling fins 15 projecting radially outward from the lower part 3 and projecting into the cavity serve to increase the cooling effect and to guide the cooling medium.

Für einen Ofen mit einer Kapazität von 60 t und einem Durchmesser von ca. 5,2 m sowie einer maximalen Stromstärke von 85 000 A besitzt der Kupferring 12 beispielsweise eine Höhe von 400 - 700 mm und eine Stärke von 20 - 60 mm.For a furnace with a capacity of 60 t and a diameter of approx. 5.2 m and a maximum current of 85 000 A, the copper ring 12 has, for example, a height of 400-700 mm and a thickness of 20-60 mm.

Abhängig von der Ausbildung des Gleichstromlichtbogenofens kann, wenn die Statik des Ofens nicht durch einen Stahlmantel, sondern durch ein Stahlskelett gewährleistet wird, der Kupferring auch am Stahlskelett statt am Stahlmantel befestigt sein.Depending on the design of the DC arc furnace, if the static of the furnace is not ensured by a steel jacket but by a steel skeleton, the copper ring can also be attached to the steel skeleton instead of the steel jacket.

Claims (13)

  1. Anode of a d.c. arc furnace in which at least some of the region of the furnace accommodating the melt is provided on the inside with an electrically conducting, refractory brick lining (8, 1, 11), which is electrically connected to a current conductor (12) situated on the outside, the current conductor (12) being cylindrical in shape and lying around the electrically conducting brick lining (8, 9, 11) of multiple layered construction, characterized in that the brick lining contains on the inside a layer made of electrically conducting, wear-resistant, refratory bricks (8) and a layer made of bricks (11) with higher electrical conductivity and smaller wear resistance and refractory quality and that the thickness of the layer made of bricks (11) with higher conductivity increases in the radial direction towards the current conductor (12).
  2. Anode according to Claim 1, characterized in that the current conductor is a copper ring (12) which is fixed to the inside of the steel jacket (3) in the lower wall region of the furnace.
  3. Anode according to Claim 1, characterized in that the current conductor is a copper ring (12) which is fixed to a steel frame supporting the furnace.
  4. Anode according to Claim 2 or 3, characterized in that the copper ring (12) is continuous in form.
  5. Anode according to Claim 2 or 3, characterized in that the copper ring (12) is divided into at least two segment in the peripheral direction.
  6. Anode according to Claim 2 or 3, characterized in that the copper ring (12) is connected to one or more connected copper conductors (13) distributed over its outside periphery.
  7. Anode according to Claim 1, characterized in that the brick lining on the inside contains the layer made of electrically conducting, wear-resistant and refractory bricks (8) and betwen the latter and the current conductor (12) the layer made of bricks (11) with higher electrical conductivity and smaller wear resistance and refractory quality.
  8. Anode according to Claim 7, characterized in that the bricks (11) of higher electrical conductivity are graphite bricks.
  9. Anode according to Claim 1, characterized in that the thickness of the layer made of bricks (11) with higher conductivity at the transition to the cylindrical current conductor (12) corresponds to the height of the latter.
  10. Anode according to Claim 7, characterized in that the brick lining below the layers made of electrically condcuting bricks (8, 11) contains a layer made of refractory, electrically insulating bricks (10).
  11. Anode according to Claim 2 or 3, characterized in that a device (14, 15) for supplying a cooling medium to the outside of the copper ring (12) is provided.
  12. Anode according to Claim 11, characterized in that the device on the lower part of the furnace exhibits suitable means (14) for conveying the cooling medium.
  13. Anode according to Claim 11, characterized in that fins (15) connected in thermal conduction to the copper ring (12) and projecting outwards are provided for cooling and conveying the cooling medium.
EP90117707A 1989-10-12 1990-09-14 Anode for direct current arc furnace Expired - Lifetime EP0422406B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90117707T ATE100662T1 (en) 1989-10-12 1990-09-14 ANODE FOR A DIRECT CURRENT ARC FURNACE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/420,290 US5052018A (en) 1989-10-12 1989-10-12 Anode for a direct current arc furnace
US420290 1989-10-12

Publications (3)

Publication Number Publication Date
EP0422406A2 EP0422406A2 (en) 1991-04-17
EP0422406A3 EP0422406A3 (en) 1991-06-26
EP0422406B1 true EP0422406B1 (en) 1994-01-19

Family

ID=23665876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90117707A Expired - Lifetime EP0422406B1 (en) 1989-10-12 1990-09-14 Anode for direct current arc furnace

Country Status (8)

Country Link
US (1) US5052018A (en)
EP (1) EP0422406B1 (en)
AT (1) ATE100662T1 (en)
CA (1) CA2027479C (en)
DE (1) DE59004311D1 (en)
ES (1) ES2048384T3 (en)
TR (1) TR25858A (en)
ZA (1) ZA907468B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022720A1 (en) * 1990-07-17 1992-01-23 Flohe Gmbh & Co UNDERWAY OF A DC ARC FURNACE
DE59002344D1 (en) * 1990-09-03 1993-09-16 Asea Brown Boveri DC ARC FURNACE.
US5199043A (en) * 1991-08-09 1993-03-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Lining for a direct-current electric arc furnace
DE4126627C2 (en) * 1991-08-12 1994-11-24 Voest Alpine Ind Anlagen Anode for a DC arc furnace
DE4129756C2 (en) * 1991-09-04 1995-06-29 Mannesmann Ag Metallurgical vessel for a DC arc device
DE4130397A1 (en) * 1991-09-12 1993-03-18 Kortec Ag DC ELECTRIC OVEN WITH A STOVE ELECTRODE, STOVE ELECTRODE AND ELECTRODE BLOCK AND OPERATING METHOD FOR THIS OVEN
US5867523A (en) * 1996-05-28 1999-02-02 Hatch Associates Ltd. Electric furnace with conductive hearth
US6331068B1 (en) 1999-02-18 2001-12-18 Lacks Industries, Inc. Flexible lamp mounting
DE19925554A1 (en) * 1999-06-04 2000-12-07 Sms Demag Ag Bottom electrode for metallurgical melting vessels
DE19925599A1 (en) * 1999-06-04 2000-12-07 Sms Demag Ag Method and device for operating arc melting furnaces and / or resistance melting furnaces
CN110608617B (en) * 2019-10-22 2024-05-14 中冶赛迪工程技术股份有限公司 Bottom electrode of direct current arc furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR888149A (en) * 1942-07-17 1943-12-03 Alais & Froges & Camarque Cie Universal arc furnace
SE415394B (en) * 1978-12-29 1980-09-29 Asea Ab BOTTEN CONTACT AT DC LIGHT REAR OVEN
SE423275B (en) * 1979-06-26 1982-04-26 Asea Ab BOTTEN CONTACT AT DC LIGHT REAR OVEN
SE435548B (en) * 1980-03-10 1984-10-01 Asea Ab DISTRIBUTION OF DRAWERS OR DRAWINGS FOR DIRECTLY WITH AT LEAST ONE LIGHT BACK ELECTRODE
FR2527756B1 (en) * 1982-06-01 1987-05-22 Siderurgie Fse Inst Rech METALLURGICAL FUSION PROCESS AND ARC FURNACE FOR ITS IMPLEMENTATION
DE3413745C2 (en) * 1983-04-21 1994-03-03 Asea Ab DC arc furnace
SE449132B (en) * 1984-01-25 1987-04-06 Asea Ab DC LIGHT REAR OR PUMP FOR HEATING
SE450857B (en) * 1985-02-21 1987-08-03 Asea Ab PROCEDURE FOR BUILDING OF LIGHT REAR SUCTIONS OR DRAWERS
FR2602320B1 (en) * 1986-08-01 1989-12-29 Clecim Sa SCRAP MELTING PROCESS AND ELECTRIC OVEN FOR IMPLEMENTING THE PROCESS
DE3817381A1 (en) * 1988-05-18 1989-11-30 Mannesmann Ag LOW WEAR ELECTRODE IN DC ARC FURNACE

Also Published As

Publication number Publication date
DE59004311D1 (en) 1994-03-03
CA2027479C (en) 1994-08-16
CA2027479A1 (en) 1991-04-13
TR25858A (en) 1993-09-01
ZA907468B (en) 1991-06-26
US5052018A (en) 1991-09-24
ATE100662T1 (en) 1994-02-15
EP0422406A2 (en) 1991-04-17
ES2048384T3 (en) 1994-03-16
EP0422406A3 (en) 1991-06-26

Similar Documents

Publication Publication Date Title
DE2745622C2 (en) Vessel for a metal melting furnace, in particular an electric arc furnace
DE3106741C2 (en) Contact electrode arrangement for arc or resistance melting furnace
EP0422406B1 (en) Anode for direct current arc furnace
DE2621380A1 (en) PRIMARY ELECTRODE ARRANGEMENT FOR HIGH TEMPERATURE MELTING FURNACES
DE3413745C2 (en) DC arc furnace
EP0151415B1 (en) Direct current arc furnace or direct current arc ladle
DE69111720T2 (en) DC OVEN FOR MELTING METAL.
DE7727148U1 (en) COMPOSED ELECTRODE FOR ARC FURNACES
EP0589150B1 (en) Bottom electrode for direct current arc furnaces
EP0133925A1 (en) Bottom electrode arrangement for a direct current arc furnace
EP0541044B1 (en) DC arc furnace
EP0217208A2 (en) Bottom of an electric smelt furnace, in particular of a direct current one
EP0600362B1 (en) DC arc furnace and operation method
DE2730884A1 (en) LIQUID-COOLED ELECTRODE FOR ARC FURNACE
EP0530534A1 (en) Lining for a direct-current arc furnace
EP0540832B1 (en) Anode for a direct-current arc furnace
EP0493557B1 (en) D.c arc furnace
EP0753077B1 (en) Dc-heated metallurgical vessel with base electrode
DE3242209A1 (en) Method of operating a direct-current arc furnace and a direct-current arc furnace for carrying out the method
DE4129756C2 (en) Metallurgical vessel for a DC arc device
AT406239B (en) Water-cooled mould for continuous casting or electroslag remelting
EP0273975B1 (en) Induction plasma furnace
EP0063711B1 (en) Electrode for arc furnaces and its use
DE3902576A1 (en) DEVICE FOR GENERATING HIGH TEMPERATURES
DE4025084A1 (en) DC arc furnace with air-cooled electrodes - has steel plate bottom housing forming anode connection via several conductor attachments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB LI NL

17Q First examination report despatched

Effective date: 19930107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB LI NL

REF Corresponds to:

Ref document number: 100662

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940125

REF Corresponds to:

Ref document number: 59004311

Country of ref document: DE

Date of ref document: 19940303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048384

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEUTSCHE VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH -DA

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000814

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000816

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000824

Year of fee payment: 11

Ref country code: AT

Payment date: 20000824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000911

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000922

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010914

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: VOEST-ALPINE INDUSTRIEANLAGENBAU G.M.B.H.

Effective date: 20010930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011