EP0415184B1 - Method and device for the continuous production of moulded elements from inorganically bonded materials - Google Patents

Method and device for the continuous production of moulded elements from inorganically bonded materials Download PDF

Info

Publication number
EP0415184B1
EP0415184B1 EP90115654A EP90115654A EP0415184B1 EP 0415184 B1 EP0415184 B1 EP 0415184B1 EP 90115654 A EP90115654 A EP 90115654A EP 90115654 A EP90115654 A EP 90115654A EP 0415184 B1 EP0415184 B1 EP 0415184B1
Authority
EP
European Patent Office
Prior art keywords
pressure
strand
density
thickness
compression unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115654A
Other languages
German (de)
French (fr)
Other versions
EP0415184A3 (en
EP0415184A2 (en
Inventor
Karsten Dr.-Dipl.-Holzw. Lempfer
Volker Dipl.-Ing. Thole
Thomas Dipl.-Holzw. Hilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to AT90115654T priority Critical patent/ATE91660T1/en
Publication of EP0415184A2 publication Critical patent/EP0415184A2/en
Publication of EP0415184A3 publication Critical patent/EP0415184A3/en
Application granted granted Critical
Publication of EP0415184B1 publication Critical patent/EP0415184B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/526Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement by delivering the materials on a conveyor of the endless-belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • B28B5/02Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type
    • B28B5/026Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length
    • B28B5/027Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length the moulding surfaces being of the indefinite length type, e.g. belts, and being continuously fed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses

Definitions

  • the invention relates to a method and device for the continuous production of moldings from inorganically bound materials according to the preamble of claim 1 and claim 2.
  • Such a method is known from DE-OS 34 41 839.
  • the continuous production of shaped bodies from inorganic materials described therein presupposes the presence of a high-pressure compression unit and a calibration device immediately following this.
  • the calibration device connects to the high-pressure compression unit without a transition.
  • This measure requires a special construction. It is not possible to use available continuous high-pressure presses for overcompression, since the dimensions of the available high-pressure presses do not allow the strand of material to be passed directly into a calibration device. This is e.g. due to the required return of the pole carpet or roller chains (Siempelkamp-Contiroll, Wegrs-Contipress), for which sufficient space is required.
  • the method known from DE-OS 34 41 839 is therefore not suitable for available continuous high-pressure presses and always requires a special device. This is disadvantageous because it involves high costs.
  • the object of the invention is to provide a method and a device in which the calibration device can be used without active pressure application, even in the case of an unpressurized transition zone between the high compression and the calibration device.
  • a recompression unit is immediately connected upstream of the calibration device, in which the strand of material springing back in the transition zone is compressed again to its target thickness / target density or below / above it.
  • a renewed active pressure action to re-compress the strand of material at the beginning of the calibration phase makes it possible to increase the desired relaxation of the restoring forces within the strand of material. For this re-compression of the strand of material, a considerably lower compression pressure is required than in the high-pressure compression unit.
  • Arranging the recompression unit directly in front of the calibration device ensures that the relaxation behavior of the previously highly compacted strand of material is used, but the effort required to produce high preform densities would have to be operated so that the strand of material does not spring back over the desired thickness during the transfer phase. If the strand of material is compressed again above its target density or below its target thickness during the recompaction, its restoring forces are further reduced. As a result, the calibration pressure to be applied in the calibration device without active pressure action is lower than without a second over-compression. In accordance with the relaxation behavior of the material strand, the duration of pressure exposure within the high-pressure device and thus its length and costs can be further reduced by a second over-compression without the required calibration pressure increasing significantly.
  • the application of a line pressure is also sufficient in the high pressure zone. If the advantage of an unpressurized transfer zone is used without the need for recompaction, the strand of material would have to be significantly over-compressed. This is not possible using available continuous high-pressure presses, or would be impossible per se with high nominal bulk densities of the material, because the molding cannot be compressed beyond its pure density.
  • the recompression unit applies line pressure to the strand of material.
  • a line pressure e.g. by means of rollers of relatively large diameter, is particularly easy to implement, and the costs of such a printing device are significantly lower compared to a device which applies surface pressure.
  • the compression pressure of the recompression unit is considerably lower than that of the high-pressure compression unit.
  • Another measure which is advantageous according to the invention is that by separating the high-pressure compression unit and the recompression unit with the calibration device, each of these two devices can have different speeds. It is important that the calibration device with the recompression unit can have a higher speed than the high-pressure compression unit at the beginning of the pressing process.
  • the high pressure compression of the strand of material lengthens it. If the high-pressure compression unit is arranged directly upstream of the calibration device, both presses run at the same speed and there is a risk of the strand of material being warped in the calibration device. If the units work independently of one another, the individual press speeds can easily be adapted to the change in the length of the material strand.
  • the device shown schematically in FIG. 1 has a spreading unit 1, a high-pressure compression press 2, a recompression unit 3 and a calibration press 4.
  • the pressure-free zone 5 lies between the high-pressure compression press 2 and the recompression unit 3.
  • the recompression unit 3 has two rollers 6, which act on the molding with a line pressure. The manufacturing process is described below using an example:
  • the fleece scattered on the conveyor belts from the spreading unit 1 first passes through the high-pressure press 2. This presses the material strand with a surface pressure.
  • the molding remains in the high-pressure press 2 for about 10 seconds and is compressed to about 14.6 mm at a predetermined target thickness of 16 mm. This high pressure compression takes place with a specific pressure of 5 N / mm2. Then, after leaving the high-pressure press 2, the molding passes through the pressure-free zone 5.
  • the pressure-free time is approximately 25 seconds and the length of the pressure-free zone 5 is approximately 5 m.
  • the springback of the molding starts immediately after leaving the high-pressure press 2. At the end of the pressure-free zone 5 and when it enters the recompression unit 3, the molded article springs back to approximately 21.5 mm.
  • a line pressure is applied to the molding in the recompression unit 3, which pressure is applied by the rollers 6.
  • a pressure of about 0.5 N / mm2 is required to achieve the compaction to the target thickness (16mm).
  • the molding recompressed to its target thickness now runs into the calibration press 4. In the example described above, the molding was not over-compressed in the second pressing section (re-compression unit), but was re-compressed to its target thickness of 16 mm.
  • Fig. 2 the time course of the pressure to be applied in the device is shown schematically.
  • a comparison of curves 1 and 2 shows that in the case of over-compression of the molding in high-pressure compression unit 2, the pressure to be applied by recompression unit 3 is about half the pressure without over-compression. This means that the restoring forces in the molding can be reduced by about 50% due to the over-compression.
  • the calibration pressure to be applied in the calibration device 4 without the action of pressure is also reduced to about half compared to the example without over-compression (curve 2).
  • curve 3 the pressure curve is schematically shown when the material strand is subjected to a line pressure in the high-pressure compression unit 2 and an over-compression of the material strand in the re-compression unit 3 also by means of line pressure.
  • the corresponding course of the molding thickness is shown schematically in FIG. 3, curve 3.
  • Fig. 4 shows the position of the chips / fibers in the molding in various stages of the manufacturing process.
  • the chips are in a disordered state (I).
  • the high-pressure compression unit 1 they are ordered by the compression of the material and brought into an essentially parallel position to the plate plane (II).
  • the molding relaxes and the chips assume a partially ordered position (III). Due to the recompression 3, the chips are finally brought into their position parallel to the plate plane (IV), and this position is then fixed in the subsequent calibration press 4 (V).
  • This position of the chips (over the entire cross-section of the plate) enables the plates produced in this way to have maximum bending strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Forging (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)

Abstract

A method and device for the continuous production of moulded elements from inorganically bonded materials is presented. This involves compressing a strand of material in a high-pressure compressing unit in such a way that its thickness is less than the set thickness of the finished strand of material and its density is greater than its set density. In the following calibrating device, no active pressure application takes place. It is essential here that, after leaving the high-pressure compressing unit (2), the strand of material runs through a pressureless zone (5) and, following that and immediately before entering the calibrating device (4), is compressed to such an extent that the recovery occurring during running through the pressureless zone (5) is either completely eliminated and the density of the strand of material is greater than the set density of the finished strand of material and the thickness is less than the set thickness of the same when entering the calibrating device (4) or the recovery is eliminated only to such an extent that the thickness of the strand of material corresponds to the set thickness and the density of the strand of material corresponds to the set density of the finished strand of material.

Description

Die Erfindung betrifft ein Verfahren und Einrichtung zur kontinuierlichen Herstellung von Formkörpern aus anorganisch gebundenen Werkstoffen gemäß dem Oberbegriff des Anspruches 1 bzw. des Anspruches 2.The invention relates to a method and device for the continuous production of moldings from inorganically bound materials according to the preamble of claim 1 and claim 2.

Ein solches Verfahren ist aus der DE-OS 34 41 839 bekannt. Die darin beschriebene kontinuierliche Herstellung von Formkörpern aus anorganisch gebundenen Werkstoffen setzt das Vorhandensein einer Hochdruckverdichtungseinheit und einer unmittelbar auf diese folgenden Kalibriervorrichtung voraus. Die Kalibriervorrichtung schließt ohne Übergang an die Hochdruckverdichtungseinheit an. Diese Maßnahme erfordert eine Spezialkonstruktion. Der Einsatz von verfügbaren kontinuierlichen Hochdruckpressen zur Überverdichtung ist nicht möglich, da die Abmessungen der verfügbaren Hochdruckpressen es nicht erlauben, den Werkstoffstrang unmittelbar in eine Kalibriervorrichtung übertreten zu lassen. Dies ist z.B. durch die erforderliche Rückführung des Stangenteppiches bzw. der Rollenketten (Siempelkamp-Contiroll, Küsters-Contipress), wofür ausreichend Platz erforderlich ist, bedingt. Das aus der DE-OS 34 41 839 bekannte Verfahren eignet sich demnach nicht für verfügbare kontinuierliche Hochdruckpressen und erfordert immer eine spezielle Vorrichtung. Dies ist nachteilig, da damit hohe Kosten verbunden sind.Such a method is known from DE-OS 34 41 839. The continuous production of shaped bodies from inorganic materials described therein presupposes the presence of a high-pressure compression unit and a calibration device immediately following this. The calibration device connects to the high-pressure compression unit without a transition. This measure requires a special construction. It is not possible to use available continuous high-pressure presses for overcompression, since the dimensions of the available high-pressure presses do not allow the strand of material to be passed directly into a calibration device. This is e.g. due to the required return of the pole carpet or roller chains (Siempelkamp-Contiroll, Küsters-Contipress), for which sufficient space is required. The method known from DE-OS 34 41 839 is therefore not suitable for available continuous high-pressure presses and always requires a special device. This is disadvantageous because it involves high costs.

Erheblich preisgünstiger und einfacher ist es, vorhandene Pressen einzusetzen. Der Einsatz vorhandener Pressen erfordert aber, wie bereits oben erläutert, eine drucklose Zone zwischen der Hochdruckverdichtungseinheit und der Kalibriervorrichtung. Durchläuft der vorher unter seine Solldicke und über seine Solldichte verdichtete Werkstoffstrang diese drucklose Zone, so federt er innerhalb dieser Zone zurück und kann ohne aktive Druckeinwirkung nicht in die Kalibriervorrichtung überführt werden. Nachteilig ist, daß damit die vorteilhafte Ausgestaltung der Einrichtung, nämlich der Einsatz der relativ langen Kalibriervorrichtung ohne aktiven Druck verloren geht. Die Kosten solcher Anlagen steigen, und die Wirtschaftlichkeit ihres Einsatzes bei der Werkstoffherstellung sinkt.It is considerably cheaper and easier to use existing presses. However, as already explained above, the use of existing presses requires a pressure-free zone between the high-pressure compression unit and the calibration device. If the strand of material previously compacted below its nominal thickness and above its nominal density passes through this pressure-free zone, it springs within back to this zone and cannot be transferred to the calibration device without active pressure. It is disadvantageous that the advantageous configuration of the device, namely the use of the relatively long calibration device without active pressure, is lost. The cost of such systems increases, and the cost-effectiveness of their use in material production falls.

Ein Problem bei der kontinuierlichen Herstellung anorganisch gebundener Span- und insbesondere Faserplatten, vor allem bei hoher Plattensolldichte, besteht weiterhin darin, daß die im Vlies enthaltene Luft in der Verdichtungseinheit komprimiert wird. Wenn der Formling während der gesamten (aktiven oder passiven) Druckeinwirkungsdauer beidseitig von Formungs- und Transportbändern abgedeckt wird, kann diese komprimierte Luft nur über dessen Schmalflächen entweichen. Dies ist in der Praxis nicht ausreichend. Es resultieren Spalter der Platten nach Verlassen der Presse aufgrund der eingeschlossenen Luft. Diese Zusammenhänge sind nachteilig.A problem with the continuous production of inorganically bound chipboard and in particular fiberboard, especially with a high nominal board density, is that the air contained in the fleece is compressed in the compression unit. If the molding is covered on both sides by forming and transport belts during the entire (active or passive) pressure exposure, this compressed air can only escape through its narrow surfaces. In practice, this is not sufficient. Splitting of the plates results after leaving the press due to the trapped air. These relationships are disadvantageous.

Aufgabe der Erfindung ist es, ein Verfahren und eine Einrichtung anzugeben, bei dem bzw. bei der auch bei einer drucklosen Übergangszone zwischen der Hochverdichtungs- und der Kalibriervorrichtung die Kalibriervorrichtung ohne aktive Druckanwendung eingesetzt werden kann.The object of the invention is to provide a method and a device in which the calibration device can be used without active pressure application, even in the case of an unpressurized transition zone between the high compression and the calibration device.

Die Lösung dieser Aufgabe ist in den kennzeichnenden Teilen des Anspruches 1 und des Anspruches 2 angegeben. Die Unteransprüche stellen vorteilhafte Weiterbildungen dar.The solution to this problem is specified in the characterizing parts of claim 1 and claim 2. The subclaims represent advantageous developments.

Der Kalibriervorrichtung ist unmittelbar eine Wiederverdichtungseinheit vorgeschaltet, in der der in der Übergangszone zurückgefederte Werkstoffstrang auf seine Solldicke/Solldichte bzw. darunter/darüber wieder verdichtet wird. Eine erneute aktive Druckeinwirkung zur Wiederverdichtung des Werkstoffstranges zu Beginn der Kalibrierungsphase ermöglicht es, die gewünschte Relaxion der Rückstellkräfte innerhalb des Werkstoffstranges zu verstärken. Zu dieser Wiederverdichtung des Werkstoffstranges ist ein erheblich geringerer Preßdruck erforderlich als in der Hochdruckverdichtungseinheit. Durch das Anordnen der Wiederverdichtungseinheit unmittelbar vor der Kalibriervorrichtung wird erreicht, daß das Relaxationsverhalten des zuvor hochverdichteten Werkstoffstranges genutzt, der Aufwand aber, der zur Erzeugung hoher Formlingsrohdichten betrieben werden müßte, damit der Werkstoffstrang während der Übergabephase nicht über die angestrebte Dicke rückfedert, minimiert wird. Wird bei der Wiederverdichtung der Werkstoffstrang erneut über seine Solldichte bzw. unter seine Solldicke komprimiert, so werden dessen Rückstellkräfte weiter verringert. Hierdurch ist der in der Kalibriervorrichtung ohne aktive Druckeinwirkung aufzubringende Kalibrierdruck niedriger als ohne zweite Überverdichtung. Entsprechend dem Relaxationsverhalten des Werkstoffstranges können durch eine zweite Überverdichtung die Druckeinwirkungsdauer innerhalb der Hochdruckeinrichtung und damit deren Länge und Kosten weiter verringert werden, ohne daß der erforderliche Kalibrierdruck wesentlich steigt. Durch eine erfindungsgemäße zweite Überverdichtung ist damit auch in der Hochdruckzone das Aufbringen quasi eines Liniendruckes ausreichend. Sollte man den Vorteil einer drucklosen Übergabezone nutzen, ohne daß eine Wiederverdichtung erforderlich wäre, so müßte der Werkstoffstrang wesentlich stärker überverdichtet werden. Dies ist mittels verfügbarer kontinuierlichen Hochdruckpressen nicht möglich bzw. wäre bei hohen Sollrohdichten des Werkstoffes an sich unmöglich, weil der Formling nicht über seine Reindichte hinaus verdichtet werden kann.A recompression unit is immediately connected upstream of the calibration device, in which the strand of material springing back in the transition zone is compressed again to its target thickness / target density or below / above it. A renewed active pressure action to re-compress the strand of material at the beginning of the calibration phase makes it possible to increase the desired relaxation of the restoring forces within the strand of material. For this re-compression of the strand of material, a considerably lower compression pressure is required than in the high-pressure compression unit. Arranging the recompression unit directly in front of the calibration device ensures that the relaxation behavior of the previously highly compacted strand of material is used, but the effort required to produce high preform densities would have to be operated so that the strand of material does not spring back over the desired thickness during the transfer phase. If the strand of material is compressed again above its target density or below its target thickness during the recompaction, its restoring forces are further reduced. As a result, the calibration pressure to be applied in the calibration device without active pressure action is lower than without a second over-compression. In accordance with the relaxation behavior of the material strand, the duration of pressure exposure within the high-pressure device and thus its length and costs can be further reduced by a second over-compression without the required calibration pressure increasing significantly. By means of a second over-compression according to the invention, the application of a line pressure is also sufficient in the high pressure zone. If the advantage of an unpressurized transfer zone is used without the need for recompaction, the strand of material would have to be significantly over-compressed. This is not possible using available continuous high-pressure presses, or would be impossible per se with high nominal bulk densities of the material, because the molding cannot be compressed beyond its pure density.

Erfindungsgemäß ist es besonders vorteilhaft, wenn die Wiederverdichtungseinheit den Werkstoffstrang mit einem Liniendruck beaufschlagt. Eine Beaufschlagung mit einem Liniendruck, z.B. mittels Walzen relativ großen Durchmessers, ist besonders einfach zu realisieren, und die Kosten einer derartigen Druckeinrichtung sind gegenüber einer Einrichtung, die einen Flächendruck aufbringt, wesentlich niedriger.According to the invention, it is particularly advantageous if the recompression unit applies line pressure to the strand of material. A line pressure, e.g. by means of rollers of relatively large diameter, is particularly easy to implement, and the costs of such a printing device are significantly lower compared to a device which applies surface pressure.

Gemäß dem Lösungsvorschlag nach dem Unteranspruch 4 ist es besonders vorteilhaft, wenn die Wiederverdichtungseinheit und die Kalibriervorrichtung durch ein gemeinsames Preßband umschlossen werden. Dieses die Wiederverdichtungseinheit und die Kalibriervorrichtung umschließende Preßband verhindert den in der drucklosen Übergangszone eintretenden Effekt der Entweichung der Luft über die Formlingsoberfläche nicht.According to the proposed solution according to subclaim 4, it is particularly advantageous if the recompression unit and the calibration device are enclosed by a common press belt. This press belt, which surrounds the recompression unit and the calibration device, does not prevent the effect of the air escaping through the molded article surface in the unpressurized transition zone.

Gemäß einer weiteren vorteihaften Ausgestaltung der erfindungsgemäßen Einrichtung ist der Preßdruck der Wiederverdichtungseinheit erheblich niedriger als derjenige der Hochdruckverdichtungseinheit. Mit dem Preßdruck der Wiederverdichtungseinheit muß nur die Rückfederung des bereits hochverdichteten Werkstoffstranges überwunden werden. Der erforderliche Preßdruck der Wiederverdichtungseinheit ist um so geringer, je höher die Hochverdichtung war.According to a further advantageous embodiment of the device according to the invention, the compression pressure of the recompression unit is considerably lower than that of the high-pressure compression unit. With the compression pressure of the recompression unit, only the springback of the already highly compressed must Material strand to be overcome. The higher the high compression, the lower the required compression pressure of the recompression unit.

Eine weitere erfindungsgemäß vorteilhafte Maßnahme liegt darin, daß durch die Trennung der Hochdruckverdichtungseinheit und der Wiederverdichtungseinheit mit der Kalibriervorrichtung jede dieser beiden Einrichtungen verschiedene Geschwindigkeiten aufweisen kann. Wichtig ist dabei, daß die Kalibriervorrichtung mit der Wiederverdichtungseinheit eine höhere Geschwindigkeit aufweisen kann als die Hochdruckverdichtungseinheit am Anfang des Preßprozesses. Durch die Hochdruckverdichtung des Werkstoffstranges längt sich dieser. Ist die Hochdruckverdichtungseinheit unmittelbar der Kalibriervorrichtung vorgeordnet, so laufen beide Pressen mit gleicher Geschwindigkeit und es besteht die Gefahr einer Verwerfung des Werkstoffstranges in der Kalibriervorrichtung. Arbeiten die Einheiten unabhängig voneinander, so ist die Anpassung der einzelnen Pressengeschwindigkeiten an die Veränderung der Länge des Werkstoffstranges ohne weiteres möglich.Another measure which is advantageous according to the invention is that by separating the high-pressure compression unit and the recompression unit with the calibration device, each of these two devices can have different speeds. It is important that the calibration device with the recompression unit can have a higher speed than the high-pressure compression unit at the beginning of the pressing process. The high pressure compression of the strand of material lengthens it. If the high-pressure compression unit is arranged directly upstream of the calibration device, both presses run at the same speed and there is a risk of the strand of material being warped in the calibration device. If the units work independently of one another, the individual press speeds can easily be adapted to the change in the length of the material strand.

In den Zeichnungen ist ein Ausführungsbeispiel der erfindungsgemäßen Einrichtung dargestellt.In the drawings, an embodiment of the device according to the invention is shown.

Es zeigen:

Fig. 1
eine schematische Darstellung einer Einrichtung;
Fig. 2
den zeitlichen Ablauf des Druckes in der Einrichtung ohne Überverdichtung des Formlings in der Hochdruckeinrichtung (Kurve 1), mit Überverdichtung des Formlings in der Hochdruckeinrichtung (Kurve 2) und mit kurzfristiger Überverdichtung des Formlings sowohl in der Hochdruck- als auch in der Wiederverdichtungseinrichtung (Kurve 3);
Fig. 3
den zeitlichen Ablauf der Formlingsdicke ohne Überverdichtung des Formlings in der Hochdruckphase (Kurve 1), mit Überverdichtung des Formlings in der Hochdruckeinrichtung (Kurve 2) sowie mit kurzfristiger Überverdichtung des Formlings sowohl in der Hochdruck- als auch in der Wiederverdichtungseinrichtung (Kurve 3);
Fig. 4
eine schematische Darstellung der Lage der Späne/Fasern im Verlauf des Herstellungsprozesses.
Show it:
Fig. 1
a schematic representation of a device;
Fig. 2
the time course of the pressure in the device without over-compression of the molding in the high-pressure device (curve 1), with over-compression of the molding in the high-pressure device (curve 2) and with short-term over-compression of the molding in both the high-pressure and the recompression device (curve 3 );
Fig. 3
the progression of the molding thickness over time without over-compression of the molding in the high-pressure phase (curve 1), with over-compression of the molding in the high-pressure device (curve 2) and with short-term over-compression of the molding in both the high-pressure and the recompression device (curve 3);
Fig. 4
a schematic representation of the position of the chips / fibers in the course of the manufacturing process.

Die schematisch in Fig. 1 dargestellte Einrichtung weist ein Streuaggregat 1, eine Hochdruckverdichtungspresse 2, eine Wiederverdichtungseinheit 3 und eine Kalibrierpresse 4 auf. Zwischen der Hochdruckverdichtungspresse 2 und der Wiederverdichtungseinheit 3 liegt die druckfreie Zone 5. Die Wiederverdichtungseinheit 3 weist zwei Walzen 6 auf, die den Formling mit einem Liniendruck beaufschlagen. Anhand eines Beispieles wird nachfolgend der Herstellungsprozeß beschrieben:The device shown schematically in FIG. 1 has a spreading unit 1, a high-pressure compression press 2, a recompression unit 3 and a calibration press 4. The pressure-free zone 5 lies between the high-pressure compression press 2 and the recompression unit 3. The recompression unit 3 has two rollers 6, which act on the molding with a line pressure. The manufacturing process is described below using an example:

Das auf die Transportbänder aus dem Streuaggregat 1 gestreute Vlies durchläuft zunächst die Hochdruckpresse 2. Diese beaufschlagt den Werkstoffstrang mit einem Flächendruck. Der Formling verbleibt etwa 10 sec in der Hochdruckpresse 2 und wird dabei auf etwa 14,6mm bei einer vorgegebenen Solldicke von 16mm zusammengedrückt. Diese Hochdruckverdichtung erfolgt mit einem spezifischen Preßdruck von 5 N/mm². Anschließend, nach dem Verlassen der Hochdruckpresse 2, durchläuft der Formling die druckfreie Zone 5. Die druckfreie Zeit beträgt etwa 25 sec und die Länge der druckfreien Zone 5 ca. 5m. Die Rückfederung des Formlings setzt unmittelbar nach dem Verlassen der Hochdruckpresse 2 ein. Am Ende der druckfreien Zone 5 und beim Einlauf in die Wiederverdichtungseinheit 3 ist der Formling auf etwa 21,5mm zurückgefedert. In der Wiederverdichtungseinheit 3 wird der Formling mit einem Liniendruck beaufschlagt, welcher durch die Walzen 6 aufgebracht wird. Um das Verdichten auf Solldicke (16mm) zu erreichen, ist ein Druck von etwa 0,5 N/mm² erforderlich. Der auf seine Solldicke wiederverdichtete Formling läuft jetzt in die Kalibrierpresse 4 ein. In dem oben beschriebenen Beispiel wurde der Formling im zweiten Preßabschnitt (Wiederverdichtungseinheit) nicht überverdichtet, sondern auf seine Solldicke von 16mm wiederverdichtet.The fleece scattered on the conveyor belts from the spreading unit 1 first passes through the high-pressure press 2. This presses the material strand with a surface pressure. The molding remains in the high-pressure press 2 for about 10 seconds and is compressed to about 14.6 mm at a predetermined target thickness of 16 mm. This high pressure compression takes place with a specific pressure of 5 N / mm². Then, after leaving the high-pressure press 2, the molding passes through the pressure-free zone 5. The pressure-free time is approximately 25 seconds and the length of the pressure-free zone 5 is approximately 5 m. The springback of the molding starts immediately after leaving the high-pressure press 2. At the end of the pressure-free zone 5 and when it enters the recompression unit 3, the molded article springs back to approximately 21.5 mm. A line pressure is applied to the molding in the recompression unit 3, which pressure is applied by the rollers 6. A pressure of about 0.5 N / mm² is required to achieve the compaction to the target thickness (16mm). The molding recompressed to its target thickness now runs into the calibration press 4. In the example described above, the molding was not over-compressed in the second pressing section (re-compression unit), but was re-compressed to its target thickness of 16 mm.

In der Fig. 2 ist schematisiert der zeitliche Verlauf des aufzubringenden Preßdruckes in der Einrichtung dargestellt. Ein Vergleich der Kurven 1 und 2 zeigt, daß im Falle der Überverdichtung des Formlings in der Hochdruckverdichtungseinheit 2 der durch die Wiederverdichtungseinheit 3 notwendige, aufzubringende Druck etwa die Hälfte des Druckes ohne Überverdichtung beträgt. Dies bedeutet, daß die Rückstellkräfte im Formling durch die Überverdichtung um etwa 50% reduziert werden können. Der in der Kalibriervorrichtung 4 ohne aktive Druckeinwirkung aufzubringende Kalibrierdruck verringert sich gegenüber dem Beispiel ohne Überverdichtung ebenfalls auf etwa die Hälfte (Kurve 2).In Fig. 2 the time course of the pressure to be applied in the device is shown schematically. A comparison of curves 1 and 2 shows that in the case of over-compression of the molding in high-pressure compression unit 2, the pressure to be applied by recompression unit 3 is about half the pressure without over-compression. This means that the restoring forces in the molding can be reduced by about 50% due to the over-compression. The calibration pressure to be applied in the calibration device 4 without the action of pressure is also reduced to about half compared to the example without over-compression (curve 2).

In den oben angegebenen Beispielen federt der Formling nach einer Überverdichtung mit einem spezifischen Druck von 5 N/mm², der etwa dem maximal mit verfügbaren kontinuierlichen Hochdruckpressen erreichbaren Druck entspricht, um mehr als ein Drittel über die gewünschte Solldicke zurück (Fig. 3, Kurve 2). Eine Wiederverdichtung vor Eintritt in die ohne aktive Druckanwendung arbeitende Kalibriereinrichtung 4 ist deshalb erforderlich.In the examples given above, the molding springs back after over-compression with a specific pressure of 5 N / mm², which corresponds approximately to the maximum pressure that can be achieved with available continuous high-pressure presses, by more than a third above the desired target thickness (FIG. 3, curve 2 ). A recompression before entry into the calibration device 4 working without active pressure application is therefore necessary.

In Fig. 2, Kurve 3 ist schematisiert der Druckverlauf bei einer Beaufschlagung des Werkstoffstranges mit einem Liniendruck in der Hochdruckverdichtungseinheit 2 und einer Überverdichtung des Werkstoffstranges in der Wiederverdichtungseinheit 3 auch mittels Liniendruckes dargestellt. Der entsprechende Verlauf der Formlingsdicke ist schematisiert in Fig. 3, Kurve 3 dargestellt.In Fig. 2, curve 3, the pressure curve is schematically shown when the material strand is subjected to a line pressure in the high-pressure compression unit 2 and an over-compression of the material strand in the re-compression unit 3 also by means of line pressure. The corresponding course of the molding thickness is shown schematically in FIG. 3, curve 3.

Fig. 4 zeigt die Lage der Späne/Fasern im Formling in verschiedenen Stadien des Herstellungsproezesses. Nach dem Streuvorgang befinden sich die Späne in einem ungeordneten Zustand (I). In der Hochdruckverdichtungseinheit 1 werden sie durch die Verdichtung des Materials geordnet und in eine im wesentlichen parallele Lage zur Plattenebene gebracht (II). Während des Durchlaufes der druckfreien Zone 5 relaxiert der Formling, und die Späne nehmen eine zum Teil geordnete Position ein (III). Durch die Wiederverdichtung 3 werden die Späne entgültig in ihre zur Plattenebene parallele Lage gebracht (IV), und diese Lage wird dann in der anschließenden Kalibrierpresse 4 fixiert (V). Durch diese Lage der Späne (und zwar über den gesamten Querschnitt der Platte) erreichen die so hergestellten Platten eine maximale Biegefestigkeit.Fig. 4 shows the position of the chips / fibers in the molding in various stages of the manufacturing process. After the spreading process, the chips are in a disordered state (I). In the high-pressure compression unit 1, they are ordered by the compression of the material and brought into an essentially parallel position to the plate plane (II). During the passage through the pressure-free zone 5, the molding relaxes and the chips assume a partially ordered position (III). Due to the recompression 3, the chips are finally brought into their position parallel to the plate plane (IV), and this position is then fixed in the subsequent calibration press 4 (V). This position of the chips (over the entire cross-section of the plate) enables the plates produced in this way to have maximum bending strength.

Claims (6)

  1. Method for the continuous manufacture of moulded articles from inorganically bonded materials, in particular chipboard or fibreboard, in which a strand of material is compressed in a high-pressure compression unit at such a high pressure that its thickness falls below the nominal thickness of the finished strand of material and its density exceeds the nominal density thereof, and in which there is no active application of pressure in the calibrating device which follows this compression unit, characterised in that the strand of material after leaving the high-pressure compression unit (2) passes through a pressureless zone (5) and, subsequently to the latter and immediately before entering the calibrating device (4), is compressed to such an extent that either the spring-back which has occurred during passage through the pressureless zone (5) is completely eliminated and the density of the strand of material exceeds the nominal density of the finished strand of material and the thickness falls below the nominal thickness thereof on entering the calibrating device (4), or the spring-back is eliminated only to such an extent that the thickness of the strand of material corresponds to the nominal thickness and the density of the strand of material corresponds to the nominal density of the finished strand of material.
  2. Apparatus for the continuous manufacture of moulded articles from inorganically bonded materials, in particular chipboard and fibreboard, with a high-pressure compression unit in which the strand of material is compressed at high pressure and a calibrating device following the high-pressure compression unit and operating without active application of pressure to the strand of material, characterised in that between the high-pressure compression unit (2) and the calibrating device (4) is arranged a transition zone (5) without the action of pressure on the strand of material, and immediately in front of the calibrating device (4) is a recompression unit (3) which acts on the strand of material with an active pressure.
  3. Apparatus according to claim 2, characterised in that the recompression unit (3) acts on the strand of material with a linear pressure.
  4. Apparatus according to claim 2 or 3, characterised in that in the event of action on the strand of material in the recompression unit (3) at such a high pressure that the strand of material is compressed to below its nominal thickness and above its nominal density, the pressure action in the high-pressure compression unit (2) is performed with a linear pressure.
  5. Apparatus according to any of claims 2 to 4, characterised in that the compacting pressure of the recompression unit (3) is considerably lower than that of the high-pressure compression unit (2).
  6. Apparatus according to any of claims 2 to 5, characterised in that the speeds of the high-pressure compression unit (2) and the recompression unit (3) with the calibrating device (4) may differ from and be independent of each other.
EP90115654A 1989-08-30 1990-08-16 Method and device for the continuous production of moulded elements from inorganically bonded materials Expired - Lifetime EP0415184B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90115654T ATE91660T1 (en) 1989-08-30 1990-08-16 PROCESS AND EQUIPMENT FOR THE CONTINUOUS PRODUCTION OF MOLDINGS FROM INORGANIC BOND MATERIALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3928626 1989-08-30
DE3928626A DE3928626C1 (en) 1989-08-30 1989-08-30

Publications (3)

Publication Number Publication Date
EP0415184A2 EP0415184A2 (en) 1991-03-06
EP0415184A3 EP0415184A3 (en) 1991-07-31
EP0415184B1 true EP0415184B1 (en) 1993-07-21

Family

ID=6388152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115654A Expired - Lifetime EP0415184B1 (en) 1989-08-30 1990-08-16 Method and device for the continuous production of moulded elements from inorganically bonded materials

Country Status (5)

Country Link
US (1) US5135693A (en)
EP (1) EP0415184B1 (en)
AT (1) ATE91660T1 (en)
CA (1) CA2023947C (en)
DE (2) DE3928626C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025797C2 (en) * 1990-08-15 1994-10-06 Babcock Bsh Ag Process for the production of plate-shaped bodies from a mixture of gypsum and fibrous materials and plant for carrying out this process
DE4129466A1 (en) * 1991-09-05 1993-03-11 Bold Joerg METHOD FOR PRODUCING PLASTER PANELS AFTER A SEMI-DRYING PROCESS
DE4239033A1 (en) * 1992-03-19 1993-09-23 Fraunhofer Ges Forschung
ITRE20020035A1 (en) * 2002-04-24 2003-10-24 Sacmi METHOD AND PLANT FOR THE FORMING OF SLABS OR CERAMIC TILES

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303087A (en) * 1938-12-24 1942-11-24 Paper Patents Co Apparatus for compressing creped wadding
US2909804A (en) * 1955-09-16 1959-10-27 Perry G Means Continuous hot pressing machine for the manufacture of compressed boards
US3521552A (en) * 1968-07-29 1970-07-21 Hans John Knapp Endless caul belt continuous press
DE2130932A1 (en) * 1971-06-22 1973-05-30 Baehre & Greten Chipboard,continuous prodn - with high-frequency alternating field located before the pre-compression unit
DE2247990A1 (en) * 1972-09-29 1974-04-18 Baehre & Greten Continuous chipboard sheeting - with variable gap for alternating high-frequ-enzymatic treatment between initial and main presses
DE2722356C2 (en) * 1977-05-17 1982-07-29 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Method and device for the continuous production of chipboard, fiber or the like. plates
DE3044671A1 (en) * 1980-11-27 1982-06-03 Küsters, Eduard, 4150 Krefeld METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF STRAND-SHAPED MATERIALS
DE3107589C2 (en) * 1981-02-27 1986-01-30 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Device for the continuous production of chipboard, fiberboard or similar boards
DE3206558A1 (en) * 1982-02-24 1983-09-01 Santrade Ltd., 6002 Luzern Double-band press
DE3441839A1 (en) * 1984-08-13 1986-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF INORGANICALLY BONDED MATERIALS, ESPECIALLY OF MATERIAL PLATES
DE3539364A1 (en) * 1985-11-06 1987-05-14 Fraunhofer Ges Forschung Process for the continuous production of chipboards or fibreboards
DE3734180C2 (en) * 1987-10-09 1998-01-29 Kuesters Eduard Maschf Double belt press for the production of chipboard and the like

Also Published As

Publication number Publication date
EP0415184A3 (en) 1991-07-31
DE3928626C1 (en) 1991-01-24
CA2023947A1 (en) 1991-03-01
CA2023947C (en) 1994-04-12
US5135693A (en) 1992-08-04
EP0415184A2 (en) 1991-03-06
DE59002018D1 (en) 1993-08-26
ATE91660T1 (en) 1993-08-15

Similar Documents

Publication Publication Date Title
EP0172930A1 (en) Method and apparatus for making chipboard
DE102006059564B4 (en) Method and device for pressing pressed material mats
DE3231861C2 (en)
EP0415184B1 (en) Method and device for the continuous production of moulded elements from inorganically bonded materials
DE3916774C2 (en)
DE2608551A1 (en) PROCESS AND EQUIPMENT FOR MANUFACTURING WEIGHT- OR VOLUME-ACCURATE SEMI-PRODUCTS, IN PARTICULAR BUBBLE SECTIONS, FOR COLD OR HOT FORMING
DE3133792A1 (en) Device for the continuous pressing of a mat of material in the course of producing chipboards, fibreboards and similar pressed material
DE3430467C2 (en)
AT413672B (en) PRESSING DEVICE AND METHOD FOR PRESSING WOOD OR WOODEN PROFILE PROFILES
DE19828824C2 (en) Process and press for continuous operation in the course of the production of chipboard, laminate or the like.
WO1982002335A1 (en) Device for pressing shaped articles made of absorbant material,particularly sanitary pads for women hygiene
DE3539364C2 (en)
DE3009016A1 (en) Packaging mechanism for fibrous goods - packs goods in bales using multistage presses being first pre-compressed to greater pressure
EP0811471A1 (en) Extrusion method for the continuous production of products with an organic binder, and equipment therefor
WO2020239377A1 (en) Method and system for manufacturing longitudinal frame members for utility vehicles
EP0401501B1 (en) Method for influencing the movement of the frontal flow during pressing of materials and apparatus for carrying out the method
DE2652220A1 (en) PROCESS FOR REDUCING THE PRESS PUSH IN THE PRODUCTION OF WOOD CHIPBOARD OR DGL.
DE3612703A1 (en) Process for the manufacture of a board made from wood products
DE102017110865A1 (en) Method for pressing a pressed material mat
DE2736099C2 (en) Continuously working press
DE19829533C1 (en) Method of inserting insulation into cavity walls involves feeding insulation filling into cavity and simultaneously compressing it
DE3119528C2 (en) Method and system for operating a heated single or multi-daylight platen press in the course of the production of chipboard, fibreboard and the like.
DE102006039375B4 (en) Working tool bar and method for its production
DE102022123936A1 (en) Device for processing elongated wooden elements
WO1996022224A1 (en) Process and device for shaping and portioning a viscous compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOLE, VOLKER, DIPL.-ING.

Inventor name: LEMPFER, KARSTEN, DR.-DIPL.-HOLZW.

Inventor name: HILBERT, THOMAS, DIPL.-HOLZW.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911210

17Q First examination report despatched

Effective date: 19920416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930721

Ref country code: DK

Effective date: 19930721

Ref country code: NL

Effective date: 19930721

Ref country code: SE

Effective date: 19930721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930721

Ref country code: BE

Effective date: 19930721

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930721

REF Corresponds to:

Ref document number: 91660

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930816

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930723

REF Corresponds to:

Ref document number: 59002018

Country of ref document: DE

Date of ref document: 19930826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930831

Ref country code: LI

Effective date: 19930831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930831

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940831

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940908

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST